1
|
Aragón E, Cerda G, Pérez C, Aguilar M, Navarro JI. Socio-Economic and Cultural Context in the Development of Early Mathematical Competencies: A Comparative Study of Specific Educational Contexts in Chile and Spain. Psychol Rep 2023; 126:2904-2923. [PMID: 35485168 DOI: 10.1177/00332941221097950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This research presents the findings of a comparative study of mathematical competence among 130 students (M = 54.08 months; SD = 2.57) from vulnerable school contexts in Chile and the Spanish public school system. The study analyses a set of general and specific domain precursors for which evidence of socioeconomic background exists. Using multivariate regression and discriminant analysis techniques, we calculated similarities and differences between groups by comparing these precursors. Significant differences were found between the Spanish and Chilean groups (p < .05); however, no differences were observed in non-symbolic comparison and receptive vocabulary. Possible reasons for the existence and extent of these differences are discussed in terms of socio-cultural and educational contexts.
Collapse
Affiliation(s)
| | - Gamal Cerda
- Department of Research Methodology and Educational Informatics, University of Concepción, Concepción, Chile
| | - Carlos Pérez
- Institute of Social Sciences, University of O'Higgins, Rancagua, Chile
| | - Manuel Aguilar
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - José I Navarro
- Department of Psychology, University of Cadiz, Cádiz, Spain
| |
Collapse
|
2
|
Ribner A, Silver AM, Elliott L, Libertus ME. Exploring effects of an early math intervention: The importance of parent-child interaction. Child Dev 2023; 94:395-410. [PMID: 36321367 PMCID: PMC9991950 DOI: 10.1111/cdev.13867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We explore whether training parents' math skills or playing number games improves children's mathematical skills. Participants were 162 parent-child dyads; 88.3% were white and children (79 female) were 4 years (M = 46.88 months). Dyads were assigned to a number game, shape game, parent-only approximate number system training, parent-only general trivia, or a no-training control condition and asked to play twice weekly for 8 weeks. Children in the number game condition gained over 15% SD on an assessment of mathematical skill than did those in the no-training control. After 8 additional weeks without training, effects diminished; however, children of parents in the ANS condition underperformed those in the no-treatment control, which was partially explained by changes in the home numeracy environment.
Collapse
Affiliation(s)
- Andrew Ribner
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex M Silver
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
3
|
Zaleznik E, Comeau O, Park J. EXPRESS: Arithmetic operations without symbols are unimpaired in adults with math anxiety. Q J Exp Psychol (Hove) 2022; 76:1264-1274. [PMID: 35775834 DOI: 10.1177/17470218221113555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study characterizes a previously unstudied facet of a major causal model of math anxiety. The model posits that impaired "basic number abilities" can lead to math anxiety, but what constitutes a basic number ability remains underdefined. Previous work has raised the idea that our perceptual ability to represent quantities approximately without using symbols constitutes one of the basic number abilities. Indeed, several recent studies tested how participants with math anxiety estimate and compare non-symbolic quantities. However, little is known about how participants with math anxiety perform arithmetic operations (addition and subtraction) on non-symbolic quantities. This is an important question because poor arithmetic performance on symbolic numbers is one of the primary signatures of high math anxiety. To test the question, we recruited 92 participants and asked them to complete a math anxiety survey, two measures of working memory, a timed symbolic arithmetic test, and a non-symbolic "approximate arithmetic" task. We hypothesized that if impaired ability to perform operations was a potential causal factor to math anxiety, we should see relationships between math anxiety and both symbolic and approximate arithmetic. However, if math anxiety relates to precise or symbolic representation, only a relationship between math anxiety and symbolic arithmetic should appear. Our results show no relationship between math anxiety and the ability to perform operations with approximate quantities, suggesting that difficulties performing perceptually based arithmetic operations does not constitute a basic number ability linked to math anxiety.
