1
|
Scartozzi AC, Wang Y, Bush CT, Kasdan AV, Fram NR, Woynaroski T, Lense MD, Gordon RL, Ladányi E. The Neural Correlates of Spontaneous Beat Processing and Its Relationship with Music-Related Characteristics of the Individual. eNeuro 2024; 11:ENEURO.0214-24.2024. [PMID: 39401929 PMCID: PMC11493493 DOI: 10.1523/eneuro.0214-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
In the presence of temporally organized stimuli, there is a tendency to entrain to the beat, even at the neurological level. Previous research has shown that when adults listen to rhythmic stimuli and are asked to imagine the beat, their neural responses are the same as when the beat is physically accented. The current study explores the neural processing of simple beat structures where the beat is physically accented or inferred from a previously presented physically accented beat structure in a passive listening context. We further explore the associations of these neural correlates with behavioral and self-reported measures of musicality. Fifty-seven participants completed a passive listening EEG paradigm, a behavioral rhythm discrimination task, and a self-reported musicality questionnaire. Our findings suggest that when the beat is physically accented, individuals demonstrate distinct neural responses to the beat in the beta (13-23 Hz) and gamma (24-50 Hz) frequency bands. We further find that the neural marker in the beta band is associated with individuals' self-reported musical perceptual abilities. Overall, this study provides insights into the neural correlates of spontaneous beat processing and its connections with musicality.
Collapse
Affiliation(s)
- Alyssa C Scartozzi
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37203
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37203
| | - Youjia Wang
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37203
- College of Medicine, University of Illinois Chicago, Chicago, Illinois 60612
| | - Catherine T Bush
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37203
| | - Anna V Kasdan
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37203
| | - Noah R Fram
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37203
| | - Tiffany Woynaroski
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37203
| | - Miriam D Lense
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37203
| | - Reyna L Gordon
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37203
| | - Enikő Ladányi
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37203
- Department of Linguistics, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
2
|
Watson SK, Mine JG, O’Neill LG, Mueller JL, Russell AF, Townsend SW. Cognitive constraints on vocal combinatoriality in a social bird. iScience 2023; 26:106977. [PMID: 37332672 PMCID: PMC10275715 DOI: 10.1016/j.isci.2023.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2022] [Revised: 11/29/2022] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
A critical component of language is the ability to recombine sounds into larger structures. Although animals also reuse sound elements across call combinations to generate meaning, examples are generally limited to pairs of distinct elements, even when repertoires contain sufficient sounds to generate hundreds of combinations. This combinatoriality might be constrained by the perceptual-cognitive demands of disambiguating between complex sound sequences that share elements. We test this hypothesis by probing the capacity of chestnut-crowned babblers to process combinations of two versus three distinct acoustic elements. We found babblers responded quicker and for longer toward playbacks of recombined versus familiar bi-element sequences, but no evidence of differential responses toward playbacks of recombined versus familiar tri-element sequences, suggesting a cognitively prohibitive jump in processing demands. We propose that overcoming constraints in the ability to process increasingly complex combinatorial signals was necessary for the productive combinatoriality that is characteristic of language to emerge.
Collapse
Affiliation(s)
- Stuart K. Watson
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, Zurich, Switzerland
| | - Joseph G. Mine
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, Zurich, Switzerland
- Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Louis G. O’Neill
- Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall TR10 9FE, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109 Australia
- Fowlers Gap Arid Zone Research Station, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Andrew F. Russell
- Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall TR10 9FE, UK
- Institute of Linguistics, University of Vienna, Vienna, Austria
- Fowlers Gap Arid Zone Research Station, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Simon W. Townsend
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, Zurich, Switzerland
- Department of Psychology, University of Warwick, Coventry, UK
| |
Collapse
|
3
|
Liu Y, Gao C, Wang P, Friederici AD, Zaccarella E, Chen L. Exploring the neurobiology of Merge at a basic level: insights from a novel artificial grammar paradigm. Front Psychol 2023; 14:1151518. [PMID: 37287773 PMCID: PMC10242141 DOI: 10.3389/fpsyg.2023.1151518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Human language allows us to generate an infinite number of linguistic expressions. It's proposed that this competence is based on a binary syntactic operation, Merge, combining two elements to form a new constituent. An increasing number of recent studies have shifted from complex syntactic structures to two-word constructions to investigate the neural representation of this operation at the most basic level. Methods This fMRI study aimed to develop a highly flexible artificial grammar paradigm for testing the neurobiology of human syntax at a basic level. During scanning, participants had to apply abstract syntactic rules to assess whether a given two-word artificial phrase could be further merged with a third word. To control for lower-level template-matching and working memory strategies, an additional non-mergeable word-list task was set up. Results Behavioral data indicated that participants complied with the experiment. Whole brain and region of interest (ROI) analyses were performed under the contrast of "structure > word-list." Whole brain analysis confirmed significant involvement of the posterior inferior frontal gyrus [pIFG, corresponding to Brodmann area (BA) 44]. Furthermore, both the signal intensity in Broca's area and the behavioral performance showed significant correlations with natural language performance in the same participants. ROI analysis within the language atlas and anatomically defined Broca's area revealed that only the pIFG was reliably activated. Discussion Taken together, these results support the notion that Broca's area, particularly BA 44, works as a combinatorial engine where words are merged together according to syntactic information. Furthermore, this study suggests that the present artificial grammar may serve as promising material for investigating the neurobiological basis of syntax, fostering future cross-species studies.
