1
|
Xie Y, Chang H, Zhang Y, Wang C, Zhang Y, Chen L, Geng F, Ku Y, Menon V, Chen F. Long-term abacus training gains in children are predicted by medial temporal lobe anatomy and circuitry. Dev Sci 2024; 27:e13489. [PMID: 38421061 PMCID: PMC11161333 DOI: 10.1111/desc.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Abacus-based mental calculation (AMC) is a widely used educational tool for enhancing math learning, offering an accessible and cost-effective method for classroom implementation. Despite its universal appeal, the neurocognitive mechanisms that drive the efficacy of AMC training remain poorly understood. Notably, although abacus training relies heavily on the rapid recall of number positions and sequences, the role of memory systems in driving long-term AMC learning remains unknown. Here, we sought to address this gap by investigating the role of the medial temporal lobe (MTL) memory system in predicting long-term AMC training gains in second-grade children, who were longitudinally assessed up to fifth grade. Leveraging multimodal neuroimaging data, we tested the hypothesis that MTL systems, known for their involvement in associative memory, are instrumental in facilitating AMC-induced improvements in math skills. We found that gray matter volume in bilateral MTL, along with functional connectivity between the MTL and frontal and ventral temporal-occipital cortices, significantly predicted learning gains. Intriguingly, greater gray matter volume but weaker connectivity of the posterior parietal cortex predicted better learning outcomes, offering a more nuanced view of brain systems at play in AMC training. Our findings not only underscore the critical role of the MTL memory system in AMC training but also illuminate the neurobiological factors contributing to individual differences in cognitive skill acquisition. A video abstract of this article can be viewed at https://youtu.be/StVooNRc7T8. RESEARCH HIGHLIGHTS: We investigated the role of medial temporal lobe (MTL) memory system in driving children's math learning following abacus-based mental calculation (AMC) training. AMC training improved math skills in elementary school children across their second and fifth grade. MTL structural integrity and functional connectivity with prefrontal and ventral temporal-occipital cortices predicted long-term AMC training-related gains.
Collapse
Affiliation(s)
- Ye Xie
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Hyesang Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Yi Zhang
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Chunjie Wang
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Lang Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Department of Psychology, Santa Clara University, Santa Clara, CA 95053, United States
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, 310058, PR China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, PR China
| | - Yixuan Ku
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, PR China
- Peng Cheng Laboratory, Shenzhen, 518040, PR China
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, United States
| | - Feiyan Chen
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
2
|
Nelli S, Braun L, Dumbalska T, Saxe A, Summerfield C. Neural knowledge assembly in humans and neural networks. Neuron 2023; 111:1504-1516.e9. [PMID: 36898375 PMCID: PMC10618408 DOI: 10.1016/j.neuron.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/21/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
Human understanding of the world can change rapidly when new information comes to light, such as when a plot twist occurs in a work of fiction. This flexible "knowledge assembly" requires few-shot reorganization of neural codes for relations among objects and events. However, existing computational theories are largely silent about how this could occur. Here, participants learned a transitive ordering among novel objects within two distinct contexts before exposure to new knowledge that revealed how they were linked. Blood-oxygen-level-dependent (BOLD) signals in dorsal frontoparietal cortical areas revealed that objects were rapidly and dramatically rearranged on the neural manifold after minimal exposure to linking information. We then adapt online stochastic gradient descent to permit similar rapid knowledge assembly in a neural network model.
Collapse
Affiliation(s)
- Stephanie Nelli
- Department of Cognitive Science, Occidental College, Los Angeles, CA 90041, USA; Department of Experimental Psychology, University of Oxford, Oxford OX2 6GC, UK.
