1
|
Chen P, Wang W, Ban W, Zhang K, Dai Y, Yang Z, You Y. Deciphering Post-Stroke Sleep Disorders: Unveiling Neurological Mechanisms in the Realm of Brain Science. Brain Sci 2024; 14:307. [PMID: 38671959 PMCID: PMC11047862 DOI: 10.3390/brainsci14040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sleep disorders are the most widespread mental disorders after stroke and hurt survivors' functional prognosis, response to restoration, and quality of life. This review will address an overview of the progress of research on the biological mechanisms associated with stroke-complicating sleep disorders. Extensive research has investigated the negative impact of stroke on sleep. However, a bidirectional association between sleep disorders and stroke exists; while stroke elevates the risk of sleep disorders, these disorders also independently contribute as a risk factor for stroke. This review aims to elucidate the mechanisms of stroke-induced sleep disorders. Possible influences were examined, including functional changes in brain regions, cerebrovascular hemodynamics, neurological deficits, sleep ion regulation, neurotransmitters, and inflammation. The results provide valuable insights into the mechanisms of stroke complicating sleep disorders.
Collapse
Affiliation(s)
- Pinqiu Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (P.C.)
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (P.C.)
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Kecan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yanan Dai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Shah EJ, Grunwald WC, Garrett TL, Brown TL, Cool DR. Sarin-Induced Neuroinflammation in Mouse Brain Is Attenuated by the Caspase Inhibitor Q-VD-OPh. J Pharmacol Exp Ther 2024; 388:367-375. [PMID: 37918856 PMCID: PMC10801781 DOI: 10.1124/jpet.123.001820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Organophosphates cause hyperstimulation of the central nervous system, leading to extended seizures, convulsions, and brain damage. Sarin is a highly toxic organophosphate nerve agent that has been employed in several terrorist attacks. The prolonged toxicity of sarin may be enhanced by the neuroinflammatory response initiated by the inflammasome, caspase involvement, and generation/release of proinflammatory cytokines. Since neurodegeneration and neuroinflammation are prevalent in sarin-exposed animals, we were interested in evaluating the capacity of quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone (Q-VD-OPh), a pan caspase inhibitor to attenuate neuroinflammation following sarin exposure. To test this hypothesis, sarin-exposed C57BL/6 mice were treated with Q-VD-OPh or negative control quinolyl-valyl-O-methylglutamyl-[-2,6-difluorophenoxy]-methyl ketone, sacrificed at 2- and 14-day time points, followed by removal of the amygdala and hippocampus. A Bio-Rad 23-Plex cytokine analysis was completed on each tissue. The results suggest that exposure to sarin induced a dramatic increase in interleukin-1β and 6 other cytokines and a decrease in 2 of the 23 cytokines at 2 days in the amygdala compared with controls. Q-VD-OPh attenuated these changes at the 2-day time point. At 14 days, six of these cytokines were still significantly different from controls. Hippocampus was less affected at both time points. Diazepam, a neuroprotective drug against nerve agents, caused an increase in several cytokines but did not have a synergistic effect with Q-VD-OPh. Treatment of sarin exposure with apoptosis inhibitors appears to be a worthwhile approach for further testing as a comprehensive counteragent against organophosphate exposure. SIGNIFICANCE STATEMENT: A pan inhibitor of caspases (Q-VD-OPh) was proposed as a potential antidote for sarin-induced neuroinflammation by reducing the level of inflammation via inflammasome caspase inhibition. Q-VD-OPh added at 30 minutes post-sarin exposure attenuated the inflammatory response of a number of cytokines and chemokines in the amygdala and hippocampus, two brain regions sensitive to organophosphate exposure. Apoptotic marker reduction at 2 and 14 days further supports further testing of inhibitors of apoptosis as a means to lessen extended organophosphate toxicity in the brain.
Collapse
Affiliation(s)
- Ekta J Shah
- Departments of Pharmacology and Toxicology (E.J.S., W.C.G, T.L.G., D.R.C) and Neuroscience, Cell Biology and Physiology (T.L.G., T.L.B.), Wright State University, Dayton, Ohio
| | - William C Grunwald
- Departments of Pharmacology and Toxicology (E.J.S., W.C.G, T.L.G., D.R.C) and Neuroscience, Cell Biology and Physiology (T.L.G., T.L.B.), Wright State University, Dayton, Ohio
| | - Teresa L Garrett
- Departments of Pharmacology and Toxicology (E.J.S., W.C.G, T.L.G., D.R.C) and Neuroscience, Cell Biology and Physiology (T.L.G., T.L.B.), Wright State University, Dayton, Ohio
| | - Thomas L Brown
- Departments of Pharmacology and Toxicology (E.J.S., W.C.G, T.L.G., D.R.C) and Neuroscience, Cell Biology and Physiology (T.L.G., T.L.B.), Wright State University, Dayton, Ohio
| | - David R Cool
- Departments of Pharmacology and Toxicology (E.J.S., W.C.G, T.L.G., D.R.C) and Neuroscience, Cell Biology and Physiology (T.L.G., T.L.B.), Wright State University, Dayton, Ohio
| |
Collapse
|
3
|
The Alpha 7 Nicotinic Acetylcholine Receptor Does Not Affect Neonatal Brain Injury. Biomedicines 2022; 10:biomedicines10082023. [PMID: 36009570 PMCID: PMC9405910 DOI: 10.3390/biomedicines10082023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammation plays a central role in the development of neonatal brain injury. The alpha 7 nicotinic acetylcholine receptor (α7nAChR) can modulate inflammation and has shown promising results as a treatment target in rodent models of adult brain injury. However, little is known about the role of the α7nAChR in neonatal brain injury. Hypoxic-ischemic (HI) brain injury was induced in male and female C57BL/6 mice, α7nAChR knock-out (KO) mice and their littermate controls on postnatal day (PND) 9–10. C57BL/6 pups received i.p. injections of α7nAChR agonist PHA 568487 (8 mg/kg) or saline once daily, with the first dose given directly after HI. Caspase-3 activity and cytokine mRNA expression in the brain was analyzed 24 h after HI. Motor function was assessed 24 and 48 h after HI, and immunohistochemistry was used to assess tissue loss at 24 h and 7 days after HI and microglial activation 7 days after HI. Activation of α7nAChR with the agonist PHA 568487 significantly decreased CCL2/MCP-1, CCL5/RANTES and IL-6 gene expression in the injured brain hemisphere 24 h after HI compared with saline controls in male, but not female, pups. However, α7nAChR activation did not alter caspase-3 activity and TNFα, IL-1β and CD68 mRNA expression. Furthermore, agonist treatment did not affect motor function (24 or 48 h), neuronal tissue loss (24 h or 7 days) or microglia activation (7 days) after HI in either sex. Knock-out of α7nAChR did not influence neuronal tissue loss 7 days after HI. In conclusion, targeting the α7nAChR in neonatal brain injury shows some effect on dampening acute inflammatory responses in male pups. However, this does not lead to an effect on overall injury outcome.
Collapse
|
4
|
Manual Kollareth DJ, Zirpoli H, Ten VS, Deckelbaum RJ. Acute Injection of Omega-3 Triglyceride Emulsion Provides Very Similar Protection as Hypothermia in a Neonatal Mouse Model of Hypoxic-Ischemic Brain Injury. Front Neurol 2021; 11:618419. [PMID: 33519700 PMCID: PMC7843448 DOI: 10.3389/fneur.2020.618419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022] Open
Abstract
Therapeutic hypothermia (HT) is a currently accepted treatment for neonatal asphyxia and is a promising strategy in adult stroke therapy. We previously reported that acute administration of docosahexaenoic acid (DHA) triglyceride emulsion (tri-DHA) protects against hypoxic-ischemic (HI) injury in neonatal mice. We questioned if co-treatment with HT and tri-DHA would achieve synergic effects in protecting the brain from HI injury. Neonatal mice (10-day old) subjected to HI injury were placed in temperature-controlled chambers for 4 h of either HT (rectal temperature 31–32°C) or normothermia (NT, rectal temperature 37°C). Mice were treated with tri-DHA (0.375 g tri-DHA/kg bw, two injections) before and 1 h after initiation of HT. We observed that HT, beginning immediately after HI injury, reduced brain infarct volume similarly to tri-DHA treatment (~50%). Further, HT delayed 2 h post-HI injury provided neuroprotection (% infarct volume: 31.4 ± 4.1 vs. 18.8 ± 4.6 HT), while 4 h delayed HT did not protect against HI insult (% infarct volume: 30.7 ± 5.0 vs. 31.3 ± 5.6 HT). HT plus tri-DHA combination treatment beginning at 0 or 2 h after HI injury did not further reduce infarct volumes compared to HT alone. Our results indicate that HT offers similar degrees of neuroprotection against HI injury compared to tri-DHA treatment. HT can only be provided in tertiary care centers, requires intense monitoring and can have adverse effects. In contrast, tri-DHA treatment may be advantageous in providing a feasible and effective strategy in patients after HI injury.
Collapse
Affiliation(s)
| | - Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Vadim S Ten
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States.,Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
5
|
Ross-Munro E, Kwa F, Kreiner J, Khore M, Miller SL, Tolcos M, Fleiss B, Walker DW. Midkine: The Who, What, Where, and When of a Promising Neurotrophic Therapy for Perinatal Brain Injury. Front Neurol 2020; 11:568814. [PMID: 33193008 PMCID: PMC7642484 DOI: 10.3389/fneur.2020.568814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Midkine (MK) is a small secreted heparin-binding protein highly expressed during embryonic/fetal development which, through interactions with multiple cell surface receptors promotes growth through effects on cell proliferation, migration, and differentiation. MK is upregulated in the adult central nervous system (CNS) after multiple types of experimental injury and has neuroprotective and neuroregenerative properties. The potential for MK as a therapy for developmental brain injury is largely unknown. This review discusses what is known of MK's expression and actions in the developing brain, areas for future research, and the potential for using MK as a therapeutic agent to ameliorate the effects of brain damage caused by insults such as birth-related hypoxia and inflammation.