Collapse
Affiliation(s)
- Eli Zaleznik
- Department of Psychological and Brain Sciences 14707
| | - Olivia Comeau
- Department of Psychological and Brain Sciences 14707.,Commonwealth Honors College University of Massachusetts Amherst, U.S.A
| | - Joonkoo Park
- Department of Psychological and Brain Sciences 14707.,Commonwealth Honors College University of Massachusetts Amherst, U.S.A
| |
Collapse
|
4
|
Chang H, Chen L, Zhang Y, Xie Y, de Los Angeles C, Adair E, Zanitti G, Wassermann D, Rosenberg-Lee M, Menon V. Foundational Number Sense Training Gains Are Predicted by Hippocampal-Parietal Circuits. J Neurosci 2022; 42:4000-4015. [PMID: 35410879 PMCID: PMC9097592 DOI: 10.1523/jneurosci.1005-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022] Open
Abstract
The development of mathematical skills in early childhood relies on number sense, the foundational ability to discriminate among quantities. Number sense in early childhood is predictive of academic and professional success, and deficits in number sense are thought to underlie lifelong impairments in mathematical abilities. Despite its importance, the brain circuit mechanisms that support number sense learning remain poorly understood. Here, we designed a theoretically motivated training program to determine brain circuit mechanisms underlying foundational number sense learning in female and male elementary school-age children (7-10 years). Our 4 week integrative number sense training program gradually strengthened the understanding of the relations between symbolic (Arabic numerals) and nonsymbolic (sets of items) representations of quantity. We found that our number sense training program improved symbolic quantity discrimination ability in children across a wide range of math abilities including children with learning difficulties. Crucially, the strength of pretraining functional connectivity between the hippocampus and intraparietal sulcus, brain regions implicated in associative learning and quantity discrimination, respectively, predicted individual differences in number sense learning across typically developing children and children with learning difficulties. Reverse meta-analysis of interregional coactivations across 14,371 fMRI studies and 89 cognitive functions confirmed a reliable role for hippocampal-intraparietal sulcus circuits in learning. Our study identifies a canonical hippocampal-parietal circuit for learning that plays a foundational role in children's cognitive skill acquisition. Findings provide important insights into neurobiological circuit markers of individual differences in children's learning and delineate a robust target for effective cognitive interventions.SIGNIFICANCE STATEMENT Mathematical skill development relies on number sense, the ability to discriminate among quantities. Here, we develop a theoretically motivated training program and investigate brain circuits that predict number sense learning in children during a period important for acquisition of foundational cognitive skills. Our integrated number sense training program was effective in children across a wide a range of math abilities, including children with learning difficulties. We identify hippocampal-parietal circuits that predict individual differences in learning gains. Our study identifies a brain circuit critical for the acquisition of foundational cognitive skills, which will be useful for developing effective interventions to remediate learning disabilities.
Collapse
Affiliation(s)
- Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Lang Chen
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
- Department of Psychology, Santa Clara University, Santa Clara, California 95053
| | - Yuan Zhang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Ye Xie
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
- Department of Physics, Zhejiang University, Hangzhou 310027, China
- Department of Psychology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Carlo de Los Angeles
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Emma Adair
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Gaston Zanitti
- Parietal, Inria Saclay Île-de-France, Campus de l'École Polytechnique, Université Paris-Sud, Palaiseau 91120, France
| | - Demian Wassermann
- Parietal, Inria Saclay Île-de-France, Campus de l'École Polytechnique, Université Paris-Sud, Palaiseau 91120, France
| | - Miriam Rosenberg-Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
- Department of Psychology, Rutgers University, Newark, New Jersey 07102
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, California 94305
- Stanford Neurosciences Institute, Stanford University, Stanford, California 94305
| |
Collapse
|
5
|
Silver AM, Elliott L, Reynvoet B, Sasanguie D, Libertus ME. Teasing apart the unique contributions of cognitive and affective predictors of math performance. Ann N Y Acad Sci 2022; 1511:173-190. [PMID: 35092064 PMCID: PMC9117397 DOI: 10.1111/nyas.14747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Math permeates everyday life, and math skills are linked to general educational attainment, income, career choice, likelihood of full-time employment, and health and financial decision making. Thus, researchers have attempted to understand factors predicting math performance in order to identify ways of supporting math development. Work examining individual differences in math performance typically focuses on either cognitive predictors, including inhibitory control and the approximate number system (ANS; a nonsymbolic numerical comparison system), or affective predictors, like math anxiety. Studies with children suggest that these factors are interrelated, warranting examination of whether and how each uniquely and independently contributes to math performance in adulthood. Here, we examined how inhibitory control, the ANS, and math anxiety predicted college students' math performance (n = 122, mean age = 19.70 years). Using structural equation modeling, we find that although inhibitory control and the ANS were closely related to each other, they did not predict math performance above and beyond the effects of the other while also controlling for math anxiety. Instead, math anxiety was the only unique predictor of math performance. These findings contradict previous results in children and reinforce the need to consider affective factors in our discussions and interventions for supporting math performance in college students.
