1
|
Ren M, Li M, Boccaccini AR, Xu Y, Li L, Zheng K. Electrospinning of recombinant human-like collagen-reinforced PCL nanofibrous membranes using benign solvents for periodontal regeneration. Int J Biol Macromol 2025; 284:137954. [PMID: 39579833 DOI: 10.1016/j.ijbiomac.2024.137954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Periodontal tissue defects are a leading cause of tooth loss in adults. Guided tissue regeneration (GTR) has emerged as an effective clinical approach for promoting periodontal regeneration. In this study, we employed a green electrospinning technology to combine recombinant human-like collagen (RHC) with polycaprolactone (PCL) to fabricate RHC/PCL membranes for periodontal regeneration. Our results showed that incorporating RHC into PCL up to 40 wt% did not significantly affect the nanofibrous structure of the PCL membranes. When the RHC concentration exceeded 10 wt%, both the tensile strength and modulus of the PCL membranes increased. Additionally, the presence of RHC improved the hydrophilicity of membranes. Biologically, the addition of RHC, regardless of its concentration, significantly enhanced the adhesion, proliferation, and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). These effects were confirmed through various assays, including the CCK-8 assay, live/dead staining, as well as ALP and ARS staining. Further, real-time quantitative PCR and Western blot analysis revealed upregulation of osteogenesis-related genes and proteins. Transcriptome sequencing analysis suggested that the PI3K-Akt signaling pathway might play a critical role in the enhanced osteogenesis induced by RHC. Our results emphasize the potential of RHC/PCL nanofibrous membranes to advance the field of periodontal tissue repair.
Collapse
Affiliation(s)
- Minyi Ren
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing 210029, China
| | - Meng Li
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing 210029, China
| | - Lu Li
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing 210029, China.
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing 210029, China.
| |
Collapse
|
2
|
Guo Z, Liu X, Xia Y, Wang J, Li J, Wang L, Li Y, Jia S, Sun Y, Feng J, Huang J, Dong Y, Wang L, Li X. Assembly of Recombinant Proteins into β-Sheet Fibrillating Peptide-Driven Supramolecular Hydrogels for Enhanced Diabetic Wound Healing. ACS Biomater Sci Eng 2024. [PMID: 39651554 DOI: 10.1021/acsbiomaterials.4c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Supramolecular hydrogels offer a noncovalent binding platform that preserves the bioactivity of structural molecules while enhancing their stability, particularly in the context of diabetic wound repair. In this study, we developed protein-peptide-based supramolecular hydrogels by assembling β-sheet fibrillizing peptides (designated Q11) with β-tail fused recombinant proteins. The Q11 peptides have the ability to drive the gradated assembly of N- or C-terminal β-sheet structure (β-tail) fused recombinant proteins. We first investigated the assembly properties of Q11 and assessed its stability under varying pH and temperature conditions by combining Q11 with two β-tail fused fluorescent proteins. The results showed that Q11 enhanced the tolerance of the fluorescent proteins to changes in pH and temperature. Building upon these findings, we designed collagen-like proteins and Sonic Hedgehog-fused recombinant proteins (CLP-Shh) that could be assembled with Q11 to form peptide-protein supramolecular hydrogels. These hydrogels demonstrated the ability to improve cell viability and migration and upregulate key markers of cell growth. Further in vivo studies revealed that the Q11-driven supramolecular hydrogel effectively enhances diabetic wound healing and epidermal regeneration by promoting the expression of epidermal-related proteins and immune factors. This study highlights the potential of supramolecular hydrogels for clinical applications and their promise in the development of biofunctional hydrogels for therapeutic use.
Collapse
Affiliation(s)
- Zhao Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Xing Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Yan Xia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Jie Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Jiaqi Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Liping Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Yimiao Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Shuang Jia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Yinan Sun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Jian Feng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Jingxia Huang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Yuxin Dong
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Liyao Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| | - Xinyu Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China
| |
Collapse
|
3
|
Zhao Z, Yuwen W, Duan Z, Zhu C, Fan D. Novel Collagen Analogs with Multicopy Mucin-Type Sequences for Multifunctional Enhancement Properties Using SUMO Fusion Tags. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22173-22185. [PMID: 39318025 DOI: 10.1021/acs.jafc.4c07179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Multifunctional enhanced collagen materials in green biomanufacturing are highly desired yet challenging due to the poor comprehensive performance caused by the adoption of targeting monofunctional peptides. Herein, novel collagen analog design strategy using multicopy tandem of mucin-type sequence (GAPGAPGSQGAPGLQ) derived from human COL1α1 to construct basic building blocks is reported, in which SUMO tag is added to the N-terminal of the protein as a stabilizing core. In particular, novel collagen analogs (named S1506, S1511, S1523, and S1552) with multicopy mucin-type sequences (repeated 6, 11, 23, and 52 times), which were constructed in Escherichia coli, have distinct orientation preferences of functional enhancement (including cell proliferation, differentiation, migration, antioxidant activity, and anti-inflammatory property) compared to COL1α1 in HaCaT and THP-1 cell experiments due to variant three-dimensional structures (the different-length mucin-type polypeptide chains wind around central SUMO tag). Our findings suggest that the innovative protein design and synthesis approaches employed in the construction of these novel S15 proteins have the potential to advance the development of new types of recombinant collagen analogs.