| | - Lukas Braun
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GC, UK
| | | | - Andrew Saxe
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GC, UK; Gatsby Unit & Sainsbury Wellcome Centre, University College London, London W1T 4JG, UK; CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON M5G 1M1, Canada
| | | |
Collapse
|
3
|
Fan CL, Sokolowski HM, Rosenbaum RS, Levine B. What about "space" is important for episodic memory? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1645. [PMID: 36772875 DOI: 10.1002/wcs.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Early cognitive neuroscientific research revealed that the hippocampus is crucial for spatial navigation in rodents, and for autobiographical episodic memory in humans. Researchers quickly linked these streams to propose that the human hippocampus supports memory through its role in representing space, and research on the link between spatial cognition and episodic memory in humans has proliferated over the past several decades. Different researchers apply the term "spatial" in a variety of contexts, however, and it remains unclear what aspect of space may be critical to memory. Similarly, "episodic" has been defined and tested in different ways. Naturalistic assessment of spatial memory and episodic memory (i.e., episodic autobiographical memory) is required to unify the scale and biological relevance in comparisons of spatial and mnemonic processing. Limitations regarding the translation of rodent to human research, human ontogeny, and inter-individual variability require greater consideration in the interpretation of this literature. In this review, we outline the aspects of space that are (and are not) commonly linked to episodic memory, and then we discuss these dimensions through the lens of individual differences in naturalistic autobiographical memory. Future studies should carefully consider which aspect(s) of space are being linked to memory within the context of naturalistic human cognition. This article is categorized under: Psychology > Memory.
Collapse
Affiliation(s)
- Carina L Fan
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | | | - R Shayna Rosenbaum
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Psychology, York University, Toronto, Ontario, Canada
| | - Brian Levine
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Iachini T, Ruotolo F, Rapuano M, Sbordone FL, Ruggiero G. The Role of Temporal Order in Egocentric and Allocentric Spatial Representations. J Clin Med 2023; 12:jcm12031132. [PMID: 36769780 PMCID: PMC9917670 DOI: 10.3390/jcm12031132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Several studies have shown that spatial information is encoded using two types of reference systems: egocentric (body-based) and/or allocentric (environment-based). However, most studies have been conducted in static situations, neglecting the fact that when we explore the environment, the objects closest to us are also those we encounter first, while those we encounter later are usually those closest to other environmental objects/elements. In this study, participants were shown with two stimuli on a computer screen, each depicting a different geometric object, placed at different distances from them and an external reference (i.e., a bar). The crucial manipulation was that the stimuli were shown sequentially. After participants had memorized the position of both stimuli, they had to indicate which object appeared closest to them (egocentric judgment) or which object appeared closest to the bar (allocentric judgment). The results showed that egocentric judgements were facilitated when the object closest to them was presented first, whereas allocentric judgements were facilitated when the object closest to the bar was presented second. These results show that temporal order has a different effect on egocentric and allocentric frames of reference, presumably rooted in the embodied way in which individuals dynamically explore the environment.
Collapse
|
5
|
Kanishka, Jha SK. Compensatory cognition in neurological diseases and aging: A review of animal and human studies. AGING BRAIN 2023; 3:100061. [PMID: 36911258 PMCID: PMC9997140 DOI: 10.1016/j.nbas.2022.100061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022] Open
Abstract
Specialized individual circuits in the brain are recruited for specific functions. Interestingly, multiple neural circuitries continuously compete with each other to acquire the specialized function. However, the dominant among them compete and become the central neural network for that particular function. For example, the hippocampal principal neural circuitries are the dominant networks among many which are involved in learning processes. But, in the event of damage to the principal circuitry, many times, less dominant networks compensate for the primary network. This review highlights the psychopathologies of functional loss and the aspects of functional recuperation in the absence of the hippocampus.
Collapse
Affiliation(s)
- Kanishka
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
6
|
Stress disrupts insight-driven mnemonic reconfiguration in the medial temporal lobe. Neuroimage 2023; 265:119804. [PMID: 36503160 PMCID: PMC9878442 DOI: 10.1016/j.neuroimage.2022.119804] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Memories are not stored in isolation. Insight into the relationship of initially unrelated events may trigger a flexible reconfiguration of the mnemonic representation of these events. Such representational changes allow the integration of events into coherent episodes and help to build up-to-date-models of the world around us. This process is, however, frequently impaired in stress-related mental disorders resulting in symptoms such as fragmented memories in PTSD. Here, we combined a real life-like narrative-insight task, in which participants learned how initially separate events are linked, with fMRI-based representational similarity analysis to test if and how acute stress interferes with the insight-driven reconfiguration of memories. Our results showed that stress reduced the activity of medial temporal and prefrontal areas when participants gained insight into the link between events. Moreover, stress abolished the insight-related increase in representational dissimilarity for linked events in the anterior part of the hippocampus as well as its association with measures of subsequent memory that we observed in non-stressed controls. However, memory performance, as assessed in a forced-choice recognition test, was even enhanced in the stress group. Our findings suggest that acute stress impedes the neural integration of events into coherent episodes but promotes long-term memory for these integrated narratives and may thus have implications for understanding memory distortions in stress-related mental disorders.