Collapse
Affiliation(s)
- Alex M. Silver
- Department of Psychology, Learning Research and Development Center University of Pittsburgh Pittsburgh Pennsylvania
| | - Leanne Elliott
- Department of Psychology, Learning Research and Development Center University of Pittsburgh Pittsburgh Pennsylvania
| | - Bert Reynvoet
- Faculty of Psychology and Educational Sciences KU Leuven @Kulak Leuven Belgium
| | - Delphine Sasanguie
- Research Centre for Learning in Diversity University College Ghent (HOGENT) Ghent Belgium
| | - Melissa E. Libertus
- Department of Psychology, Learning Research and Development Center University of Pittsburgh Pittsburgh Pennsylvania
| |
Collapse
|
6
|
A rational explanation for links between the ANS and math. Behav Brain Sci 2021; 44:e194. [PMID: 34907884 DOI: 10.1017/s0140525x21001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The proposal by Clarke and Beck offers a new explanation for the association between the approximate number system (ANS) and math. Previous explanations have largely relied on developmental arguments, an underspecified notion of the ANS as an "error detection mechanism," or affective factors. The proposal that the ANS represents rational numbers suggests that it may directly support a broader range of math skills.
Collapse
|
7
|
Wang L, Liang X, Yin Y, Kang J. Bidirectional Mapping Between the Symbolic Number System and the Approximate Number System. Exp Psychol 2021; 68:243-263. [DOI: 10.1027/1618-3169/a000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract. Previous studies have discussed the symmetry of bidirectional mapping between approximate number system (ANS) and symbolic number system (SNS). However, these studies neglected the essential significance of bidirectional mapping in the development of numerical cognition. That is, with age, the connection strength between the ANS and SNS in ANS-SNS mapping could be higher than that in SNS-ANS mapping. Therefore, this study attempted to explore the symmetry of bidirectional mapping by examining whether the connection between the ANS and SNS is the same. Using two types of dot array materials (extensive and intensive) and sequence priming paradigms, this study found a stable negative priming effect in the ANS-SNS priming task, but no priming effect in the SNS-ANS priming task. In addition, although sensory cues (extensive and intensive) could affect performance in the ANS-SNS mapping task, these cues did not affect performance in the ANS-SNS priming task. In general, this study provides valuable insight into the symmetry of bidirectional mapping.
Collapse
Affiliation(s)
- Lijuan Wang
- School of Psychology, Northeast Normal University, Changchun, Jilin, PR China
| | - Xiao Liang
- School of Psychology, Northeast Normal University, Changchun, Jilin, PR China
| | - Yueyang Yin
- School of Psychology, Northeast Normal University, Changchun, Jilin, PR China
| | - Jingmei Kang
- School of Psychology, Northeast Normal University, Changchun, Jilin, PR China
| |
Collapse
|
8
|
Bugden S, Szkudlarek E, Brannon EM. Approximate arithmetic training does not improve symbolic math in third and fourth grade children. Trends Neurosci Educ 2021; 22:100149. [PMID: 33845980 DOI: 10.1016/j.tine.2021.100149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Prior studies reported that practice playing an approximate arithmetic game improved symbolic math performance relative to active control groups in adults and preschool children (e.g. Park & Brannon, 2013, 2014; Park et al., 2016; Szkudlarek & Brannon, 2018). However, Szkudlarek, Park and Brannon (2021) recently failed to replicate those findings in adults. Here we test whether approximate arithmetic training yields benefits in elementary school children who have intermediate knowledge of arithmetic. METHOD We conducted a randomized controlled trial with a pre and post-test design to compare the effects of approximate arithmetic training and visuo-spatial working memory training on standardized math performance in third and fourth grade children. RESULTS We found that approximate arithmetic training did not yield any significant gains on standardized measures of symbolic math performance. CONCLUSION A Bayesian analysis supports the conclusion that approximate arithmetic provides no benefits for symbolic math performance.
Collapse
Affiliation(s)
- S Bugden
- Department of Psychology, University of Pennsylvania, USA.
| | - E Szkudlarek
- Department of Psychology, University of Pennsylvania, USA; Department of Psychology, University of Wisconsin-Madison, USA.
| | - E M Brannon
- Department of Psychology, University of Pennsylvania, USA.
