1
|
Gasmi A, Noor S, Dadar M, Semenova Y, Menzel A, Gasmi Benahmed A, Bjørklund G. The Role of Traditional Chinese Medicine and Chinese Pharmacopoeia in the Evaluation and Treatment of COVID-19. Curr Pharm Des 2024; 30:1060-1074. [PMID: 38523518 DOI: 10.2174/0113816128217263240220060252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/26/2024]
Abstract
The epidemic prompted by COVID-19 continues to spread, causing a great risk to the general population's safety and health. There are still no drugs capable of curing it. Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the two other diseases caused by coronaviruses. Traditional Chinese Medicine (TCM) showed benefits in treating SARS and MERS by preventing the disease early, substantially mitigating symptoms, shortening the treatment period, and minimizing risks and adverse reactions caused by hormone therapy. Although several vaccines have been developed and are being used for the treatment of COVID-19, existing vaccines cannot provide complete protection against the virus due to the rapid evolution and mutation of the virus, as mutated viral epitopes evade the vaccine's target and decrease the efficacy of vaccines. Thus, there is a need to develop alternative options. TCM has demonstrated positive effects in the treatment of COVID-19. Previous research studies on TCM showed broad-spectrum antiviral activity, offering a range of possibilities for their potential use against COVID-19. This study shed some light on common TCM used for SARS and MERS outbreaks and their effective use for COVID-19 management. This study provides new insights into COVID-19 drug discovery.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Maryam Dadar
- CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
2
|
Alanazi MQ, Abdelgawwad W, Almangour TA, Mostafa F, Almuheed M. Impact of COVID-19 on the Health-Related Quality of Life of Patients during Infection and after Recovery in Saudi Arabia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5026. [PMID: 36981935 PMCID: PMC10049034 DOI: 10.3390/ijerph20065026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated the impact of COVID-19 and other factors on the health-related quality of life (HRQoL) of Saudi patients during infection and after recovery using the EQ-5D-5L and EQ-VAS instruments. An observational prospective study was conducted in November 2022, during which 389 COVID-19 patients were surveyed during their visit to a medical center. Two weeks after their recovery, they were contacted again to re-evaluate their HRQoL (192 patients either refused to participate or withdrew). The mean of the EQ-5D-5L index and EQ-VAS scores significantly increased from (0.69 ± 0.29 and 63.16 ± 24.9) during infection to (0.92 ± 0.14 and 86.96 ± 15.3) after recovery. Specifically, COVID-19 patients experienced improvement of several HRQoL dimensions post recovery, such as better mobility, enhanced self-care, returning to usual activities, less pain/discomfort, and alleviated anxiety/depression. Multiple linear regression analyses showed that having a normal weight, being employed, not being anemic, and previously taking the BCG vaccine were positively associated with a greater change in the HRQoL. An interaction between being asthmatic and taking the influenza vaccine positively predicted a lower change in the HRQoL. Having a normal weight positively predicted a greater change in the perceived health state after recovery. Increasing the consumption of natural supplements (honey and curcuma) did not improve the HRQoL or the perceived health state. Based on these findings, COVID-19 mildly impacted the HRQoL of Saudis with varying effects depending on some socio-demographic/clinical characteristics of the patients.