Collapse
Affiliation(s)
- Yang Liu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Chenyang Gao
- School of Global Education and Development, University of Chinese Academy of Social Sciences, Beijing, China
| | - Peng Wang
- Method and Development Group (MEG and Cortical Networks), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychology, University of Greifswald, Greifswald, Germany
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Educational System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Weyers I, Mueller J. A Special Role of Syllables, But Not Vowels or Consonants, for Nonadjacent Dependency Learning. J Cogn Neurosci 2022; 34:1467-1487. [PMID: 35604359 DOI: 10.1162/jocn_a_01874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022]
Abstract
Successful language processing entails tracking (morpho)syntactic relationships between distant units of speech, so-called nonadjacent dependencies (NADs). Many cues to such dependency relations have been identified, yet the linguistic elements encoding them have received little attention. In the present investigation, we tested whether and how these elements, here syllables, consonants, and vowels, affect behavioral learning success as well as learning-related changes in neural activity in relation to item-specific NAD learning. In a set of two EEG studies with adults, we compared learning under conditions where either all segment types (Experiment 1) or only one segment type (Experiment 2) was informative. The collected behavioral and ERP data indicate that, when all three segment types are available, participants mainly rely on the syllable for NAD learning. With only one segment type available for learning, adults also perform most successfully with syllable-based dependencies. Although we find no evidence for successful learning across vowels in Experiment 2, dependencies between consonants seem to be identified at least passively at the phonetic-feature level. Together, these results suggest that successful item-specific NAD learning may depend on the availability of syllabic information. Furthermore, they highlight consonants' distinctive power to support lexical processes. Although syllables show a clear facilitatory function for NAD learning, the underlying mechanisms of this advantage require further research.
Collapse
|
5
|
Marimon M, Hofmann A, Veríssimo J, Männel C, Friederici AD, Höhle B, Wartenburger I. Children's Learning of Non-adjacent Dependencies Using a Web-Based Computer Game Setting. Front Psychol 2021; 12:734877. [PMID: 34803816 PMCID: PMC8595475 DOI: 10.3389/fpsyg.2021.734877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Infants show impressive speech decoding abilities and detect acoustic regularities that highlight the syntactic relations of a language, often coded via non-adjacent dependencies (NADs, e.g., is singing). It has been claimed that infants learn NADs implicitly and associatively through passive listening and that there is a shift from effortless associative learning to a more controlled learning of NADs after the age of 2 years, potentially driven by the maturation of the prefrontal cortex. To investigate if older children are able to learn NADs, Lammertink et al. (2019) recently developed a word-monitoring serial reaction time (SRT) task and could show that 6-11-year-old children learned the NADs, as their reaction times (RTs) increased then they were presented with violated NADs. In the current study we adapted their experimental paradigm and tested NAD learning in a younger group of 52 children between the age of 4-8 years in a remote, web-based, game-like setting (whack-a-mole). Children were exposed to Italian phrases containing NADs and had to monitor the occurrence of a target syllable, which was the second element of the NAD. After exposure, children did a "Stem Completion" task in which they were presented with the first element of the NAD and had to choose the second element of the NAD to complete the stimuli. Our findings show that, despite large variability in the data, children aged 4-8 years are sensitive to NADs; they show the expected differences in r RTs in the SRT task and could transfer the NAD-rule in the Stem Completion task. We discuss these results with respect to the development of NAD dependency learning in childhood and the practical impact and limitations of collecting these data in a web-based setting.