Collapse
|
7
|
Andonovski N. Episodic representation: A mental models account. Front Psychol 2022; 13:899371. [PMID: 35936308 PMCID: PMC9355728 DOI: 10.3389/fpsyg.2022.899371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
This paper offers a modeling account of episodic representation. I argue that the episodic system constructs mental models: representations that preserve the spatiotemporal structure of represented domains. In prototypical cases, these domains are events: occurrences taken by subjects to have characteristic structures, dynamics and relatively determinate beginnings and ends. Due to their simplicity and manipulability, mental event models can be used in a variety of cognitive contexts: in remembering the personal past, but also in future-oriented and counterfactual imagination. As structural representations, they allow surrogative reasoning, supporting inferences about their constituents which can be used in reasoning about the represented events.
Collapse
|
8
|
The hippocampal formation and action at a distance. Proc Natl Acad Sci U S A 2021; 118:2119670118. [PMID: 34916299 DOI: 10.1073/pnas.2119670118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
The question of why our conceptions of space and time are intertwined with memory in the hippocampal formation is at the forefront of much current theorizing about this brain system. In this article I argue that animals bridge spatial and temporal gaps through the creation of internal models that allow them to act on the basis of things that exist in a distant place and/or existed at a different time. The hippocampal formation plays a critical role in these processes by stitching together spatiotemporally disparate entities and events. It does this by 1) constructing cognitive maps that represent extended spatial contexts, incorporating and linking aspects of an environment that may never have been experienced together; 2) creating neural trajectories that link the parts of an event, whether they occur in close temporal proximity or not, enabling the construction of event representations even when elements of that event were experienced at quite different times; and 3) using these maps and trajectories to simulate possible futures. As a function of these hippocampally driven processes, our subjective sense of both space and time are interwoven constructions of the mind, much as the philosopher Immanuel Kant postulated.
Collapse
|
9
|
Marković D, Goschke T, Kiebel SJ. Meta-control of the exploration-exploitation dilemma emerges from probabilistic inference over a hierarchy of time scales. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:509-533. [PMID: 33372237 PMCID: PMC8208938 DOI: 10.3758/s13415-020-00837-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
Cognitive control is typically understood as a set of mechanisms that enable humans to reach goals that require integrating the consequences of actions over longer time scales. Importantly, using routine behaviour or making choices beneficial only at short time scales would prevent one from attaining these goals. During the past two decades, researchers have proposed various computational cognitive models that successfully account for behaviour related to cognitive control in a wide range of laboratory tasks. As humans operate in a dynamic and uncertain environment, making elaborate plans and integrating experience over multiple time scales is computationally expensive. Importantly, it remains poorly understood how uncertain consequences at different time scales are integrated into adaptive decisions. Here, we pursue the idea that cognitive control can be cast as active inference over a hierarchy of time scales, where inference, i.e., planning, at higher levels of the hierarchy controls inference at lower levels. We introduce the novel concept of meta-control states, which link higher-level beliefs with lower-level policy inference. Specifically, we conceptualize cognitive control as inference over these meta-control states, where solutions to cognitive control dilemmas emerge through surprisal minimisation at different hierarchy levels. We illustrate this concept using the exploration-exploitation dilemma based on a variant of a restless multi-armed bandit task. We demonstrate that beliefs about contexts and meta-control states at a higher level dynamically modulate the balance of exploration and exploitation at the lower level of a single action. Finally, we discuss the generalisation of this meta-control concept to other control dilemmas.
Collapse
Affiliation(s)
- Dimitrije Marković
- Chair of Neuroimaging, Faculty of Psychology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Thomas Goschke
- Chair of General Psychology, Faculty of Psychology, Technische Universität Dresden, 01062, Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01062, Dresden, Germany
| | - Stefan J Kiebel
- Chair of Neuroimaging, Faculty of Psychology, Technische Universität Dresden, 01062, Dresden, Germany.