Collapse
Affiliation(s)
- Zilong Zhao
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Weigang Yuwen
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| |
Collapse
|
4
|
Cheng Z, Hong B, Li Y, Wang J. Preparation and Characterization of Hydroxylated Recombinant Collagen by Incorporating Proline and Hydroxyproline in Proline-Deficient Escherichia coli. Bioengineering (Basel) 2024; 11:975. [PMID: 39451351 PMCID: PMC11504287 DOI: 10.3390/bioengineering11100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Collagen possesses distinctive chemical properties and biological functions due to its unique triple helix structure. However, recombinant collagen expressed in Escherichia coli without post-translational modifications such as hydroxylation lacks full function since hydroxylation is considered to be critical to the stability of the collagen triple-helix at body temperature. Here, a proline-deficient E. coli strain was constructed and employed to prepare hydroxylated recombinant collagens by incorporating proline (Pro) and hydroxyproline (Hyp) from the culture medium. By controlling the ratio of Pro to Hyp in the culture medium, collagen with different degrees of hydroxylation (0-88%) can be obtained. When the ratio of Pro and Hyp was adjusted to 12:8 mM, the proline hydroxylation rate of recombinant human collagen (rhCol, 55 kDa) ranged from 40-50%, which was also the degree of natural collagen. After proline hydroxylation, both the thermal stability and cell binding of rhCol were significantly enhanced. Notably, when the hydroxylation rate approached that of native human collagen (40-50%), the improvements were most pronounced. Moreover, the cell binding of rhCol with a hydroxylation rate of 43% increased by 29%, and the melting temperature (Tm) rose by 5 °C compared to the non-hydroxylated rhCol. The system achieved a yield of 1.186 g/L of rhCol by batch-fed in a 7 L fermenter. This innovative technology is expected to drive the development and application of collagen-related biomaterials with significant application value in the fields of tissue engineering, regenerative medicine, and biopharmaceuticals.
Collapse
Affiliation(s)
- Zhimin Cheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.C.); (B.H.); (Y.L.)
| | - Bin Hong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.C.); (B.H.); (Y.L.)
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.C.); (B.H.); (Y.L.)
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.C.); (B.H.); (Y.L.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Qi Z, Bai N, Li Q, Pan S, Gu M. Dietary fishmeal replacement by Clostridium autoethanogenum protein meal influences the nutritional and sensory quality of turbot ( Scophthalmus maximus) via the TOR/AAR/AMPK pathways. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:84-95. [PMID: 39056058 PMCID: PMC11269857 DOI: 10.1016/j.aninu.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/29/2024] [Accepted: 04/29/2024] [Indexed: 07/28/2024]
Abstract
Clostridium autoethanogenum protein (CAP) is a promising protein source for aquaculture; however, how CAP influences fish quality is worth extensive research. We randomly allocated 630 turbot with initial body weights of about 180 g into 6 groups, with fishmeal-based control diet or diet with CAP replacing 15% (CAP15), 30% (CAP30), 45% (CAP45), 60% (CAP60), or 75% (CAP75) of fishmeal protein. After a 70-d feeding trial, the fillet yield (P = 0.015) and content of protein (P = 0.017), collagen (P < 0.001), hydroxyproline (P < 0.001), C20:5n-3 (P = 0.007), and ∑n-3/∑n-6 polyunsaturated fatty acids ratio (P < 0.001) in turbot muscle was found to decrease linearly with increasing CAP. However, turbot fed CAP15 diet maintained these parameters (P > 0.05). By contrast, the muscle hardness increased linearly with increasing CAP (P = 0.004), accompanied by linear reduction of muscle fiber area (P = 0.003) and expression of myogenesis-related genes, including cathepsin D (ctsd P < 0.001) and muscle ring finger protein 1 (murf 1, P < 0.001). Phosphorylation of protein kinase B (Akt, P < 0.001), target of rapamycin (TOR, P = 0.001), eukaryotic initiation factor 4E-binding protein 1 (4E-BP1, P < 0.001), and ribosomal protein S6 (S6, P < 0.001) decreased linearly; however, phosphorylation of AMP-activated protein kinase (AMPK, P < 0.001), eukaryotic initiation factor 2α (eIF2α, P < 0.001), and the abundance of activating transcription factor 4 (ATF4, P < 0.001) increased with increasing CAP, suggesting that the TOR signaling pathway was inhibited, and the amino acid response (AAR) and AMPK pathways were activated. Additionally, expression of genes related to protein degradation, including myogenic factor 5 (myf 5, P < 0.001), myogenic differentiation (myod, P < 0.001), paired box 7 (pax 7, P < 0.001), and ctsd (P < 0.001), decreased linearly with increasing CAP. In conclusion, CAP could be used to replace up to 15% of fishmeal without negatively impacting turbot quality. However, higher levels of CAP decreased fillet yield, muscle protein content, and muscle fiber diameter while increasing muscle hardness, which could be attributed to the inhibition of the TOR pathway and activation of the AAR and AMPK pathways.