Collapse
Affiliation(s)
- Menyfah Q. Alanazi
- Drug Policy & Economic Centre, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh 11426, Saudi Arabia
| | | | - Thamer A. Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fatma Mostafa
- College of Management, Midocean University, Moroni 6063, Comoros
| | - Mona Almuheed
- National Center for Artificial Intelligence (NCAI), Riyadh 12391, Saudi Arabia
| |
Collapse
|
3
|
Gareh A, Hassan D, Essa A, Kotb S, Karmi M, Mohamed AEHH, Alkhaibari AM, Elbaz E, Elhawary NM, Hassanen EAA, Lokman MS, El-Gohary FA, Elmahallawy EK. Acaricidal Properties of Four Neem Seed Extracts (Azadirachta indica) on the Camel Tick Hyalomma dromedarii (Acari: Ixodidae). Front Vet Sci 2022; 9:946702. [PMID: 35937305 PMCID: PMC9354004 DOI: 10.3389/fvets.2022.946702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tick infestation remains one of the major health problems that affect the productivity and comfort of camels. The control of ticks mainly relies on using chemical acaracides. Limited information is available on the potential benefits and activity of various neem extracts on Hyalomma ticks. The present study investigated the acaricidal activity of neem seed extracts at different concentrations against developmental stages of the camel tick Hyalomma dromedarii in comparison to Butox and diazinon. The acaricidal activity of three extracts, namely, hexane extract (HE), methyl chloride extract (MCE), and methanol extract (ME), of neem seeds (Azadirachta indica) were tested at varying concentrations of 5, 10, 15, and 20% on engorged H. dromedarii female ticks at days 1, 3, 5, 7, 12, 16, 20, 28, 37, and 43 after treatment (DPT). Interestingly, results of applying different neem seed extracts to engorged H. dromedarii female ticks showed that the most effective extract was hexane at concentration 20%, causing 100% mortality at 1st day post-application, while methanol extract at 20% and dichloromethane extract at 20% caused the death of all ticks at 28th day posttreatment as compared to Butox® 5.0 and Diazinon-60, which resulted in mortality of all ticks at 3 and 5 DPT, respectively. In addition, no mortality was reported with the application of aqueous extract (AE), which served as the control group. Furthermore, the neem hexane extract exhibited high efficacy against reproductive performance of female ticks, whereas no fertility or oviposition was reported at all of their concentrations. Additionally, no hatchability occurred using all neem extracts, except the aqueous extract, which showing no effect. In the present study, larvae responded more rapidly to the plant extracts, whereas mortality of all larvae was recorded at 24 h after treatment with 5% hexane. Taken together, this study pointed out that the acaricidal effect of hexane extract of neem seeds was more effective and could be economically used for controlling H. dromedarii ticks.
Collapse
Affiliation(s)
- Ahmed Gareh
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Dalia Hassan
- Department of Animal and Poultry Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Asmaa Essa
- Department of Animal and Poultry Hygiene, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Saber Kotb
- Department of Animal and Poultry Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mohammed Karmi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | | | | | - Elzahara Elbaz
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Nagwa M. Elhawary
- Department of Parasitology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Eman A. A. Hassanen
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Maha S. Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Fatma A. El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
- *Correspondence: Ehab Kotb Elmahallawy
| |
Collapse
|
4
|
Dutta M, Nezam M, Chowdhury S, Rakib A, Paul A, Sami SA, Uddin MZ, Rana MS, Hossain S, Effendi Y, Idroes R, Tallei T, Alqahtani AM, Emran TB. Appraisals of the Bangladeshi Medicinal Plant Calotropis gigantea Used by Folk Medicine Practitioners in the Management of COVID-19: A Biochemical and Computational Approach. Front Mol Biosci 2021; 8:625391. [PMID: 34124140 PMCID: PMC8187851 DOI: 10.3389/fmolb.2021.625391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first recognized in Wuhan in late 2019 and, since then, had spread globally, eventually culminating in the ongoing pandemic. As there is a lack of targeted therapeutics, there is certain opportunity for the scientific community to develop new drugs or vaccines against COVID-19 and so many synthetic bioactive compounds are undergoing clinical trials. In most of the countries, due to the broad therapeutic spectrum and minimal side effects, medicinal plants have been used widely throughout history as traditional healing remedy. Because of the unavailability of synthetic bioactive antiviral drugs, hence all possible efforts have been focused on the search for new drugs and alternative medicines from different herbal formulations. In recent times, it has been assured that the Mpro, also called 3CLpro, is the SARS-CoV-2 main protease enzyme responsible for viral reproduction and thereby impeding the host's immune response. As such, Mpro represents a highly specified target for drugs capable of inhibitory action against coronavirus disease 2019 (COVID-19). As there continue to be no clear options for the treatment of COVID-19, the identification of potential candidates has become a necessity. The present investigation focuses on the in silico pharmacological activity of Calotropis gigantea, a large shrub, as a potential option for COVID-19 Mpro inhibition and includes an ADME/T profile analysis of that ligand. For this study, with the help of gas chromatography-mass spectrometry analysis of C. gigantea methanolic leaf extract, a total of 30 bioactive compounds were selected. Our analyses unveiled the top four options that might turn out to be prospective anti-SARS-CoV-2 lead molecules; these warrant further exploration as well as possible application in processes of drug development to combat COVID-19.