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
10
|
Supekar K, Chang H, Mistry PK, Iuculano T, Menon V. Neurocognitive modeling of latent memory processes reveals reorganization of hippocampal-cortical circuits underlying learning and efficient strategies. Commun Biol 2021; 4:405. [PMID: 33767350 PMCID: PMC7994581 DOI: 10.1038/s42003-021-01872-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/10/2021] [Indexed: 11/08/2022] Open
Abstract
Efficient memory-based problem-solving strategies are a cardinal feature of expertise across a wide range of cognitive domains in childhood. However, little is known about the neurocognitive mechanisms that underlie the acquisition of efficient memory-based problem-solving strategies. Here we develop, to the best of our knowledge, a novel neurocognitive process model of latent memory processes to investigate how cognitive training designed to improve children's problem-solving skills alters brain network organization and leads to increased use and efficiency of memory retrieval-based strategies. We found that training increased both the use and efficiency of memory retrieval. Functional brain network analysis revealed training-induced changes in modular network organization, characterized by increase in network modules and reorganization of hippocampal-cortical circuits. Critically, training-related changes in modular network organization predicted performance gains, with emergent hippocampal, rather than parietal cortex, circuitry driving gains in efficiency of memory retrieval. Our findings elucidate a neurocognitive process model of brain network mechanisms that drive learning and gains in children's efficient problem-solving strategies.
Collapse
Affiliation(s)
- Kaustubh Supekar
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | - Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Percy K Mistry
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Teresa Iuculano
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
- Developmental Psychology and Child Education Laboratory, University Paris Descartes, Paris, France
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Stanford Neuroscience Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Should context hold a special place in hippocampal memory? PSYCHOLOGY OF LEARNING AND MOTIVATION 2021. [DOI: 10.1016/bs.plm.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Integration and differentiation of hippocampal memory traces. Neurosci Biobehav Rev 2020; 118:196-208. [DOI: 10.1016/j.neubiorev.2020.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
|
13
|
On the relationship between trait autobiographical episodic memory and spatial navigation. Mem Cognit 2020; 49:265-275. [PMID: 33051816 DOI: 10.3758/s13421-020-01093-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2020] [Indexed: 01/08/2023]
Abstract
Influential research has focused on identifying the common neural and behavioural substrates underlying episodic memory (the re-experiencing of specific details from past experiences) and spatial cognition, with some theories proposing that these are supported by the same mechanisms. However, the similarities and differences between these two forms of memory in humans require further specification. We used an individual-differences approach based on self-reported survey data collected in a large online study (n = 7,487), focusing on autobiographical episodic memory and spatial navigation and their relationship to object and spatial imagery abilities. Multivariate analyses replicated prior findings that autobiographical episodic memory abilities dissociated from spatial navigational abilities. Considering imagery, episodic autobiographical memory overlapped with imagery of objects, whereas spatial navigation overlapped with a tendency to focus on spatial schematics and manipulation. These results suggest that trait episodic autobiographical memory and spatial navigation correspond to distinct mental processes.
Collapse
|
14
|
Lalla A, Robin J, Moscovitch M. The contributions of spatial context and imagery to the recollection of single words. Hippocampus 2019; 30:865-878. [PMID: 31782859 DOI: 10.1002/hipo.23181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/15/2019] [Accepted: 11/01/2019] [Indexed: 01/17/2023]
Abstract
A number of theories of hippocampal function have placed spatial context at the center of richly recollected memories, but the subjective and objective ways that spatial context underlies the recollection of single words has been largely overlooked and underexplained. In this study, we conducted three experiments to investigate the involvement of spatial context in the recollection of single words. In all three experiments, participants encoded single words with varying features such as location and color. The subjective experience of recollection was measured using remember/know judgments and participant self-report of the types of information they recollected about the words. Objectively, recollection was measured using source memory judgments for both spatial and non-spatial features associated with the words. Our results provide evidence that spatial context frequently accompanies the recollection of single, isolated words, reviving discussions on the role of the hippocampus in spatial and detailed recollection.