Collapse
Affiliation(s)
- Mireia Marimon
- Cognitive Sciences, Department of Linguistics, University of Potsdam, Potsdam, Germany
| | - Andrea Hofmann
- Cognitive Sciences, Department of Linguistics, University of Potsdam, Potsdam, Germany
- Early Childhood Education Research, University of Applied Sciences, Potsdam, Germany
| | - João Veríssimo
- Cognitive Sciences, Department of Linguistics, University of Potsdam, Potsdam, Germany
- School of Arts and Humanities, University of Lisbon, Lisbon, Portugal
| | - Claudia Männel
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Audiology and Phoniatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Barbara Höhle
- Cognitive Sciences, Department of Linguistics, University of Potsdam, Potsdam, Germany
| | - Isabell Wartenburger
- Cognitive Sciences, Department of Linguistics, University of Potsdam, Potsdam, Germany
| |
Collapse
|
6
|
Perceiving structure in unstructured stimuli: Implicitly acquired prior knowledge impacts the processing of unpredictable transitional probabilities. Cognition 2020; 205:104413. [DOI: 10.1016/j.cognition.2020.104413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2019] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
|
7
|
Mini Pinyin: A modified miniature language for studying language learning and incremental sentence processing. Behav Res Methods 2020; 53:1218-1239. [PMID: 33021699 DOI: 10.3758/s13428-020-01473-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
Artificial grammar learning (AGL) paradigms are used extensively to characterise (neuro)cognitive bases of language learning. However, despite their effectiveness in characterising the capacity to learn complex structured sequences, AGL paradigms lack ecological validity and typically do not account for cross-linguistic differences in sentence comprehension. Here, we describe a new modified miniature language paradigm - Mini Pinyin - that mimics natural language as it is based on an existing language (Mandarin Chinese) and includes both structure and meaning. Mini Pinyin contains a number of cross-linguistic elements, including varying word orders and classifier-noun rules. To evaluate the effectiveness of Mini Pinyin, 76 (mean age = 24.9; 26 female) monolingual native English speakers completed a learning phase followed by a sentence acceptability judgement task. Generalised mixed effects modelling revealed that participants attained a moderate degree of accuracy on the judgement task, with performance scores ranging from 25% to 100% accuracy depending on the word order of the sentence. Further, sentences compatible with the canonical English word order were learned more efficiently than non-canonical word orders. We controlled for inter-individual differences in statistical learning ability, which accounted for ~20% of the variance in performance on the sentence judgement task. We provide stimuli and statistical analysis scripts as open-source resources and discuss how future research can utilise this paradigm to study the neurobiological basis of language learning. Mini Pinyin affords a convenient tool for improving the future of language learning research by building on the parameters of traditional AGL or existing miniature language paradigms.
Collapse
|
8
|
van der Kant A, Männel C, Paul M, Friederici AD, Höhle B, Wartenburger I. Linguistic and non-linguistic non-adjacent dependency learning in early development. Dev Cogn Neurosci 2020; 45:100819. [PMID: 32828032 PMCID: PMC7451682 DOI: 10.1016/j.dcn.2020.100819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2019] [Revised: 05/27/2020] [Accepted: 06/29/2020] [Indexed: 01/07/2023] Open
Abstract
Non-adjacent dependencies (NADs) are important building blocks for language and extracting them from the input is a fundamental part of language acquisition. Prior event-related potential (ERP) studies revealed changes in the neural signature of NAD learning between infancy and adulthood, suggesting a developmental shift in the learning route for NADs. The present study aimed to specify which brain regions are involved in this developmental shift and whether this shift extends to NAD learning in the non-linguistic domain. In two experiments, 2- and 3-year-old German-learning children were familiarized with either Italian sentences or tone sequences containing NADs and subsequently tested with NAD violations, while functional near-infrared spectroscopy (fNIRS) data were recorded. Results showed increased hemodynamic responses related to the detection of linguistic NAD violations in the left temporal, inferior frontal, and parietal regions in 2-year-old children, but not in 3-year-old children. A different developmental trajectory was found for non-linguistic NADs, where 3-year-old, but not 2-year-old children showed evidence for the detection of non-linguistic NAD violations. These results confirm a developmental shift in the NAD learning route and point to distinct mechanisms underlying NAD learning in the linguistic and the non-linguistic domain.