Collapse
Affiliation(s)
- Emily Ross-Munro
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Faith Kwa
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Jenny Kreiner
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Madhavi Khore
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Mary Tolcos
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Bobbi Fleiss
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,Neurodiderot, Inserm U1141, Universita de Paris, Paris, France
| | - David W Walker
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| |
Collapse
|
6
|
Revuelta M, Elicegui A, Moreno-Cugnon L, Bührer C, Matheu A, Schmitz T. Ischemic stroke in neonatal and adult astrocytes. Mech Ageing Dev 2019; 183:111147. [PMID: 31493435 DOI: 10.1016/j.mad.2019.111147] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2019] [Accepted: 09/02/2019] [Indexed: 11/26/2022]
Abstract
The objective of this paper is to review current information regarding astrocytes function after a stroke in neonatal and adult brain. Based on the current literature, there are some molecular differences related to blood brain barrier (BBB) homeostasis disruption, inflammation and reactive oxygen species (ROS) mediated injury between the immature and mature brain after an ischemic event. In particular, astrocytes, the main glial cells in brain, play a different role in neonatal and adult brain after stroke, as time course of glial activation is strongly age dependent. Moreover, the present review provides further insight into the therapeutic approaches of using neonatal and adult astrocytes after stroke. More research will be needed in order to translate them into an effective treatment against stroke, the second main cause of death and disability worldwide.
Collapse
Affiliation(s)
- Miren Revuelta
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany; Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Doctor Begiristain, 20014, San Sebastian, Spain.
| | - Amaia Elicegui
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany
| | - Leire Moreno-Cugnon
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Doctor Begiristain, 20014, San Sebastian, Spain
| | - Christoph Bührer
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Doctor Begiristain, 20014, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz Haroko 3, 48013, Bilbao, Spain; CIBERfes, Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Thomas Schmitz
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
7
|
Ramirez KA, Choudhri AF, Patel A, Lenny NT, Thompson RE, Berkelhammer Greenberg L, Clanton Watson N, Kocak M, DeVincenzo JP. Comparing molecular quantification of herpes simplex virus (HSV) in cerebrospinal fluid (CSF) with quantitative structural and functional disease severity in patients with HSV encephalitis (HSVE): Implications for improved therapeutic approaches. J Clin Virol 2018; 107:29-37. [DOI: 10.1016/j.jcv.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 11/25/2022]
|
8
|
Lee GA, Lin TN, Chen CY, Mau SY, Huang WZ, Kao YC, Ma RY, Liao NS. Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain Behav Immun 2018; 73:562-570. [PMID: 29959050 DOI: 10.1016/j.bbi.2018.06.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/02/2018] [Accepted: 06/22/2018] [Indexed: 01/08/2023] Open
Abstract
Acute ischemic stroke is followed by a complex interplay between the brain and the immune system in which ischemia-reperfusion leads to a detrimental inflammatory response that causes brain injury. In the brain, IL-15 is expressed by astrocytes, neurons and microglia. Previous study showed that ischemia-reperfusion induces expression of IL-15 by astrocytes. Transgenic over-expression of IL-15 in astrocytes aggravates ischemia-reperfusion brain damage by increasing the levels and promoting the effector functions of CD8+ T and NK cells. Treatment of neonatal rats with IL-15 neutralizing antibody before hypoxia-ischemia induction reduces the infarct volume. However, as stroke-induced inflammatory responses differ between neonate and adult brain, the effects of IL-15 blockade on the injury and immune response arising from stroke in adult animals has remained unclear. In this study, we examined the effect of post-ischemia/reperfusion IL-15 blockade on the pathophysiology of cerebral ischemia-reperfusion in adult mice. Using a cerebral ischemia-reperfusion model, we compared infarct size and the infiltrating immune cells in the brain of wild type (WT) mice and Il15-/- mice lacking NK and memory CD8+ T cells. We also evaluated the effects of IL-15 neutralizing antibody treatment on brain infarct volume, motor function, and the status of brain-infiltrating immune cells in WT mice. Il15-/- mice show a smaller infarct volume and lower numbers of activated brain-infiltrating NK, CD8+ T, and CD4+ T cells compared to WT mice after cerebral ischemia-reperfusion. Post-ischemia/reperfusion IL-15 blockade reduces infarct size and improves motor and locomotor activity. Furthermore, IL-15 blockade reduces the effector function of NK, CD8+ T, and CD4+ T cells in the ischemia-reperfusion brain of WT mice. Ablation of IL-15 responses after cerebral ischemia-reperfusion ameliorates brain injury in adult mice. Therefore, targeting IL-15 is a potential effective therapy for ischemic stroke.
Collapse
Affiliation(s)
- Gilbert Aaron Lee
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yu Chen
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shin-Yi Mau
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wan-Zhen Huang
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Chieh Kao
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ruo-Yu Ma
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Nan-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
9
|
Bernson-Leung ME, Boyd TK, Meserve EE, Danehy AR, Kapur K, Trenor CC, Lehman LL, Rivkin MJ. Placental Pathology in Neonatal Stroke: A Retrospective Case-Control Study. J Pediatr 2018; 195:39-47.e5. [PMID: 29397159 DOI: 10.1016/j.jpeds.2017.11.061] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/24/2017] [Accepted: 11/29/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To assess the association of placental abnormalities with neonatal stroke. STUDY DESIGN This retrospective case-control study at 3 academic medical centers examined placental specimens for 46 children with neonatal arterial or venous ischemic stroke and 99 control children without stroke, using a standard protocol. Between-group comparisons used χ2 and Fisher exact t test. Correlations used Spearman correlation coefficient. RESULTS Case placentas were more likely than controls to meet criteria for ≥1 of 5 major categories of pathologic abnormality (89% vs 62%; OR, 5.1; 95% CI, 1.9-14.0; P = .0007) and for ≥2 categories (38% vs 8%; OR, 7.3; 95% CI, 2.9-19.0; P < .0001). Fetal vascular malperfusion occurred in 50% of cases and 17% of controls (OR, 4.8; 95% CI, 2.2-10.5; P = .0001). Amniotic fluid inflammation occurred in 46% of cases with arterial ischemic stroke vs 25% of controls (OR, 2.6; 95% CI, 1.1-6.1; P = .037). There was evidence of a "stress response" (meconium plus elevated nucleated red blood cells) in 24% of cases compared with 1% of controls (OR, 31; 95% CI, 3.8-247.0; P < .0001). CONCLUSIONS Placental abnormality was more common in children with neonatal stroke compared with controls. All placental findings represent subacute-to-chronic intrauterine stressors. Placental thrombotic processes were associated with both arterial and venous stroke. Our findings provide evidence for specific mechanisms that may predispose to acute perinatal stroke. Amniotic fluid inflammation associated with neonatal arterial ischemic stroke deserves further investigation.
Collapse
Affiliation(s)
- Miya E Bernson-Leung
- Department of Neurology, Boston Children's Hospital, Boston, MA; Stroke and Cerebrovascular Center, Boston Children's Hospital, Boston, MA
| | - Theonia K Boyd
- Department of Pathology, Boston Children's Hospital, Boston, MA; Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Emily E Meserve
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Amy R Danehy
- Department of Radiology, Boston Children's Hospital, Boston, MA
| | - Kush Kapur
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Cameron C Trenor
- Stroke and Cerebrovascular Center, Boston Children's Hospital, Boston, MA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Laura L Lehman
- Department of Neurology, Boston Children's Hospital, Boston, MA; Stroke and Cerebrovascular Center, Boston Children's Hospital, Boston, MA
| | - Michael J Rivkin
- Department of Neurology, Boston Children's Hospital, Boston, MA; Stroke and Cerebrovascular Center, Boston Children's Hospital, Boston, MA; Department of Pathology, Brigham and Women's Hospital, Boston, MA; Department of Radiology, Boston Children's Hospital, Boston, MA; Department of Psychiatry, Boston Children's Hospital, Boston, MA.
| |
Collapse
|
10
|
Povroznik JM, Engler-Chiurazzi EB, Nanavati T, Pergami P. Absolute lymphocyte and neutrophil counts in neonatal ischemic brain injury. SAGE Open Med 2018; 6:2050312117752613. [PMID: 29375880 PMCID: PMC5777550 DOI: 10.1177/2050312117752613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 12/12/2017] [Indexed: 11/29/2022] Open
Abstract
Objectives: This study aimed to identify differences in absolute neutrophils, lymphocytes, and neutrophil-to-lymphocyte ratio between neonates with two forms of ischemic brain injury, hypoxic-ischemic encephalopathy, and acute ischemic stroke, compared to controls. We also aimed to determine whether this neutrophil/lymphocyte response pattern is associated with disease severity or is a consequence of the effects of total-body cooling, an approved treatment for moderate-to-severe hypoxic-ischemic encephalopathy. Methods: A retrospective chart review of 101 neonates with hypoxic-ischemic encephalopathy + total-body cooling (n = 26), hypoxic-ischemic encephalopathy (n = 12), acute ischemic stroke (n = 15), and transient tachypnea of the newborn (n = 48) was conducted; transient tachypnea of the newborn neonates were used as the control group. Absolute neutrophil count and absolute lymphocyte count at three time-intervals (0–12, 12–36, and 36–60 h after birth) were collected, and neutrophil-to-lymphocyte ratio was calculated. Results: Hypoxic-ischemic encephalopathy + total-body cooling neonates demonstrated significant time-interval-dependent changes in absolute lymphocyte count and neutrophil-to-lymphocyte ratio levels compared to transient tachypnea of the newborn and acute ischemic stroke patients. Pooled analysis of absolute lymphocyte count for neonates with acute ischemic stroke and hypoxic-ischemic encephalopathy (not hypoxic-ischemic encephalopathy + total-body cooling) revealed that absolute lymphocyte count changes occurring at 0–12 h are likely due to disease progression, rather than total-body cooling treatment. Conclusion: These data suggest that the neutrophil/lymphocyte response is modulated following neonatal ischemic brain injury, representing a possible target for therapeutic intervention. However, initial severity of hypoxic-ischemic encephalopathy among these patients could also account for the observed changes in the immune response to injury. Thus, additional work to clarify the contributions of cooling therapy and disease severity to neutrophil/lymphocyte response following hypoxic-ischemic encephalopathy in neonates is warranted.