Collapse
Affiliation(s)
- Azara Lalla
- Psychology Department, University of Toronto, Toronto, Ontario, Canada.,Psychology Department, McGill University, Montreal, Quebec, Canada
| | - Jessica Robin
- Psychology Department, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Morris Moscovitch
- Psychology Department, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Pezzulo G, Donnarumma F, Maisto D, Stoianov I. Planning at decision time and in the background during spatial navigation. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Sheldon S, Gurguryan L, Madore KP, Schacter DL. Constructing autobiographical events within a spatial or temporal context: a comparison of two targeted episodic induction techniques. Memory 2019; 27:881-893. [PMID: 30849029 PMCID: PMC6716376 DOI: 10.1080/09658211.2019.1586952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Recalling and imagining autobiographical experiences involves constructing event representations within spatiotemporal contexts. We tested whether generating autobiographical events within a primarily spatial (where the event occurred) or temporal (the sequence of actions that occurred) context affected how the associated mental representation was constructed. We leveraged the well-validated episodic specificity induction (ESI) technique, known to influence the use of episodic processes on subsequent tasks, to develop variants that selectively enhance spatial or temporal processing. We tested the effects of these inductions on the details used to describe past and future autobiographical events. We first replicated the standard ESI effect, showing that ESI enhances generating episodic details, particularly those that are perception-based, when describing autobiographical events (Experiment 1). We then directly compared the effects of the spatial and temporal inductions (Experiment 2 and 3). When describing autobiographical events, spatial induction enhanced generating episodic details, specifically perception-based details, compared to the control or temporal inductions. A greater proportion of the episodic details generated after the temporal induction were gist-based than after the spatial induction, but this proportion did not differ from a control induction. Thus, using a spatial or temporal framework for autobiographical event generation alters the associated details that are accessed.
Collapse
|
17
|
Abstract
Cognition is heavily grounded in space. As animals that move in space, we travel both physically and mentally in space and time, reliving past events, imagining future ones, and even constructing imaginary scenarios that play out in stories. Mental exploration of space is extraordinarily flexible, allowing us to zoom, adopt different vantage points, mentally rotate, and attach objects and sense impressions to create events, whether remembered, planned, or simply invented. The properties of spatiotemporal cognition depend on a hippocampal–entorhinal circuit of place cells, grid cells and border cells, with combinations of grid-cell modules generating a vast number of potential spatial remappings. The generativity of language, often considered one of its defining properties, may therefore derive not from the nature of language itself, but rather from the generativity of spatiotemporal scenarios, with language having evolved as a means of sharing them. Much our understanding of the hippocampal–entorhinal circuit is derived from neurophysiological recording in the rat brain, implying that the spatiotemporal cognition underpinning language has a long evolutionary history.
Collapse
|
18
|
Afraimovich VS, Zaks MA, Rabinovich MI. Mind-to-mind heteroclinic coordination: Model of sequential episodic memory initiation. CHAOS (WOODBURY, N.Y.) 2018; 28:053107. [PMID: 29857651 DOI: 10.1063/1.5023692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Retrieval of episodic memory is a dynamical process in the large scale brain networks. In social groups, the neural patterns, associated with specific events directly experienced by single members, are encoded, recalled, and shared by all participants. Here, we construct and study the dynamical model for the formation and maintaining of episodic memory in small ensembles of interacting minds. We prove that the unconventional dynamical attractor of this process-the nonsmooth heteroclinic torus-is structurally stable within the Lotka-Volterra-like sets of equations. Dynamics on this torus combines the absence of chaos with asymptotic instability of every separate trajectory; its adequate quantitative characteristics are length-related Lyapunov exponents. Variation of the coupling strength between the participants results in different types of sequential switching between metastable states; we interpret them as stages in formation and modification of the episodic memory.