Collapse
Affiliation(s)
- Anne van der Kant
- Cognitive Sciences, Department Linguistics, University of Potsdam, Germany.
| | - Claudia Männel
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany; Department of Audiology and Phoniatrics, Charité - Universitätsmedizin Berlin, Germany
| | - Mariella Paul
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
| | - Barbara Höhle
- Cognitive Sciences, Department Linguistics, University of Potsdam, Germany
| | - Isabell Wartenburger
- Cognitive Sciences, Department Linguistics, University of Potsdam, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
9
|
Conway CM. How does the brain learn environmental structure? Ten core principles for understanding the neurocognitive mechanisms of statistical learning. Neurosci Biobehav Rev 2020; 112:279-299. [PMID: 32018038 PMCID: PMC7211144 DOI: 10.1016/j.neubiorev.2020.01.032] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 10/25/2022]
Abstract
Despite a growing body of research devoted to the study of how humans encode environmental patterns, there is still no clear consensus about the nature of the neurocognitive mechanisms underpinning statistical learning nor what factors constrain or promote its emergence across individuals, species, and learning situations. Based on a review of research examining the roles of input modality and domain, input structure and complexity, attention, neuroanatomical bases, ontogeny, and phylogeny, ten core principles are proposed. Specifically, there exist two sets of neurocognitive mechanisms underlying statistical learning. First, a "suite" of associative-based, automatic, modality-specific learning mechanisms are mediated by the general principle of cortical plasticity, which results in improved processing and perceptual facilitation of encountered stimuli. Second, an attention-dependent system, mediated by the prefrontal cortex and related attentional and working memory networks, can modulate or gate learning and is necessary in order to learn nonadjacent dependencies and to integrate global patterns across time. This theoretical framework helps clarify conflicting research findings and provides the basis for future empirical and theoretical endeavors.
Collapse
Affiliation(s)
- Christopher M Conway
- Center for Childhood Deafness, Language, and Learning, Boys Town National Research Hospital, Omaha, NE, United States.
| |
Collapse
|
10
|
Kóbor A, Horváth K, Kardos Z, Takács Á, Janacsek K, Csépe V, Nemeth D. Tracking the implicit acquisition of nonadjacent transitional probabilities by ERPs. Mem Cognit 2019; 47:1546-1566. [PMID: 31236822 PMCID: PMC6823303 DOI: 10.3758/s13421-019-00949-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
The implicit acquisition of complex probabilistic regularities has been found to be crucial in numerous automatized cognitive abilities, including language processing and associative learning. However, it has not been completely elucidated how the implicit extraction of second-order nonadjacent transitional probabilities is reflected by neurophysiological processes. Therefore, this study investigated the sensitivity of event-related brain potentials (ERPs) to these probabilistic regularities embedded in a sequence of visual stimuli without providing explicit information on the structure of the stimulus stream. Healthy young adults (N = 32) performed a four-choice RT task that included a sequential regularity between nonadjacent trials yielding a complex transitional probability structure. ERPs were measured relative to both stimulus and response onset. RTs indicated the rapid acquisition of the sequential regularity and the transitional probabilities. The acquisition process was also tracked by the stimulus-locked and response-locked P3 component: The P3 peak was larger for the sequence than for the random stimuli, while the late P3 was larger for less probable than for more probable short-range relations among the random stimuli. According to the RT and P3 effects, sensitivity to the sequential regularity is assumed to be supported by the initial sensitivity to the transitional probabilities. These results suggest that stimulus-response contingencies on the probabilistic regularities of the ongoing stimulus context are implicitly mapped and constantly revised. Overall, this study (1) highlights the role of predictive processes during implicit memory formation, and (2) delineates a potential to gain further insight into the dynamics of implicit acquisition processes.
Collapse
Affiliation(s)
- Andrea Kóbor
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
| | - Kata Horváth
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
| | - Zsófia Kardos
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
- Department of Cognitive Science, Budapest University of Technology and Economics, Egry József utca 1, Budapest, H-1111 Hungary
| | - Ádám Takács
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
| | - Valéria Csépe
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
- Department of Cognitive Science, Budapest University of Technology and Economics, Egry József utca 1, Budapest, H-1111 Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université de Lyon, Centre Hospitalier Le Vinatier–Bâtiment 462–Neurocampus 95 Boulevard Pinel, 69675 Bron, Lyon France
| |
Collapse
|