Collapse
Affiliation(s)
- Jessica M Povroznik
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, USA.,Department of Physiology, Pharmacology & Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, USA.,Department of Physiology, Pharmacology & Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Tania Nanavati
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, USA.,Child Neurology, Department of Pediatrics, West Virginia University, Morgantown, WV, USA
| | - Paola Pergami
- Department of Neurology, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
11
|
Dietz RM, Wright CJ. Oxidative stress diseases unique to the perinatal period: A window into the developing innate immune response. Am J Reprod Immunol 2017; 79:e12787. [PMID: 29194835 DOI: 10.1111/aji.12787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
The innate immune system has evolved to play an integral role in the normally developing lung and brain. However, in response to oxidative stress, innate immunity, mediated by specific cellular and molecular programs and signaling, contributes to pathology in these same organ systems. Despite opposing drivers of oxidative stress, namely hyperoxia in neonatal lung injury and hypoxia/ischemia in neonatal brain injury, similar pathways-including toll-like receptors, NFκB and MAPK cascades-have been implicated in tissue damage. In this review, we consider recent insights into the innate immune response to oxidative stress in both neonatal and adult models to better understand hyperoxic lung injury and hypoxic-ischemic brain injury across development and aging. These insights support the development of targeted immunotherapeutic strategies to address the challenge of harnessing the innate immune system in oxidative stress diseases of the neonate.
Collapse
Affiliation(s)
- Robert M Dietz
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
12
|
Giraud A, Guiraut C, Chevin M, Chabrier S, Sébire G. Role of Perinatal Inflammation in Neonatal Arterial Ischemic Stroke. Front Neurol 2017; 8:612. [PMID: 29201015 PMCID: PMC5696351 DOI: 10.3389/fneur.2017.00612] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Based on the review of the literature, perinatal inflammation often induced by infection is the only consistent independent risk factor of neonatal arterial ischemic stroke (NAIS). Preclinical studies show that acute inflammatory processes take place in placenta, cerebral arterial wall of NAIS-susceptible arteries and neonatal brain. A top research priority in NAIS is to further characterize the nature and spatiotemporal features of the inflammatory processes involved in multiple levels of the pathophysiology of NAIS, to adequately design randomized control trials using targeted anti-inflammatory vasculo- and neuroprotective agents.
Collapse
Affiliation(s)
- Antoine Giraud
- EA 4607 SNA EPIS, Jean Monnet University, Saint-Etienne, France.,Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Clémence Guiraut
- Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Mathilde Chevin
- Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Stéphane Chabrier
- French Center for Pediatric Stroke and Pediatric Rehabilitation Unit, Department of Pediatrics, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Guillaume Sébire
- Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada
| |
Collapse
|
13
|
|
14
|
Mukhamedshina YO, Akhmetzyanova ER, Martynova EV, Khaiboullina SF, Galieva LR, Rizvanov AA. Systemic and Local Cytokine Profile following Spinal Cord Injury in Rats: A Multiplex Analysis. Front Neurol 2017; 8:581. [PMID: 29163344 PMCID: PMC5671564 DOI: 10.3389/fneur.2017.00581] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/17/2017] [Indexed: 11/21/2022] Open
Abstract
Our study of the changes in cytokine profile in blood serum and in the spinal cord after traumatic spinal cord injury (SCI) has shown that an inflammatory reaction and immunological response are not limited to the CNS, but widespread. This fact was confirmed by changes detected in a cytokine profile in blood serum samples [MIP-1α, interleukin 1 (IL-1) α, IL-2, IL-5, IL-1β, MCP-1, RANTES]. There were also changes in the levels of MIP-1α, IL-1α, IL-2, IL-5, IL-18, GM-colony-stimulating factor, IL-17α, IFN-γ, IL-10, IL-13, MCP-1, and GRO KC CINC-1 in samples of the rat injured spinal cord. The results underscore the complex cytokine network imbalance exhibited after SCI and show significant changes in the concentrations of 14 cytokines/chemokines with different inflammatory and immunological activities.
Collapse
Affiliation(s)
- Yana O Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Kazan State Medical University, Kazan, Russia
| | | | - Ekaterina V Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana F Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,University of Nevada, Reno, NV, United States
| | - Luisa R Galieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
15
|
Abstract
Over the last decades, the importance of inflammatory processes in pediatric stroke have become increasingly evident. Ischemia launches a cascade of events: activation and inhibition of inflammation by a large network of cytokines, adhesion and small molecules, protease, and chemokines. There are major differences in the neonatal brain compared to adult brain, but developmental trajectories of the process during childhood are not yet well known. In neonatal stroke ischemia is the leading pathophysiology, but infectious and inflammatory processes have a significant input into the course and degree of tissue damage. In childhood, beside inflammation lanced by ischemia itself, the event of ischemia might be provoked by an underlying inflammatory pathophysiology: transient focal arteriopathy, dissection, sickle cell anemia, Moyamoya and more generalized in meningitides, generalized vasculitis or genetic arteriopathies (as in ADA2). Focal inflammatory reactions tend to be located in the distal part of the carotid artery or the proximal medial arteries, but generalized processes rather tend to affect the small arteries.
Collapse
|
16
|
Transcriptomic analysis reveals differential activation of microglial genes after ischemic stroke in mice. Neuroscience 2017; 348:212-227. [DOI: 10.1016/j.neuroscience.2017.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/26/2017] [Accepted: 02/10/2017] [Indexed: 02/08/2023]
|
17
|
Zhang J, Klufas D, Manalo K, Adjepong K, Davidson JO, Wassink G, Bennet L, Gunn AJ, Stopa EG, Liu K, Nishibori M, Stonestreet BS. HMGB1 Translocation After Ischemia in the Ovine Fetal Brain. J Neuropathol Exp Neurol 2016; 75:527-38. [PMID: 27151753 DOI: 10.1093/jnen/nlw030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inflammation contributes to the evolution of hypoxic-ischemic (HI) brain injury. High-mobility group box-1 (HMGB1) is a nuclear protein that is translocated from the nucleus and released after ischemia in adult rodents and thereby initiates inflammatory responses. However, there is very little information regarding the effects of HI on HMGB1 in immature brains. To investigate the effects of HI on HMGB1 in the term-equivalent fetal brain, ovine fetuses at 127 days gestation were studied after 30 minutes of carotid occlusion. Groups were sham-control and ischemia with 48 hours and ischemia with 72 hours of reperfusion. By immunohistochemistry, HMGB1 was found to be localized primarily in cell nuclei and partially in cytoplasmic compartments in the cerebral cortex of controls. Ischemia increased the area fraction of neuronal cells with cytoplasmic HMGB1 staining, and Western immunoblot revealed that cytosolic HMGB1 expression increased after ischemia (p < 0.05) and decreased in nuclei in ischemic versus the sham-control brains (p < 0.05). These data indicate that HMGB1 translocates from the nuclear to cytosolic compartments after ischemic brain injury in fetal sheep. This translocation may enable the action of HMGB1 as a proinflammatory cytokine that contributes to HI injury in the developing brain.
Collapse
Affiliation(s)
- Jiyong Zhang
- From the Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, Rhode Island (JZ, DK, KM, KA, BSS); Department of Physiology, University of Auckland, Auckland, New Zealand (JOD, GW, LB, AJG); Department of Pathology and Neurosurgery, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island (EGS); and Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan (KL, MN)
| | - Daniel Klufas
- From the Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, Rhode Island (JZ, DK, KM, KA, BSS); Department of Physiology, University of Auckland, Auckland, New Zealand (JOD, GW, LB, AJG); Department of Pathology and Neurosurgery, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island (EGS); and Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan (KL, MN)
| | - Karina Manalo
- From the Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, Rhode Island (JZ, DK, KM, KA, BSS); Department of Physiology, University of Auckland, Auckland, New Zealand (JOD, GW, LB, AJG); Department of Pathology and Neurosurgery, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island (EGS); and Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan (KL, MN)
| | - Kwame Adjepong
- From the Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, Rhode Island (JZ, DK, KM, KA, BSS); Department of Physiology, University of Auckland, Auckland, New Zealand (JOD, GW, LB, AJG); Department of Pathology and Neurosurgery, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island (EGS); and Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan (KL, MN)
| | - Joanne O Davidson
- From the Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, Rhode Island (JZ, DK, KM, KA, BSS); Department of Physiology, University of Auckland, Auckland, New Zealand (JOD, GW, LB, AJG); Department of Pathology and Neurosurgery, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island (EGS); and Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan (KL, MN)
| | - Guido Wassink
- From the Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, Rhode Island (JZ, DK, KM, KA, BSS); Department of Physiology, University of Auckland, Auckland, New Zealand (JOD, GW, LB, AJG); Department of Pathology and Neurosurgery, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island (EGS); and Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan (KL, MN)
| | - Laura Bennet
- From the Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, Rhode Island (JZ, DK, KM, KA, BSS); Department of Physiology, University of Auckland, Auckland, New Zealand (JOD, GW, LB, AJG); Department of Pathology and Neurosurgery, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island (EGS); and Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan (KL, MN)
| | - Alistair J Gunn
- From the Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, Rhode Island (JZ, DK, KM, KA, BSS); Department of Physiology, University of Auckland, Auckland, New Zealand (JOD, GW, LB, AJG); Department of Pathology and Neurosurgery, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island (EGS); and Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan (KL, MN)
| | - Edward G Stopa
- From the Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, Rhode Island (JZ, DK, KM, KA, BSS); Department of Physiology, University of Auckland, Auckland, New Zealand (JOD, GW, LB, AJG); Department of Pathology and Neurosurgery, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island (EGS); and Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan (KL, MN)
| | - Keyue Liu
- From the Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, Rhode Island (JZ, DK, KM, KA, BSS); Department of Physiology, University of Auckland, Auckland, New Zealand (JOD, GW, LB, AJG); Department of Pathology and Neurosurgery, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island (EGS); and Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan (KL, MN)
| | - Masahiro Nishibori
- From the Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, Rhode Island (JZ, DK, KM, KA, BSS); Department of Physiology, University of Auckland, Auckland, New Zealand (JOD, GW, LB, AJG); Department of Pathology and Neurosurgery, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island (EGS); and Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan (KL, MN)
| | - Barbara S Stonestreet
- From the Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, Rhode Island (JZ, DK, KM, KA, BSS); Department of Physiology, University of Auckland, Auckland, New Zealand (JOD, GW, LB, AJG); Department of Pathology and Neurosurgery, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island (EGS); and Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan (KL, MN).