Collapse
Affiliation(s)
- Zezheng Qi
- Marine College, Shandong University, Weihai, Shandong, China
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong, China
| | - Nan Bai
- Marine College, Shandong University, Weihai, Shandong, China
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong, China
| | - Qing Li
- Marine College, Shandong University, Weihai, Shandong, China
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong, China
| | - Shihui Pan
- Marine College, Shandong University, Weihai, Shandong, China
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong, China
| | - Min Gu
- Marine College, Shandong University, Weihai, Shandong, China
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong, China
| |
Collapse
|
6
|
Cecuda-Adamczewska V, Romanik-Chruścielewska A, Kosowska K, Sokołowska I, Łukasiewicz N, Korycka P, Florys-Jankowska K, Zakrzewska A, Wszoła M, Klak M. Elasticity Modification of Biomaterials Used in 3D Printing with an Elastin-Silk-like Recombinant Protein. J Funct Biomater 2024; 15:141. [PMID: 38921515 PMCID: PMC11204424 DOI: 10.3390/jfb15060141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
The recombinant structural protein described in this study was designed based on sequences derived from elastin and silk. Silk-elastin hybrid copolymers are characterized by high solubility while maintaining high product flexibility. The phase transition temperature from aqueous solution to hydrogel, as well as other physicochemical and mechanical properties of such particles, can differ significantly depending on the number of sequence repeats. We present a preliminary characterization of the EJ17zipR protein obtained in high yield in a prokaryotic expression system and efficiently purified via a multistep process. Its addition significantly improves biomaterial's rheological and mechanical properties, especially elasticity. As a result, EJ17zipR appears to be a promising component for bioinks designed to print spatially complex structures that positively influence both shape retention and the internal transport of body fluids. The results of biological studies indicate that the addition of the studied protein creates a favorable microenvironment for cell adhesion, growth, and migration.
Collapse
Affiliation(s)
- Violetta Cecuda-Adamczewska
- Foundation of Research and Science Development, 01-424 Warsaw, Poland; (A.R.-C.); (K.K.); (I.S.); (N.Ł.); (P.K.); (K.F.-J.)
| | | | - Katarzyna Kosowska
- Foundation of Research and Science Development, 01-424 Warsaw, Poland; (A.R.-C.); (K.K.); (I.S.); (N.Ł.); (P.K.); (K.F.-J.)
| | - Iwona Sokołowska
- Foundation of Research and Science Development, 01-424 Warsaw, Poland; (A.R.-C.); (K.K.); (I.S.); (N.Ł.); (P.K.); (K.F.-J.)
| | - Natalia Łukasiewicz
- Foundation of Research and Science Development, 01-424 Warsaw, Poland; (A.R.-C.); (K.K.); (I.S.); (N.Ł.); (P.K.); (K.F.-J.)
| | - Paulina Korycka
- Foundation of Research and Science Development, 01-424 Warsaw, Poland; (A.R.-C.); (K.K.); (I.S.); (N.Ł.); (P.K.); (K.F.-J.)
| | - Katarzyna Florys-Jankowska
- Foundation of Research and Science Development, 01-424 Warsaw, Poland; (A.R.-C.); (K.K.); (I.S.); (N.Ł.); (P.K.); (K.F.-J.)
| | | | - Michał Wszoła
- Polbionica Ltd., 01-424 Warsaw, Poland; (A.Z.); (M.W.)
| | - Marta Klak
- Polbionica Ltd., 01-424 Warsaw, Poland; (A.Z.); (M.W.)