Collapse
Affiliation(s)
- Mycal Dutta
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh
| | - Mohammad Nezam
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Subrata Chowdhury
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Arkajyoti Paul
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Zia Uddin
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh
| | - Md. Sohel Rana
- Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh
| | | | - Yunus Effendi
- Department of Biology, Faculty of Science and Technology, Al-Azhar Indonesia University, Jakarta, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh, Indonesia
| | - Trina Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| |
Collapse
|
5
|
Rabaan AA, Al-Ahmed SH, Garout MA, Al-Qaaneh AM, Sule AA, Tirupathi R, Mutair AA, Alhumaid S, Hasan A, Dhawan M, Tiwari R, Sharun K, Mohapatra RK, Mitra S, Emran TB, Bilal M, Singh R, Alyami SA, Moni MA, Dhama K. Diverse Immunological Factors Influencing Pathogenesis in Patients with COVID-19: A Review on Viral Dissemination, Immunotherapeutic Options to Counter Cytokine Storm and Inflammatory Responses. Pathogens 2021; 10:565. [PMID: 34066983 PMCID: PMC8150955 DOI: 10.3390/pathogens10050565] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still not fully unraveled. Though preventive vaccines and treatment methods are out on the market, a specific cure for the disease has not been discovered. Recent investigations and research studies primarily focus on the immunopathology of the disease. A healthy immune system responds immediately after viral entry, causing immediate viral annihilation and recovery. However, an impaired immune system causes extensive systemic damage due to an unregulated immune response characterized by the hypersecretion of chemokines and cytokines. The elevated levels of cytokine or hypercytokinemia leads to acute respiratory distress syndrome (ARDS) along with multiple organ damage. Moreover, the immune response against SARS-CoV-2 has been linked with race, gender, and age; hence, this viral infection's outcome differs among the patients. Many therapeutic strategies focusing on immunomodulation have been tested out to assuage the cytokine storm in patients with severe COVID-19. A thorough understanding of the diverse signaling pathways triggered by the SARS-CoV-2 virus is essential before contemplating relief measures. This present review explains the interrelationships of hyperinflammatory response or cytokine storm with organ damage and the disease severity. Furthermore, we have thrown light on the diverse mechanisms and risk factors that influence pathogenesis and the molecular pathways that lead to severe SARS-CoV-2 infection and multiple organ damage. Recognition of altered pathways of a dysregulated immune system can be a loophole to identify potential target markers. Identifying biomarkers in the dysregulated pathway can aid in better clinical management for patients with severe COVID-19 disease. A special focus has also been given to potent inhibitors of proinflammatory cytokines, immunomodulatory and immunotherapeutic options to ameliorate cytokine storm and inflammatory responses in patients affected with COVID-19.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia;
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia;
| | - Mohammed A. Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ayman M. Al-Qaaneh
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
- Clinical Pharmacy Services Division, Pharmacy Services Department, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Anupam A Sule
- Department of Informatics and Outcomes, St Joseph Mercy Oakland, Pontiac, MI 48341, USA;
| | - Raghavendra Tirupathi
- Department of Medicine Keystone Health, Penn State University School of Medicine, Hershey, PA 16801, USA;
- Department of Medicine, Wellspan Chambersburg and Waynesboro (Pa.) Hospitals, Chambersburg, PA 16801, USA
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Alahsa 36342, Saudi Arabia;
- College of Nursing, Prince Nora University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Alahsa 31982, Saudi Arabia;
| | - Abdulkarim Hasan
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt;
- Prince Mishari Bin Saud Hospital in Baljurashi, Ministry of Health, Baljurash 22888, Saudi Arabia
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India;
- The Trafford Group of Colleges, Manchester WA14 5PQ, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandha Sansthan (DUVASU), Mathura 281001, India;