| |
Collapse
|
18
|
Zhang Y, Li H, Huang M, Huang M, Chu K, Xu W, Zhang S, Que J, Chen L. Paeoniflorin, a Monoterpene Glycoside, Protects the Brain from Cerebral Ischemic Injury via Inhibition of Apoptosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 43:543-57. [PMID: 25967667 DOI: 10.1142/s0192415x15500342] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Paeoniflorin (PF) is a principal bioactive component, which exhibits many pharmacological effects, including protection against ischemic injury. This paper aimed to investigate the protective effect of PF both in vivo and in vitro. Middle cerebral artery occlusion (MCAO) was performed on male Sprague-Dawley (SD) rat for 2 h, and different doses of PF or vehicle were administered 2 h after reperfusion. Rats were sacrificed after 7 days treatment of PF/vehicle. PF treatment for 7 days ameliorated MCAO-induced neurological deficit and decreased the infarct area. Further study demonstrated that PF inhibited the over-activation of astrocytes and apoptosis of neurons, and PF promoted up-regulation of neuronal specific marker neuron-specific nuclear (NeuN) and microtubule-associated protein 2 (MAP-2) in brain. Moreover, NMDA-induced neuron apoptosis was employed. The in vitro study revealed that PF treatment protected against NMDA-induced cell apoptosis and neuronal loss via up-regulation of neuronal specific marker NeuN, MAP-2 and Bcl-2 and the down-regulation Bax. Taken together, the present study demonstrates that PF produces its protective effect by inhibiting the over-activation of astrocytes, apoptosis of neurons and up-regulation of neuronal specific marker NeuN, MAP-2, and B-cell lymphoma-2 (Bcl-2), and down-regulation Bax. Our study reveals that PF may be a potential neuroprotective agent for stroke and can provide basic data for clinical use.
Collapse
Affiliation(s)
- Yuqin Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ma Y, Wang J, Wang Y, Yang GY. The biphasic function of microglia in ischemic stroke. Prog Neurobiol 2016; 157:247-272. [PMID: 26851161 DOI: 10.1016/j.pneurobio.2016.01.005] [Citation(s) in RCA: 505] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/22/2015] [Accepted: 01/10/2016] [Indexed: 12/16/2022]
Abstract
Microglia are brain resident macrophages originated from primitive progenitor cells in the yolk sac. Microglia can be activated within hours and recruited to the lesion site. Traditionally, microglia activation is considered to play a deleterious role in ischemic stroke, as inhibition of microglia activation attenuates ischemia induced brain injury. However, increasing evidence show that microglia activation is critical for attenuating neuronal apoptosis, enhancing neurogenesis, and promoting functional recovery after cerebral ischemia. Differential polarization of microglia could likely explain the biphasic role of microglia in ischemia. We comprehensively reviewed the mechanisms involved in regulating microglia activation and polarization. The latest discoveries of microRNAs in modulating microglia function are discussed. In addition, the interaction between microglia and other cells including neurons, astrocytes, oligodendrocytes, and stem cells were also reviewed. Future therapies targeting microglia may not exclusively aim at suppressing microglia activation, but also at modulating microglia polarization at different stages of ischemic stroke. More work is needed to elucidate the cellular and molecular mechanisms of microglia polarization under ischemic environment. The roles of microRNAs and transplanted stem cells in mediating microglia activation and polarization during brain ischemia also need to be further studied.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jixian Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Rehabilitation, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
20
|
Ren S, Xu Y, Lv D, Zhang L. Rosiglitazone ameliorates astrocyte over-activation and inflammatory cytokine release induced by global cerebral ischemia/reperfusion. Exp Ther Med 2016; 11:1071-1076. [PMID: 26998039 DOI: 10.3892/etm.2016.2975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022] Open
Abstract
Global cerebral ischemia (GCI) is a leading cause of mortality worldwide and remains the primary cause of long-term neurological disability. Astrocyte over-activation and extensive neuron loss in the ischemic brain are the characteristic pathological features of cerebral ischemia. Rosiglitazone (RSG) is a peroxisome-proliferating activating receptor-γ agonist known for its anti-inflammatory activity. Previous studies have suggested that RSG is able to exert neuroprotection in numerous acute and chronic brain injury models. However, whether RSG treatment is involved in astrocyte over-activation and inflammatory reaction in the cortex remains unclear. The aim of the present study was to investigate whether RSG treatment improved functional impairment induced following GCI and protected against cortex neuron loss, and to elucidate the potential mechanisms underlying these functions. Rats were randomly divided into three groups: Sham-operated, GCI and RSG treatment groups. The RSG treatment group was treated with 2 mg/kg RSG immediately following GCI. The results demonstrated that RSG treatment significantly reduced infarct volume and neuron survival rates in addition to increasing function recovery. Furthermore, these results correlate with a reduction in astrocyte over-activation and inflammatory cytokines in the rat cortex. However, no significant changes in glutamate transporter-1 expression levels were observed following RSG treatment compared with the GCI rats. The results of this investigation provide in vivo evidence that RSG significantly protected rats against ischemia-reperfusion-induced brain injury. In addition, RSG may exert neuroprotective effects by inhibiting astrocyte over-activation, and thereby reducing the levels of inflammatory cytokines in the GCI-injured brain. All data revealed that RSG may be a potential neuroprotective agent for cerebral ischemia.
Collapse
Affiliation(s)
- Shanling Ren
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yan Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Dongwei Lv
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Lei Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
21
|
Li L, McBride DW, Doycheva D, Dixon BJ, Krafft PR, Zhang JH, Tang J. G-CSF attenuates neuroinflammation and stabilizes the blood-brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Exp Neurol 2015; 272:135-44. [PMID: 25585014 PMCID: PMC4499024 DOI: 10.1016/j.expneurol.2014.12.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/22/2014] [Accepted: 12/25/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Neonatal hypoxia occurs in approximately 60% of premature births and is associated with a multitude of neurological disorders. While various treatments have been developed, translating them from bench to bedside has been limited. We previously showed G-CSF administration was neuroprotective in a neonatal hypoxia-ischemia rat pup model, leading us to hypothesize that G-CSF inactivation of GSK-3β via the PI3K/Akt pathway may attenuate neuroinflammation and stabilize the blood-brain barrier (BBB). METHODS P10 Sprague-Dawley rat pups were subjected to unilateral carotid artery ligation followed by hypoxia for 2.5h. We assessed inflammation by measuring expression levels of IKKβ, NF-κB, TNF-α, IL-1β, IL-10, and IL-12 as well as neutrophil infiltration. BBB stabilization was evaluated by measuring Evans blue extravasation, and Western blot analysis of Claudin-3, Claudin-5, ICAM-1, and VCAM-1. MEASUREMENTS AND MAIN RESULTS First, the time course study showed that p-β-catenin/β-catenin, IKKβ, and NF-κB expression levels peaked at 48h post-HI. The knockdown of GSK-3β with siRNA prevented the HI-induced increase of p-β-catenin/β-catenin, IKKβ, and NF-κB expression levels 48h after HI. G-CSF treatment reduced brain water content and neuroinflammation by downregulating IKKβ, NF-κB, TNF-α, IL-1β, and IL-12 and upregulating IL-10, thereby reducing neutrophil infiltration. Additionally, G-CSF stabilizes the BBB by downregulating VCAM-1 and ICAM-1, as well as upregulating Claudins 3 and 5 in endothelial cells. G-CSFR knockdown by siRNA and Akt inhibition by Wortmannin reversed G-CSF's neuroprotective effects. CONCLUSIONS We demonstrate G-CSF plays a pivotal role in attenuating neuroinflammation and BBB disruption following HI by inactivating GSK-3β through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Li Li
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Devin W McBride
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Desislava Doycheva
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Brandon J Dixon
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Paul R Krafft
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA; Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
22
|
Lioutas VA, Alfaro-Martinez F, Bedoya F, Chung CC, Pimentel DA, Novak V. Intranasal Insulin and Insulin-Like Growth Factor 1 as Neuroprotectants in Acute Ischemic Stroke. Transl Stroke Res 2015; 6:264-75. [PMID: 26040423 DOI: 10.1007/s12975-015-0409-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/16/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
Abstract
Treatment options for stroke remain limited. Neuroprotective therapies, in particular, have invariably failed to yield the expected benefit in stroke patients, despite robust theoretical and mechanistic background and promising animal data. Insulin and insulin-like growth factor 1 (IGF-1) play a pivotal role in critical brain functions, such as energy homeostasis, neuronal growth, and differentiation. They may exhibit neuroprotective properties in acute ischemic stroke based upon their vasodilatory, anti-inflammatory and antithrombotic effects, as well as improvements of functional connectivity, neuronal metabolism, neurotransmitter regulation, and remyelination. Intranasally administered insulin has demonstrated a benefit for prevention of cognitive decline in older people, and IGF-1 has shown potential benefit to improve functional outcomes in animal models of acute ischemic stroke. The intranasal route presents a feasible, tolerable, safe, and particularly effective administration route, bypassing the blood-brain barrier and maximizing distribution to the central nervous system (CNS), without the disadvantages of systemic side effects and first-pass metabolism. This review summarizes the neuroprotective potential of intranasally administered insulin and IGF-1 in stroke patients. We present the theoretical background and pathophysiologic mechanisms, animal and human studies of intranasal insulin and IGF-1, and the safety and feasibility of intranasal route for medication administration to the CNS.