Collapse
Affiliation(s)
- V S Afraimovich
- Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potosí, 78220 San Luis Potosí, Mexico
| | - M A Zaks
- Institute of Physics, Humboldt University of Berlin, 12489 Berlin, Germany
| | - M I Rabinovich
- BioCircuits Institute, University of California, San Diego, La Jolla, California 92093-0328, USA
| |
Collapse
|
19
|
Johnson EL, Adams JN, Solbakk AK, Endestad T, Larsson PG, Ivanovic J, Meling TR, Lin JJ, Knight RT. Dynamic frontotemporal systems process space and time in working memory. PLoS Biol 2018; 16:e2004274. [PMID: 29601574 PMCID: PMC5895055 DOI: 10.1371/journal.pbio.2004274] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 04/11/2018] [Accepted: 02/27/2018] [Indexed: 11/18/2022] Open
Abstract
How do we rapidly process incoming streams of information in working memory, a cognitive mechanism central to human behavior? Dominant views of working memory focus on the prefrontal cortex (PFC), but human hippocampal recordings provide a neurophysiological signature distinct from the PFC. Are these regions independent, or do they interact in the service of working memory? We addressed this core issue in behavior by recording directly from frontotemporal sites in humans performing a visuospatial working memory task that operationalizes the types of identity and spatiotemporal information we encounter every day. Theta band oscillations drove bidirectional interactions between the PFC and medial temporal lobe (MTL; including the hippocampus). MTL theta oscillations directed the PFC preferentially during the processing of spatiotemporal information, while PFC theta oscillations directed the MTL for all types of information being processed in working memory. These findings reveal an MTL theta mechanism for processing space and time and a domain-general PFC theta mechanism, providing evidence that rapid, dynamic MTL–PFC interactions underlie working memory for everyday experiences. How do we rapidly process incoming streams of information in working memory? Dominant views of working memory focus on the prefrontal cortex (PFC), but other data suggest a role for the medial temporal lobe (MTL). To delineate whether (and how) these brain regions interact during working memory, we recorded directly from PFC and MTL sites in humans performing a task that tests working memory for the types of “what,” “where,” and “when” information encountered every day. MTL oscillations in the theta band (3–7 Hz) directed PFC activity during the processing of spatiotemporal information, while PFC theta oscillations directed MTL activity for all types of information. This functional dissociation provides the first demonstration of bidirectional communication between the PFC and MTL during working memory. Our findings reveal that rapid, dynamic interactions between these two regions underlie working memory for everyday experiences, challenging dominant views on the central role of the PFC.
Collapse
Affiliation(s)
- Elizabeth L. Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Jenna N. Adams
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Anne-Kristin Solbakk
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Tor Endestad
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Pål G. Larsson
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jugoslav Ivanovic
- Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Torstein R. Meling
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jack J. Lin
- Comprehensive Epilepsy Program, Department of Neurology, University of California, Irvine, Irvine, California, United States of America
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
20
|
Addis DR. Are episodic memories special? On the sameness of remembered and imagined event simulation. J R Soc N Z 2018. [DOI: 10.1080/03036758.2018.1439071] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Donna Rose Addis
- The School of Psychology & Centre for Brain Research, The University of Auckland Brain Research New Zealand, Auckland, New Zealand
| |
Collapse
|
21
|
Robin J. Spatial scaffold effects in event memory and imagination. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2018; 9:e1462. [PMID: 29485243 DOI: 10.1002/wcs.1462] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
Spatial context is a defining feature of episodic memories, which are often characterized as being events occurring in specific spatiotemporal contexts. In this review, I summarize research suggesting a common neural basis for episodic and spatial memory and relate this to the role of spatial context in episodic memory. I review evidence that spatial context serves as a scaffold for episodic memory and imagination, in terms of both behavioral and neural effects demonstrating a dependence of episodic memory on spatial representations. These effects are mediated by a posterior-medial set of neocortical regions, including the parahippocampal cortex, retrosplenial cortex, posterior cingulate cortex, precuneus, and angular gyrus, which interact with the hippocampus to represent spatial context in remembered and imagined events. I highlight questions and areas that require further research, including differentiation of hippocampal function along its long axis and subfields, and how these areas interact with the posterior-medial network. This article is categorized under: Psychology > Memory Neuroscience > Cognition.
Collapse
Affiliation(s)
- Jessica Robin
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
| |
Collapse
|
22
|
Goh JOS, Hung HY, Su YS. A conceptual consideration of the free energy principle in cognitive maps: How cognitive maps help reduce surprise. PSYCHOLOGY OF LEARNING AND MOTIVATION 2018. [DOI: 10.1016/bs.plm.2018.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|