| |
Collapse
|
9
|
Szkudlarek E, Park J, Brannon EM. Failure to replicate the benefit of approximate arithmetic training for symbolic arithmetic fluency in adults. Cognition 2020; 207:104521. [PMID: 33280814 PMCID: PMC7805575 DOI: 10.1016/j.cognition.2020.104521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Abstract
Previous research reported that college students’ symbolic addition and subtraction fluency improved after training with non-symbolic, approximate addition and subtraction. These findings were widely interpreted as strong support for the hypothesis that the Approximate Number System (ANS) plays a causal role in symbolic mathematics, and that this relation holds into adulthood. Here we report four experiments that fail to find evidence for this causal relation. Experiment 1 examined whether the approximate arithmetic training effect exists within a shorter training period than originally reported (2 vs 6 days of training). Experiment 2 attempted to replicate and compare the approximate arithmetic training effect to a control training condition matched in working memory load. Experiments 3 and 4 replicated the original approximate arithmetic training experiments with a larger sample size. Across all four experiments (N = 318) approximate arithmetic training was no more effective at improving the arithmetic fluency of adults than training with control tasks. Results call into question any causal relationship between approximate, non-symbolic arithmetic and precise symbolic arithmetic.
Collapse
Affiliation(s)
- Emily Szkudlarek
- University of Pennsylvania, Department of Psychology, 425 S. University Ave, Philadelphia, PA 19104, USA.
| | - Joonkoo Park
- University of Massachusetts Amherst, Department of Psychological and Brain Sciences, 135 Hicks Way, Amherst, MA 01003, USA; Commonwealth Honors College, University of Massachusetts Amherst, USA
| | - Elizabeth M Brannon
- University of Pennsylvania, Department of Psychology, 425 S. University Ave, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Aragón E, Cerda G, Aguilar M, Mera C, Navarro JI. Modulation of general and specific cognitive precursors to early mathematical competencies in preschool children. EUROPEAN JOURNAL OF PSYCHOLOGY OF EDUCATION 2020. [DOI: 10.1007/s10212-020-00483-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Li J, Zhou X, Lindskog M. Editorial: Approximate Number System and Mathematics. Front Psychol 2019; 10:2084. [PMID: 31572267 PMCID: PMC6751380 DOI: 10.3389/fpsyg.2019.02084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/05/2022] Open
Affiliation(s)
- Jingguang Li
- College of Education, Dali University, Dali, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Marcus Lindskog
- Department of Psychology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Thomas MSC, Ansari D, Knowland VCP. Annual Research Review: Educational neuroscience: progress and prospects. J Child Psychol Psychiatry 2019; 60:477-492. [PMID: 30345518 PMCID: PMC6487963 DOI: 10.1111/jcpp.12973] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2018] [Indexed: 01/01/2023]
Abstract
Educational neuroscience is an interdisciplinary research field that seeks to translate research findings on neural mechanisms of learning to educational practice and policy and to understand the effects of education on the brain. Neuroscience and education can interact directly, by virtue of considering the brain as a biological organ that needs to be in the optimal condition to learn ('brain health'); or indirectly, as neuroscience shapes psychological theory and psychology influences education. In this article, we trace the origins of educational neuroscience, its main areas of research activity and the principal challenges it faces as a translational field. We consider how a pure psychology approach that ignores neuroscience is at risk of being misleading for educators. We address the major criticisms of the field comprising, respectively, a priori arguments against the relevance of neuroscience to education, reservations with the current practical operation of the field, and doubts about the viability of neuroscience methods for diagnosing disorders or predicting individual differences. We consider future prospects of the field and ethical issues it raises. Finally, we discuss the challenge of responding to the (welcome) desire of education policymakers to include neuroscience evidence in their policymaking, while ensuring recommendations do not exceed the limitations of current basic science.
Collapse
Affiliation(s)
- Michael S. C. Thomas
- Centre for Educational NeuroscienceDepartment of Psychological ScienceBirkbeckUniversity of LondonLondonUK
| | - Daniel Ansari
- Department of Psychology & Faculty of Education Western UniversityLondonONCanada
| | | |
Collapse
|
13
|
Bugden S, Woldorff MG, Brannon EM. Shared and distinct neural circuitry for nonsymbolic and symbolic double-digit addition. Hum Brain Mapp 2018; 40:1328-1343. [PMID: 30548735 DOI: 10.1002/hbm.24452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/03/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022] Open
Abstract
Symbolic arithmetic is a complex, uniquely human ability that is acquired through direct instruction. In contrast, the capacity to mentally add and subtract nonsymbolic quantities such as dot arrays emerges without instruction and can be seen in human infants and nonhuman animals. One possibility is that the mental manipulation of nonsymbolic arrays provides a critical scaffold for developing symbolic arithmetic abilities. To explore this hypothesis, we examined whether there is a shared neural basis for nonsymbolic and symbolic double-digit addition. In parallel, we asked whether there are brain regions that are associated with nonsymbolic and symbolic addition independently. First, relative to visually matched control tasks, we found that both nonsymbolic and symbolic addition elicited greater neural signal in the bilateral intraparietal sulcus (IPS), bilateral inferior temporal gyrus, and the right superior parietal lobule. Subsequent representational similarity analyses revealed that the neural similarity between nonsymbolic and symbolic addition was stronger relative to the similarity between each addition condition and its visually matched control task, but only in the bilateral IPS. These findings suggest that the IPS is involved in arithmetic calculation independent of stimulus format.