Collapse
Affiliation(s)
- Vasileios-Arsenios Lioutas
- Department of Neurology, Division of Cerebrovascular Diseases, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Palmer 127, Boston, MA, 02215, USA,
| | | | | | | | | | | |
Collapse
|
23
|
Hippophae salicifolia D.Don berries attenuate cerebral ischemia reperfusion injury in a rat model of middle cerebral artery occlusion. JOURNAL OF ACUTE DISEASE 2015. [DOI: 10.1016/s2221-6189(15)30021-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Abstract
Microglia are considered the brain's resident immune cell involved in immune defense, immunocompetence, and phagocytosis. They maintain tissue homeostasis within the brain and spinal cord under normal condition and serves as its initial host defense system. However, when the central nervous system (CNS) faces injury, microglia respond through signaling molecules expressed or released by neighboring cells. Microglial responses are dual in nature. They induce a nonspecific immune response that may exacerbate CNS injury, especially in the acute stages, but are also essential to CNS recovery and repair. The full range of microglial mechanisms have yet to be clarified, but there is accumulating knowledge about microglial activation in acute CNS injury. Microglial responses require hours to days to fully develop, and may present a therapeutic target for intervention with a much longer window of opportunity compare to other neurological treatments. The challenge will be to find ways to selectively suppress the deleterious effects of microglial activation without compromising its beneficial functions. This review aims to provide an overview of the recent progress relating on the deleterious and beneficial effect of microglia in the setting of acute CNS injury and the potential therapeutic intervention against microglial activation to CNS injury.
Collapse
Affiliation(s)
- Masahito Kawabori
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121, USA
| | | |
Collapse
|
25
|
Mirza MA, Ritzel R, Xu Y, McCullough LD, Liu F. Sexually dimorphic outcomes and inflammatory responses in hypoxic-ischemic encephalopathy. J Neuroinflammation 2015; 12:32. [PMID: 25889641 PMCID: PMC4359482 DOI: 10.1186/s12974-015-0251-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/16/2015] [Indexed: 12/11/2022] Open
Abstract
Background Neonatal hypoxic-ischemic encephalopathy (HIE) is an important cause of motor and cognitive impairment in children. Clinically, male infants are more vulnerable to ischemic insults and suffer more long-term deficits than females; however, the mechanisms underlying this sex difference remain elusive. Inflammatory processes initiated by microglial activation are fundamental in the pathophysiology of ischemia. Recent studies report a sexual dimorphism in microglia numbers and expression of activation markers in the neonatal brain under normal conditions. How these basal sex differences in microglia affect HIE remains largely unexplored. This study investigated sex differences in ischemic outcomes and inflammation triggered by HIE. We hypothesize that ischemia induces sex-specific brain injury in male and female neonates and that microglial activation and inflammatory responses play an important role in this sexual dimorphism. Methods Male and female C57BL6 mice were subjected to 60-min Rice-Vanucci modeling (RVM) at post-natal day 10 (P10) to induce HIE. Stroke outcomes were measured 1, 3, 7, and 30 days after stroke. Microglial activation and inflammatory responses were evaluated by flow cytometry and cytokine analysis. Results On day 1 of HIE, no difference in infarct volumes or seizure scores was seen between male and female neonates. However, female neonates exhibited significantly smaller infarct size and fewer seizures compared to males 3 days after HIE. Females also had less brain tissue loss and behavioral deficits compared to males at the chronic stage of HIE. Male animals demonstrated increased microglial activation and up-regulated inflammatory response compared to females at day 3. Conclusions HIE leads to an equivalent primary brain injury in male and female neonates at the acute stage that develops into sexually dimorphic outcomes at later time points. An innate immune response secondary to the primary injury may contribute to sexual dimorphism in HIE.
Collapse
Affiliation(s)
- Mehwish A Mirza
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Rodney Ritzel
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Yan Xu
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Louise D McCullough
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA. .,Department of Neurology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Fudong Liu
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
26
|
Rognlien AGW, Wollen EJ, Atneosen-Åsegg M, Saugstad OD. Increased expression of inflammatory genes in the neonatal mouse brain after hyperoxic reoxygenation. Pediatr Res 2015; 77:326-33. [PMID: 25423075 DOI: 10.1038/pr.2014.193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/05/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hyperoxic reoxygenation following hypoxia increases the expression of inflammatory genes in the neonatal mouse brain. We have therefore compared the temporal profile of 44 a priori selected genes after hypoxia and hyperoxic or normoxic reoxygenation. METHODS Postnatal day 7 mice were subjected to 2 h of hypoxia (8% O2) and 30 min reoxygenation with 60% or 21% O2. After 0 to 72 h observation, mRNA and protein were examined in the hippocampus and striatum. RESULTS There were significantly higher gene expression changes in six genes after hyperoxic compared to normoxic reoxygenation. Three genes had a generally higher expression throughout the observation period: the inflammatory genes Hmox1 (mean difference: 0.52, 95% confidence interval (CI): 0.15-1.01) and Tgfb1 (mean difference: 0.099, CI: 0.003-0.194), and the transcription factor Nfkb1 (mean difference: 0.049, CI: 0.011-0.087). The inflammatory genes Cxcl10 and Il1b, and the DNA repair gene Neil3, had a higher gene expression change after hyperoxic reoxygenation at one time point only. Nineteen genes involved in inflammation, transcription regulation, apoptosis, angiogenesis, and glucose transport had significantly different gene expression changes with time in all intervention animals. CONCLUSION We confirm that hyperoxic reoxygenation induces a stronger inflammatory gene response than reoxygenation with air.
Collapse
Affiliation(s)
- Anne Gro W Rognlien
- Department of Pediatric Research, University of Oslo, Oslo University Hospital HF, Oslo, Norway
| | - Embjørg J Wollen
- Department of Pediatric Research, University of Oslo, Oslo University Hospital HF, Oslo, Norway
| | - Monica Atneosen-Åsegg
- 1] Department of Pediatric Research, University of Oslo, Oslo University Hospital HF, Oslo, Norway [2] Department of Clinical Molecular Biology and Laboratory Sciences, Akershus University Hospital, Lørenskog, Norway
| | - Ola Didrik Saugstad
- Department of Pediatric Research, University of Oslo, Oslo University Hospital HF, Oslo, Norway
| |
Collapse
|
27
|
Kim JY, Kim N, Yenari MA. Mechanisms and potential therapeutic applications of microglial activation after brain injury. CNS Neurosci Ther 2014; 21:309-19. [PMID: 25475659 DOI: 10.1111/cns.12360] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 12/14/2022] Open
Abstract
As the resident immune cells of the central nervous system, microglia rapidly respond to brain insults, including stroke and traumatic brain injury. Microglial activation plays a major role in neuronal cell damage and death by releasing a variety of inflammatory and neurotoxic mediators. Their activation is an early response that may exacerbate brain injury and many other stressors, especially in the acute stages, but are also essential to brain recovery and repair. The full range of microglial activities is still not completely understood, but there is accumulating knowledge about their role following brain injury. We review recent progress related to the deleterious and beneficial effects of microglia in the setting of acute neurological insults and the current literature surrounding pharmacological interventions for intervention.
Collapse
Affiliation(s)
- Jong-Youl Kim
- Department of Neurology, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
28
|
Kratzer I, Chip S, Vexler ZS. Barrier mechanisms in neonatal stroke. Front Neurosci 2014; 8:359. [PMID: 25426016 PMCID: PMC4224076 DOI: 10.3389/fnins.2014.00359] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/20/2014] [Indexed: 12/13/2022] Open
Abstract
Clinical data continue to reveal that the incidence of perinatal stroke is high, similar to that in the elderly. Perinatal stroke leads to significant morbidity and severe long-term neurological and cognitive deficits, including cerebral palsy. Experimental models of cerebral ischemia in neonatal rodents have shown that the pathophysiology of perinatal brain damage is multifactorial. Cerebral vasculature undergoes substantial structural and functional changes during early postnatal brain development. Thus, the state of the vasculature could affect susceptibility of the neonatal brain to cerebral ischemia. In this review, we discuss some of the most recent findings regarding the neurovascular responses of the immature brain to focal arterial stroke in relation to neuroinflammation. We also discuss a possible role of the neonatal blood-CSF barrier in modulating inflammation and the long-term effects of early neurovascular integrity after neonatal stroke on angiogenesis and neurogenesis.
Collapse
Affiliation(s)
- Ingrid Kratzer
- Department of Neurology, University of California San Francisco San Francisco, CA, USA
| | - Sophorn Chip
- Department of Neurology, University of California San Francisco San Francisco, CA, USA
| | - Zinaida S Vexler
- Department of Neurology, University of California San Francisco San Francisco, CA, USA
| |
Collapse
|
29
|
Cox-Limpens KEM, Gavilanes AWD, Zimmermann LJI, Vles JSH. Endogenous brain protection: what the cerebral transcriptome teaches us. Brain Res 2014; 1564:85-100. [PMID: 24713346 DOI: 10.1016/j.brainres.2014.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/23/2014] [Accepted: 04/01/2014] [Indexed: 02/04/2023]
Abstract
Despite efforts to reduce mortality caused by stroke and perinatal asphyxia, these are still the 2nd largest cause of death worldwide in the age groups they affect. Furthermore, survivors of cerebral hypoxia-ischemia often suffer neurological morbidities. A better understanding of pathophysiological mechanisms in focal and global brain ischemia will contribute to the development of tailored therapeutic strategies. Similarly, insight into molecular pathways involved in preconditioning-induced brain protection will provide possibilities for future treatment. Microarray technology is a great tool for investigating large scale gene expression, and has been used in many experimental studies of cerebral ischemia and preconditioning to unravel molecular (patho-) physiology. However, the amount of data across microarray studies can be daunting and hard to interpret which is why we aim to provide a clear overview of available data in experimental rodent models. Findings for both injurious ischemia and preconditioning are reviewed under separate subtopics such as cellular stress, inflammation, cytoskeleton and cell signaling. Finally, we investigated the transcriptome signature of brain protection across preconditioning studies in search of transcripts that were expressed similarly across studies. Strikingly, when comparing genes discovered by single-gene analysis we observed only 15 genes present in two studies or more. We subjected these 15 transcripts to DAVID Annotation Clustering analysis to derive their shared biological meaning. Interestingly, the MAPK signaling pathway and more specifically the ERK1/2 pathway geared toward cell survival/proliferation was significantly enriched. To conclude, we advocate incorporating pathway analysis into all microarray data analysis in order to improve the detection of similarities between independently derived datasets.