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| | - Salem A. Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| |
Collapse
|
6
|
Rabaan AA, Al-Ahmed SH, Muhammad J, Khan A, Sule AA, Tirupathi R, Mutair AA, Alhumaid S, Al-Omari A, Dhawan M, Tiwari R, Sharun K, Mohapatra RK, Mitra S, Bilal M, Alyami SA, Emran TB, Moni MA, Dhama K. Role of Inflammatory Cytokines in COVID-19 Patients: A Review on Molecular Mechanisms, Immune Functions, Immunopathology and Immunomodulatory Drugs to Counter Cytokine Storm. Vaccines (Basel) 2021; 9:436. [PMID: 33946736 PMCID: PMC8145892 DOI: 10.3390/vaccines9050436] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a severe pandemic of the current century. The vicious tentacles of the disease have been disseminated worldwide with unknown complications and repercussions. Advanced COVID-19 syndrome is characterized by the uncontrolled and elevated release of pro-inflammatory cytokines and suppressed immunity, leading to the cytokine storm. The uncontrolled and dysregulated secretion of inflammatory and pro-inflammatory cytokines is positively associated with the severity of the viral infection and mortality rate. The secretion of various pro-inflammatory cytokines such as TNF-α, IL-1, and IL-6 leads to a hyperinflammatory response by recruiting macrophages, T and B cells in the lung alveolar cells. Moreover, it has been hypothesized that immune cells such as macrophages recruit inflammatory monocytes in the alveolar cells and allow the production of large amounts of cytokines in the alveoli, leading to a hyperinflammatory response in severely ill patients with COVID-19. This cascade of events may lead to multiple organ failure, acute respiratory distress, or pneumonia. Although the disease has a higher survival rate than other chronic diseases, the incidence of complications in the geriatric population are considerably high, with more systemic complications. This review sheds light on the pivotal roles played by various inflammatory markers in COVID-19-related complications. Different molecular pathways, such as the activation of JAK and JAK/STAT signaling are crucial in the progression of cytokine storm; hence, various mechanisms, immunological pathways, and functions of cytokines and other inflammatory markers have been discussed. A thorough understanding of cytokines' molecular pathways and their activation procedures will add more insight into understanding immunopathology and designing appropriate drugs, therapies, and control measures to counter COVID-19. Recently, anti-inflammatory drugs and several antiviral drugs have been reported as effective therapeutic drug candidates to control hypercytokinemia or cytokine storm. Hence, the present review also discussed prospective anti-inflammatory and relevant immunomodulatory drugs currently in various trial phases and their possible implications.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia;
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia;
| | - Javed Muhammad
- Department of Microbiology, The University of Haripur, Khyber Pakhtunkhwa 22620, Pakistan;
| | - Amjad Khan
- Department of Public Health/Nutrition, The University of Haripur, Khyber Pakhtunkhwa 22620, Pakistan;
| | - Anupam A Sule
- Medical Director of Informatics and Outcomes, St Joseph Mercy Oakland, Pontiac, MI 48341, USA;
| | - Raghavendra Tirupathi
- Department of Medicine Keystone Health, Penn State University School of Medicine, Hershey, PA 16801, USA;
- Department of Medicine, Wellspan Chambersburg and Waynesboro (Pa.) Hospitals, Chambersburg, PA 16801, USA
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Alahsa 36342, Saudi Arabia;
- College of Nursing, Prince Nora University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Ministry of Health, Alahsa 31982, Saudi Arabia;
| | - Awad Al-Omari
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Dr. Sulaiman Al-Habib Medical Group, Critical Care and Infection Control Department, Research Centre, Riyadh 11372, Saudi Arabia
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141027, Punjab, India;
- The Trafford Group of Colleges, Manchester WA14 5PQ, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh; Pandit DeenDayal Upadhyaya PashuChikitsa Vigyan Vishwavidyalaya Evam Go AnusandhaSansthan (DUVASU), Mathura 281001, Uttar Pradesh, India;
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Mathura 281001, Uttar Pradesh, India;
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; or
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Salem A. Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| |
Collapse
|