Collapse
Affiliation(s)
- Stephanie Bugden
- Psychology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | - Elizabeth M Brannon
- Psychology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Developmental trajectories of children's symbolic numerical magnitude processing skills and associated cognitive competencies. J Exp Child Psychol 2017; 166:232-250. [PMID: 28946044 DOI: 10.1016/j.jecp.2017.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 07/09/2017] [Accepted: 08/16/2017] [Indexed: 11/23/2022]
Abstract
Although symbolic numerical magnitude processing skills are key for learning arithmetic, their developmental trajectories remain unknown. Therefore, we delineated during the first 3years of primary education (5-8years of age) groups with distinguishable developmental trajectories of symbolic numerical magnitude processing skills using a model-based clustering approach. Three clusters were identified and were labeled as inaccurate, accurate but slow, and accurate and fast. The clusters did not differ in age, sex, socioeconomic status, or IQ. We also tested whether these clusters differed in domain-specific (nonsymbolic magnitude processing and digit identification) and domain-general (visuospatial short-term memory, verbal working memory, and processing speed) cognitive competencies that might contribute to children's ability to (efficiently) process the numerical meaning of Arabic numerical symbols. We observed minor differences between clusters in these cognitive competencies except for verbal working memory for which no differences were observed. Follow-up analyses further revealed that the above-mentioned cognitive competencies did not merely account for the cluster differences in children's development of symbolic numerical magnitude processing skills, suggesting that other factors account for these individual differences. On the other hand, the three trajectories of symbolic numerical magnitude processing revealed remarkable and stable differences in children's arithmetic fact retrieval, which stresses the importance of symbolic numerical magnitude processing for learning arithmetic.
Collapse
|
15
|
Szkudlarek E, Brannon EM. Does the approximate number system serve as a foundation for symbolic mathematics? LANGUAGE LEARNING AND DEVELOPMENT : THE OFFICIAL JOURNAL OF THE SOCIETY FOR LANGUAGE DEVELOPMENT 2017; 13:171-190. [PMID: 28344520 PMCID: PMC5362122 DOI: 10.1080/15475441.2016.1263573] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
16
|
Merkley R, Matejko AA, Ansari D. Strong causal claims require strong evidence: A commentary on Wang and colleagues. J Exp Child Psychol 2017; 153:163-167. [DOI: 10.1016/j.jecp.2016.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 10/20/2022]
|
17
|
Honoré N, Noël MP. Improving Preschoolers' Arithmetic through Number Magnitude Training: The Impact of Non-Symbolic and Symbolic Training. PLoS One 2016; 11:e0166685. [PMID: 27875540 PMCID: PMC5119778 DOI: 10.1371/journal.pone.0166685] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/02/2016] [Indexed: 01/29/2023] Open
Abstract
The numerical cognition literature offers two views to explain numerical and arithmetical development. The unique-representation view considers the approximate number system (ANS) to represent the magnitude of both symbolic and non-symbolic numbers and to be the basis of numerical learning. In contrast, the dual-representation view suggests that symbolic and non-symbolic skills rely on different magnitude representations and that it is the ability to build an exact representation of symbolic numbers that underlies math learning. Support for these hypotheses has come mainly from correlative studies with inconsistent results. In this study, we developed two training programs aiming at enhancing the magnitude processing of either non-symbolic numbers or symbolic numbers and compared their effects on arithmetic skills. Fifty-six preschoolers were randomly assigned to one of three 10-session-training conditions: (1) non-symbolic training (2) symbolic training and (3) control training working on story understanding. Both numerical training conditions were significantly more efficient than the control condition in improving magnitude processing. Moreover, symbolic training led to a significantly larger improvement in arithmetic than did non-symbolic training and the control condition. These results support the dual-representation view.
Collapse
Affiliation(s)
- Nastasya Honoré
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louyain-la-Neuve, Belgium
- * E-mail:
| | - Marie-Pascale Noël
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louyain-la-Neuve, Belgium
| |
Collapse
|