Collapse
Affiliation(s)
- K E M Cox-Limpens
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - A W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - L J I Zimmermann
- Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - J S H Vles
- Department of Pediatric Neurology, Maastricht University Medical Center (MUMC), P.Debyelaan 25, 6229 HX Maastricht, The Netherlands.
| |
Collapse
|
30
|
Transcriptome profiling of the newborn mouse brain after hypoxia-reoxygenation: hyperoxic reoxygenation induces inflammatory and energy failure responsive genes. Pediatr Res 2014; 75:517-26. [PMID: 24375083 DOI: 10.1038/pr.2013.249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/13/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Supplemental oxygen used during resuscitation can be detrimental to the newborn brain. The aim was to determine how different oxygen therapies affect gene transcription in a hypoxia-reoxygenation model. METHODS C57BL/6 mice (n = 56), postnatal day 7, were randomized either to 120 min of hypoxia 8% O2 followed by 30 min of reoxygenation with 21, 40, 60, or 100% O2, or to normoxia followed by 30 min of 21 or 100% O2. Affymetrix 750k expression array was applied with RT-PCR used for validation. Histopathology and immunohistochemistry 3 d after hypoxia-reoxygenation compared groups reoxygenated with 21 or 100% O2 with normoxic controls (n = 22). RESULTS In total, ~81% of the gene expression changes were altered in response to reoxygenation with 60 or 100% O2 and constituted many inflammatory-responsive genes (i.e., C5ar2, Stat3, and Ccl12). Oxidative phosphorylation was downregulated after 60 or 100% O2. Iba1(+) cells were significantly increased in the striatum and hippocampal CA1 after both 21 and 100% O2. CONCLUSION In the present model, hypoxia-reoxygenation induces microglial accumulation in subregions of the brain. The transcriptional changes dominating after applying hyperoxic reoxygenation regimes include upregulating genes related to inflammatory responses and suppressing the oxidative phosphorylation pathway.
Collapse
|
31
|
Perinatal hypoxia-ischemia reduces α 7 nicotinic receptor expression and selective α 7 nicotinic receptor stimulation suppresses inflammation and promotes microglial Mox phenotype. BIOMED RESEARCH INTERNATIONAL 2014; 2014:718769. [PMID: 24757672 PMCID: PMC3976804 DOI: 10.1155/2014/718769] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/30/2014] [Accepted: 01/30/2014] [Indexed: 11/17/2022]
Abstract
Inflammation plays a central role in neonatal brain injury. During brain inflammation the resident macrophages of the brain, the microglia cells, are rapidly activated. In the periphery, α7 nicotinic acetylcholine receptors (α7R) present on macrophages can regulate inflammation by suppressing cytokine release. In the current study we investigated α7R expression in neonatal mice after hypoxia-ischemia (HI). We further examined possible anti-inflammatory role of α7R stimulation in vitro and microglia polarization after α7R agonist treatment. Real-time PCR analysis showed a 33% reduction in α7R expression 72 h after HI. Stimulation of primary microglial cells with LPS in combination with increasing doses of the selective α7R agonist AR-R 17779 significantly attenuated TNFα release and increased α7R transcript in microglial cells. Gene expression of M1 markers CD86 and iNOS, as well as M2 marker CD206 was not influenced by LPS and/or α7R agonist treatment. Further, Mox markers heme oxygenase (Hmox1) and sulforedoxin-1 (Srx1) were significantly increased, suggesting a polarization towards the Mox phenotype after α7R stimulation. Thus, our data suggest a role for the α7R also in the neonatal brain and support the anti-inflammatory role of α7R in microglia, suggesting that α7R stimulation could enhance the polarization towards a reparative Mox phenotype.
Collapse
|
32
|
Sieber MW, Guenther M, Jaenisch N, Albrecht-Eckardt D, Kohl M, Witte OW, Frahm C. Age-specific transcriptional response to stroke. Neurobiol Aging 2014; 35:1744-54. [PMID: 24529500 DOI: 10.1016/j.neurobiolaging.2014.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/25/2022]
Abstract
Increased age is a major risk factor for stroke incidence and post-ischemic mortality. To develop age-adjusted therapeutic interventions, a clear understanding of the complexity of age-related post-ischemic mechanisms is essential. Transient occlusion of the middle cerebral artery--a model that closely resembles human stroke--was used to induce cerebral infarction in mice of 4 different ages (2, 9, 15, 24 months). By using Illumina cDNA microarrays and quantitative PCR we detected a distinct age-dependent response to stroke involving 350 differentially expressed genes. Our analyses also identified 327 differentially expressed genes that responded to stroke in an age-independent manner. These genes are involved in different aspects of the inflammatory and immune response, oxidative stress, cell cycle activation and/or DNA repair, apoptosis, cytoskeleton reorganization and/or astrogliosis, synaptic plasticity and/or neurotransmission, and depressive disorders and/or dopamine-, serotonin-, GABA-signaling. In agreement with our earlier work, aged brains displayed an attenuated inflammatory and immune response (Sieber et al., 2011) and a reduced impairment of post-stroke synaptic plasticity. Our data also revealed a distinct age-related susceptibility for post-ischemic depression, the most common neuropsychiatric consequence of stroke, which has a major influence on functional outcome.
Collapse
Affiliation(s)
- Matthias W Sieber
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Madlen Guenther
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Nadine Jaenisch
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Matthias Kohl
- Department of Mechanical and Process Engineering, Furtwangen University, Villingen-Schwenningen, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany; CSCC, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
33
|
Gessi S, Merighi S, Stefanelli A, Fazzi D, Varani K, Borea PA. A1 and A3 adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes. Pharmacol Res 2013; 76:157-70. [DOI: 10.1016/j.phrs.2013.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/24/2013] [Accepted: 08/08/2013] [Indexed: 11/27/2022]
|
34
|
Liu F, Mccullough LD. Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin 2013; 34:1121-30. [PMID: 23892271 PMCID: PMC3764334 DOI: 10.1038/aps.2013.89] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/16/2013] [Indexed: 12/22/2022] Open
Abstract
Inflammation plays a critical role in mediating brain injury induced by neonatal hypoxic ischemic encephalopathy (HIE). The mechanisms underlying inflammatory responses to ischemia may be shared by neonatal and adult brains; however, HIE exhibits a unique inflammation phenotype that results from the immaturity of the neonatal immune system. This review will discuss the current knowledge concerning systemic and local inflammatory responses in the acute and subacute stages of HIE. The key components of inflammation, including immune cells, adhesion molecules, cytokines, chemokines and oxidative stress, will be reviewed, and the differences between neonatal and adult inflammatory responses to cerebral ischemic injury will also be discussed.
Collapse
|
35
|
Stolp HB, Liddelow SA, Sá-Pereira I, Dziegielewska KM, Saunders NR. Immune responses at brain barriers and implications for brain development and neurological function in later life. Front Integr Neurosci 2013; 7:61. [PMID: 23986663 PMCID: PMC3750212 DOI: 10.3389/fnint.2013.00061] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/31/2013] [Indexed: 12/17/2022] Open
Abstract
For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognized that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signaling or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signaling at the brain barriers that may be an important part of the body's response to damage or infection. This signaling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.
Collapse
Affiliation(s)
- Helen B Stolp
- Department of Perinatal Imaging and Health, King's College London London, UK ; Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | | | | | | | | |
Collapse
|
36
|
Patel SD, Brennan G, Brazin J, Ciardiello AJ, Silver RB, Vannucci SJ. Mast cell isolation from the immature rat brain. Dev Neurosci 2013; 35:265-71. [PMID: 23711508 PMCID: PMC4640701 DOI: 10.1159/000350928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/27/2013] [Indexed: 12/16/2022] Open
Abstract
Mast cells are immune cells of hematopoietic origin that circulate as precursor cells prior to migration into vascularized tissues where they mature and undergo terminal differentiation in response to different cytokines within the local environment. Mast cells are well known as important regulators of inflammatory processes in peripheral tissues and recent studies support the involvement of mast cells in mediating the inflammatory response to cerebral hypoxia-ischemia in both the neonatal and adult brain. To better study mast cell function in vivo, it is important to be able to identify their environment-specific phenotype, as well as to study their interaction with other neural cells in vitro. Previous such studies of mast cells have relied on mast cells isolated from gut or bone marrow, or on a number of mast cell lines, all of which may behave differently from brain mast cells. The purpose of this study was to develop a technique for the isolation of mast cells from neonatal rat brain and to characterize these cells following hypoxia and hypoxia-ischemia. We adapted a previously described technique of coupling an antibody to the mast cell-specific FcεR1 receptor to a MACS microbead for the selective removal of intact mast cells from a neonatal brain preparation. We have isolated toluidine blue-positive brain mast cells that provide substrate for both protein analysis and in vitro studies. These cells express proteins previously used to specifically identify microglia in the brain, Iba-1 and coronin-1a. A subpopulation of mast cells in vivo also expresses Iba-1. Thus, we report a novel method for isolation of brain mast cells suitable for the study of mast cell phenotype under a variety of conditions. Further, we suggest that the use of proteins such as Iba-1 for the identification of microglia in the brain includes the caveat that mast cells may also be detected.
Collapse
Affiliation(s)
- Shyama D. Patel
- Department of Pediatrics/Newborn Medicine, Weill Cornell Medical College, New York, N.Y., USA
| | - Gillian Brennan
- Department of Pediatrics/Newborn Medicine, Weill Cornell Medical College, New York, N.Y., USA
| | - Jacqueline Brazin
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, N.Y., USA
| | - Amber J. Ciardiello
- Department of Pediatrics/Newborn Medicine, Weill Cornell Medical College, New York, N.Y., USA
| | - Randi B. Silver
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, N.Y., USA
| | - Susan J. Vannucci
- Department of Pediatrics/Newborn Medicine, Weill Cornell Medical College, New York, N.Y., USA
| |
Collapse
|
37
|
Involvement of microRNA in microglia-mediated immune response. Clin Dev Immunol 2013; 2013:186872. [PMID: 23762086 PMCID: PMC3676986 DOI: 10.1155/2013/186872] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/08/2013] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are an abundant class of small noncoding RNA molecules that play an important role in the regulation of gene expression at the posttranscriptional level. Due to their ability to simultaneously modulate the fate of different genes, these molecules are particularly well suited to act as key regulators during immune cell differentiation and activation, and their dysfunction can contribute to pathological conditions associated with neuroinflammation. Recent studies have addressed the role of miRNAs in the differentiation of progenitor cells into microglia and in the activation process, aiming at clarifying the origin of adult microglia cells and the contribution of the central nervous system (CNS) environment to microglia phenotype, in health and disease. Altered expression of several miRNAs has been associated with Alzheimer's disease, multiple sclerosis, and ischemic injury, hence strongly advocating the use of these small molecules as disease markers and new therapeutic targets. This review summarizes the recent advances in the field of miRNA-mediated regulation of microglia development and activation. We discuss the role of specific miRNAs in the maintenance and switching of microglia activation states and illustrate the potential of this class of nucleic acids both as biomarkers of inflammation and new therapeutic tools for the modulation of microglia behavior in the CNS.
Collapse
|
38
|
Influence of inflammation on poststroke plasticity. Neural Plast 2013; 2013:258582. [PMID: 23533818 PMCID: PMC3595668 DOI: 10.1155/2013/258582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/11/2013] [Indexed: 01/17/2023] Open
Abstract
Age-related brain injuries including stroke are a leading cause of morbidity and mental disability worldwide. Most patients who survive stroke experience some degree of recovery. The restoration of lost functions can be explained by neuronal plasticity, understood as brain ability to reorganize and remodel itself in response to changed environmental requirements. However, stroke triggers a cascade of events which may prevent the normal development of the plastic changes. One of them may be inflammatory response initiated immediately after stroke, which has been found to contribute to neuronal injury. Some recent evidence though has suggested that inflammatory reaction can be also neuroprotective. This paper attempts to discuss the influence of poststroke inflammatory response on brain plasticity and stroke outcome. We also describe the recent anti-inflammatory strategies that have been effective for recovery in experimental stroke.
Collapse
|
39
|
Boche D, Perry VH, Nicoll JAR. Review: Activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 2013; 39:3-18. [PMID: 23252647 DOI: 10.1111/nan.12011] [Citation(s) in RCA: 703] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 12/17/2022]
Affiliation(s)
- D. Boche
- Clinical Neurosciences; Clinical and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton; UK
| | - V. H. Perry
- Centre for Biological Sciences; Faculty of Natural and Environmental Science; University of Southampton; Southampton; UK
| | | |
Collapse
|
40
|
Attenuated inflammatory response in triggering receptor expressed on myeloid cells 2 (TREM2) knock-out mice following stroke. PLoS One 2013; 8:e52982. [PMID: 23301011 PMCID: PMC3536811 DOI: 10.1371/journal.pone.0052982] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/22/2012] [Indexed: 12/18/2022] Open
Abstract
Background Triggering receptor expressed on myeloid cells-2 (TREM2) is a microglial surface receptor involved in phagocytosis. Clearance of apoptotic debris after stroke represents an important mechanism to re-attain tissue homeostasis and thereby ensure functional recovery. The role of TREM2 following stroke is currently unclear. Methods and Results As an experimental stroke model, the middle cerebral artery of mice was occluded for 30 minutes with a range of reperfusion times (duration of reperfusion: 6 h/12 h/24 h/2 d/7 d/28 d). Quantitative PCR (qPCR) revealed a greatly increased transcription of TREM2 after stroke. We subsequently analyzed the expression of pro-inflammatory cytokines, chemokines and their receptors in TREM2-knockout (TREM2-KO) mice via qPCR. Microglial activation (CD68, Iba1) and CD3-positive T-cell invasion were analyzed via qPCR and immunohistochemistry. Functional consequences of TREM2 knockout were assessed by infarct volumetry. The acute inflammatory response (12 h reperfusion) was very similar between TREM2-KO mice and their littermate controls. However, in the sub-acute phase (7 d reperfusion) following stroke, TREM2-KO mice showed a decreased transcription of pro-inflammatory cytokines TNFα, IL-1α and IL-1β, associated with a reduced microglial activity (CD68, Iba1). Furthermore, TREM2-KO mice showed a reduced transcription of chemokines CCL2 (MCP1), CCL3 (MIP1α) and the chemokine receptor CX3CR1, followed by a diminished invasion of CD3-positive T-cells. No effect on the lesion size was observed. Conclusions Although we initially expected an exaggerated pro-inflammatory response following ablation of TREM2, our data support a contradictory scenario that the sub-acute inflammatory reaction after stroke is attenuated in TREM2-KO mice. We therefore conclude that TREM2 appears to sustain a distinct inflammatory response after stroke.
Collapse
|
41
|
Temporal alteration of serum G-CSF and VEGF levels in perinatal asphyxia treated with head cooling. Cytokine 2012; 60:812-4. [DOI: 10.1016/j.cyto.2012.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/29/2012] [Accepted: 08/01/2012] [Indexed: 12/17/2022]
|
42
|
Guo RB, Wang GF, Zhao AP, Gu J, Sun XL, Hu G. Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-κB-mediated inflammatory responses. PLoS One 2012; 7:e49701. [PMID: 23166749 PMCID: PMC3498223 DOI: 10.1371/journal.pone.0049701] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 10/12/2012] [Indexed: 01/15/2023] Open
Abstract
Paeoniflorin (PF), the principal component of Paeoniae Radix prescribed in traditional Chinese medicine, has been reported to exhibit many pharmacological effects including protection against ischemic injury. However, the mechanisms underlying the protective effects of PF on cerebral ischemia are still under investigation. The present study showed that PF treatment for 14 days could significantly inhibit transient middle cerebral artery occlusion (MCAO)-induced over-activation of astrocytes and microglia, and prevented up-regulations of pro-inflamamtory mediators (TNFα, IL-1β, iNOS, COX(2) and 5-LOX) in plasma and brain. Further study demonstrated that chronic treatment with PF suppressed the activations of JNK and p38 MAPK, but enhanced ERK activation. And PF could reverse ischemia-induced activation of NF-κB signaling pathway. Moreover, our in vitro study revealed that PF treatment protected against TNFα-induced cell apoptosis and neuronal loss. Taken together, the present study demonstrates that PF produces a delayed protection in the ischemia-injured rats via inhibiting MAPKs/NF-κB mediated peripheral and cerebral inflammatory response. Our study reveals that PF might be a potential neuroprotective agent for stroke.
Collapse
Affiliation(s)
- Ruo-Bing Guo
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Guo-Feng Wang
- Department of Cadre Ward No. 3, the General Hospital of Jinan Military Area Command of PLA, Jinan, China
| | - An-Peng Zhao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jun Gu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Xiu-Lan Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
- * E-mail: (X-LS); (GH)
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
- * E-mail: (X-LS); (GH)
| |
Collapse
|
43
|
Mirabelli-Badenier M, Braunersreuther V, Lenglet S, Galan K, Veneselli E, Viviani GL, Mach F, Montecucco F. Pathophysiological role of inflammatory molecules in paediatric ischaemic brain injury. Eur J Clin Invest 2012; 42:784-94. [PMID: 22248042 DOI: 10.1111/j.1365-2362.2012.02640.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ischaemic stroke is one of the major causes of death and lifelong disability also in the paediatric population. Strong scientific effort has been put to clarify the pathophysiology of this disease in adults. However, only few studies have been performed in children. Preliminary results indicate that pathophysiological processes might differently affect the poststroke neuronal injury in neonates as compared to children. During the neural development, selective molecular mechanisms might be differently triggered by an ischaemic insult, thus potentially resulting in defined postischaemic clinical outcomes. Basic research studies in neonatal animal models of cerebral ischaemia have recently shown a potential role of soluble inflammatory molecules (such as cytokines, chemokines and oxidants) as pivotal players of neuronal injury in both perinatal and childhood ischaemic stroke. Although larger clinical trials are still needed to confirm these preliminary results, the potential benefits of selective treatments targeting inflammation in perinatal asphyxia encephalopathy might represent a promising investigation field in the near future. In this review, we will update evidence on the pathophysiological role of soluble inflammatory mediators in neonatal and childhood ischaemic stroke. Recent evidence on potential anti-inflammatory treatments to improve paediatric stroke prognosis will be discussed.
Collapse
|
44
|
Sieber MW, Claus RA, Witte OW, Frahm C. Attenuated inflammatory response in aged mice brains following stroke. PLoS One 2011; 6:e26288. [PMID: 22028848 PMCID: PMC3196544 DOI: 10.1371/journal.pone.0026288] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/23/2011] [Indexed: 12/18/2022] Open
Abstract
Background Increased age is a major risk factor for stroke incidence, post-ischemic mortality, and severe and long-term disability. Stroke outcome is considerably influenced by post-ischemic mechanisms. We hypothesized that the inflammatory response following an ischemic injury is altered in aged organisms. Methods and Results To that end, we analyzed the expression pattern of pro-inflammatory cytokines (TNF, IL-1α, IL-1β, IL-6), anti-inflammatory cytokines (IL-10, TGFβ1), and chemokines (Mip-1α, MCP-1, RANTES) of adult (2 months) and aged (24 months) mice brains at different reperfusion times (6 h, 12 h, 24 h, 2 d, 7 d) following transient occlusion of the middle cerebral artery. The infarct size was assessed to monitor possible consequences of an altered inflammatory response in aged mice. Our data revealed an increased neuro-inflammation with age. Above all, we found profound age-related alterations in the reaction to stroke. The response of pro-inflammatory cytokines (TNF, and IL-1β) and the level of chemokines (Mip-1α, and MCP-1) were strongly diminished in the aged post-ischemic brain tissue. IL-6 showed the strongest age-dependent decrease in its post-ischemic expression profile. Anti-inflammatory cytokines (TGFβ1, and IL-10) revealed no significant age dependency after ischemia. Aged mice brains tend to develop smaller infarcts. Conclusion The attenuated inflammatory response to stroke in aged animals may contribute to their smaller infarcts. The results presented here highlight the importance of using aged animals to investigate age-associated diseases like stroke, and should be considered as a major prerequisite in the development of age-adjusted therapeutic interventions.
Collapse
Affiliation(s)
- Matthias W. Sieber
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Thuringia, Germany
- Centre for Sepsis Control and Care, Jena University Hospital, Jena, Thuringia, Germany
| | - Ralf A. Claus
- Centre for Sepsis Control and Care, Jena University Hospital, Jena, Thuringia, Germany
| | - Otto W. Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Thuringia, Germany
- * E-mail:
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Thuringia, Germany
| |
Collapse
|
45
|
Stone TW, Forrest CM, Stoy N, Darlington LG. Involvement of kynurenines in Huntington's disease and stroke-induced brain damage. J Neural Transm (Vienna) 2011; 119:261-74. [PMID: 21695417 DOI: 10.1007/s00702-011-0676-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/08/2011] [Indexed: 01/13/2023]
Abstract
Several components of the kynurenine pathway of tryptophan metabolism are now recognised to have actions of profound biological importance. These include the ability to modulate the activation of glutamate and nicotinic receptors, to modify the responsiveness of the immune system to inflammation and infection, and to modify the generation and removal of reactive oxygen species. As each of these factors is being recognised increasingly as contributing to major disorders of the central nervous system (CNS), so the potentially fundamental role of the kynurenine pathway in those disorders is presenting a valuable target both for understanding the progress of those disorders and for developing potential drug treatments. This review will summarise some of the evidence for an important contribution of the kynurenines to Huntington's disease and to stroke damage in the CNS. Together with preliminary evidence from a study of kynurenine metabolites after major surgery, an important conclusion is that kynurenine pathway activation closely reflects cognitive function, and may play a significant role in cognitive ability.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Neuroscience and Psychology, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | | | | | |
Collapse
|
46
|
Abstract
Microglial activation is an early response to brain ischemia and many other stressors. Microglia continuously monitor and respond to changes in brain homeostasis and to specific signaling molecules expressed or released by neighboring cells. These signaling molecules, including ATP, glutamate, cytokines, prostaglandins, zinc, reactive oxygen species, and HSP60, may induce microglial proliferation and migration to the sites of injury. They also induce a nonspecific innate immune response that may exacerbate acute ischemic injury. This innate immune response includes release of reactive oxygen species, cytokines, and proteases. Microglial activation requires hours to days to fully develop, and thus presents a target for therapeutic intervention with a much longer window of opportunity than acute neuroprotection. Effective agents are now available for blocking both microglial receptor activation and the microglia effector responses that drive the inflammatory response after stroke. Effective agents are also available for targeting the signal transduction mechanisms linking these events. However, the innate immune response can have beneficial as well deleterious effects on outcome after stoke, and a challenge will be to find ways to selectively suppress the deleterious effects of microglial activation after stroke without compromising neurovascular repair and remodeling.
Collapse
Affiliation(s)
- Midori A. Yenari
- Department of Neurology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, 94121 San Francisco, California
| | - Tiina M. Kauppinen
- Department of Neurology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, 94121 San Francisco, California
| | - Raymond A. Swanson
- Department of Neurology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, 94121 San Francisco, California
| |
Collapse
|
47
|
Habtemariam S. Applying New Science for Old Medicines: Targeting Leukocyte-Endothelial Adhesions by Antiinflammatory Herbal Drugs. Nat Prod Commun 2010. [DOI: 10.1177/1934578x1000500839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During the last two decades, considerable progress has been made in understanding the molecular mechanisms of the various leukocytes and endothelial cell adhesion molecules (cell adhesion molecules - CAMs) involved in cell-cell and cell matrix interactions. This understanding has opened up a new avenue of novel chemotherapeutic targets and bioassay models for inflammatory diseases. Recently developed In Vitro bioassays on leukocyte/endothelial cell adhesions can now offer rapid and inexpensive assessment methods for herbal medicines with claimed antiinflammatory uses. Through the use of these robust in vitro methods, active principles of herbal drugs can also be isolated thereby providing the opportunity of standardizations based on a known chemical standard(s) and pharmacology. This review highlights relevant leukocyte/endothelial CAMs targets, available in vitro methods and our strategic approach for herbal standardizations.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, the University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
48
|
Neuroprotective efficacy and therapeutic window of Forsythoside B: In a rat model of cerebral ischemia and reperfusion injury. Eur J Pharmacol 2010; 640:75-81. [DOI: 10.1016/j.ejphar.2010.04.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 03/31/2010] [Accepted: 04/23/2010] [Indexed: 11/15/2022]
|
49
|
Gao M, Zhu SY, Tan CB, Xu B, Zhang WC, Du GH. Pinocembrin protects the neurovascular unit by reducing inflammation and extracellular proteolysis in MCAO rats. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2010; 12:407-418. [PMID: 20496198 DOI: 10.1080/10286020.2010.485129] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The purpose of the present study was to examine the protective action and mechanisms of pinocembrin (1) on the neurovascular unit (NVU) in permanent cerebral ischemic rats. Focal cerebral ischemia was induced by occlusion of middle cerebral artery (MCAO) in rats. Compound 1 (3, 10, or 30 mg/kg) was intravenously injected at 0, 8, 16 h after MCAO. At 24 h of occlusion, 1 alleviated neuronal apoptosis, edema of astrocytic end-feet, and the deformation of endothelial cells and capillaries as revealed by the transmission electron microscopy study. To understand the mechanisms of action, the anti-inflammation effect of 1 was examined. Compound 1 reduced the expressions of tumor necrosis factor-alpha, interleukin-1beta, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, inducible NO synthase and aquaporin-4; inhibited the activation of microglias and astrocytes; and downregulated the expression of matrix metalloproteinases (MMPs) in the ischemic brain. The ischemia-induced decreases in mRNA expressions of tight junction constituent proteins, occludin and ZO-1, were also inhibited by 1. These results indicated that 1 can protect the rat brain against ischemia injury by inhibiting the inflammatory cascade, reducing the expression of MMP-9, and preventing the integrity of tight junction. This resulted in the protective action of 1 on the NVU.
Collapse
Affiliation(s)
- Mei Gao
- Peking Union Medical College, Institute of Materia Medica and Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
50
|
Lin Z, Zhu D, Yan Y, Yu B. Herbal formula FBD extracts prevented brain injury and inflammation induced by cerebral ischemia-reperfusion. JOURNAL OF ETHNOPHARMACOLOGY 2008; 118:140-147. [PMID: 18486376 DOI: 10.1016/j.jep.2008.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 02/24/2008] [Accepted: 03/30/2008] [Indexed: 05/26/2023]
Abstract
The aim of this work was to verify neuroprotective and anti-inflammatory properties of FBD, a herbal formula composed of Poria cocos, Atractylodes macrocephala and Angelica sinensis, in ICR mice subjected to repetitive 10 min of common carotid arteries occlusion followed 24 h reperfusion. Intragastrical pretreatment with supercritical carbon dioxide extract (FBD-CO(2), 37.5 mg/kg) twice daily for 3.5 d, significantly reduced Evans Blue influx, neuron specific enolase (NSE) efflux, brain infarction (all p<0.05), also inhibited polymorphonuclear leukocytes (PMNs) infiltration (p<0.001), suppressed secretion of tumor necrosis factor (TNF)-alpha in blood (p<0.05), interleukin (IL)-1beta and IL-8 in brain (both p<0.01), and down-regulated cerebral expression of phosphor-IkappaB-alpha and phosphor-nuclear factor kappa-B (NF-kappaB), whether coupled with aqueous extract (FBD-H(2)O, 150 mg/kg) or not. Moreover, FBD-CO(2) (0.1-10 microg/ml) inhibited 0.1 microM phorbol myristate acetate-evoked oxidative burst in rat PMNs, 20 ng/ml TNF-alpha-triggered PMNs adhesion to ECV304 endothelial cells, and PMNs neurotoxicity to PC12 neuron-like cells as well as NSE release (IC(50) 1.30, 0.98, 0.24 and 0.82 microg/ml, respectively). Our study demonstrated that FBD-CO(2) prevented brain ischemia/reperfusion injury, at least in part, by limiting PMNs infiltration and neurotoxicity mediated by TNF-alpha, IL-1beta and IL-8, via inhibition on NF-kappaB activation.
Collapse
Affiliation(s)
- Zhihong Lin
- Department of Chinese Medicinal Prescription, China Pharmaceutical University, Nanjing, PR China
| | | | | | | |
Collapse
|