| |
Collapse
|
7
|
Liu D, Ren Y, Zhong S, Xu B. New Insight into Utilization of Fish By-Product Proteins and Their Skin Health Promoting Effects. Mar Drugs 2024; 22:215. [PMID: 38786606 PMCID: PMC11122902 DOI: 10.3390/md22050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
In regions reliant on fisheries for livelihoods, a significant number of fish by-products are generated annually due to processing. These discarded parts contain valuable biological resources, such as proteins, fish oils, and trace elements, thus holding enormous potential for reutilization. In recent years, fish by-product proteins have been widely utilized in skincare products due to their rich collagen content, biosafety, and biocompatibility. This review summarizes the research into and applications of fish by-product proteins in skin health, including alleviating oxidative stress and skin inflammation, reducing DNA damage, mitigating melanin production, improving skin hydration, slowing skin matrix degradation, and promoting synthesis. Additionally, the possibility of improving skin health by improving the abundance of gut microbiota is also discussed. This review underscores the importance of fish by-product proteins in the fisheries, food processing, cosmetics, and biomedical industries.
Collapse
Affiliation(s)
- Dongcheng Liu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (D.L.); (Y.R.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxin Ren
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (D.L.); (Y.R.)
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (D.L.); (Y.R.)
| |
Collapse
|
8
|
Aarthy M, Hemalatha T, Suryalakshmi P, Vinoth V, Mercyjayapriya J, Shanmugam G, Ayyadurai N. Biomimetic design of fibril-forming non-immunogenic collagen like proteins for tissue engineering. Int J Biol Macromol 2024; 266:130999. [PMID: 38521303 DOI: 10.1016/j.ijbiomac.2024.130999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Collagen, a key component of extracellular matrix serves as a linchpin for maintaining structural integrity and functional resilience. Concerns over purity and immunogenicity of animal-derived collagens have spurred efforts to develop synthetic collagen-based biomaterials. Despite several collagen mimics, there remains limited exploration of non-immunogenic biomaterials with the capacity for effective self-assembly. To combat the lacuna, collagen like protein (CLP) variants were rationally designed and recombinantly expressed, incorporating human telopeptide sequences (CLP-N and CLP-NC) and bioactive binding sites (CLP-NB). Circular dichroism analyses of the variants confirmed the triple helical conformation, with variations in thermal stability and conformation attributed to the presence of telopeptides at one or both ends of CLP. The variants had propensity to form oligomers, setting the stage for fibrillogenesis. The CLP variants were biocompatible, hemocompatible and supported cell proliferation and migration, particularly CLP-NB with integrin-binding sites. Gene expression indicated a lack of significant upregulation of inflammatory markers, highlighting the non-immunogenic nature of these variants. Lyophilized CLP scaffolds maintained their triple-helical structure and offered favorable biomaterial characteristics. These results accentuate the potential of designed CLP variants in tissue engineering, regenerative medicine and industrial sectors, supporting the development of biocompatible scaffolds and implants for therapeutic and cosmetic purposes.
Collapse
Affiliation(s)
- Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Thiagarajan Hemalatha
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Pandurangan Suryalakshmi
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Vetrivel Vinoth
- Department of Organic and Bioorganic Chemistry, CSIR-CLRI, Chennai 600020, India
| | - Jebakumar Mercyjayapriya
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Ganesh Shanmugam
- Department of Organic and Bioorganic Chemistry, CSIR-CLRI, Chennai 600020, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai 600020, India.
| |
Collapse
|
9
|
Guo X, Ma Y, Wang H, Yin H, Shi X, Chen Y, Gao G, Sun L, Wang J, Wang Y, Fan D. Status and developmental trends in recombinant collagen preparation technology. Regen Biomater 2023; 11:rbad106. [PMID: 38173768 PMCID: PMC10761200 DOI: 10.1093/rb/rbad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Recombinant collagen is a pivotal topic in foundational biological research and epitomizes the application of critical bioengineering technologies. These technological advancements have profound implications across diverse areas such as regenerative medicine, organ replacement, tissue engineering, cosmetics and more. Thus, recombinant collagen and its preparation methodologies rooted in genetically engineered cells mark pivotal milestones in medical product research. This article provides a comprehensive overview of the current genetic engineering technologies and methods used in the production of recombinant collagen, as well as the conventional production process and quality control detection methods for this material. Furthermore, the discussion extends to foresee the strides in physical transfection and magnetic control sorting studies, envisioning an enhanced preparation of recombinant collagen-seeded cells to further fuel recombinant collagen production.
Collapse
Affiliation(s)
- Xiaolei Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Yuan Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xinli Shi
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Yiqin Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Daidi Fan
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| |
Collapse
|
10
|
Rana D, Desai N, Salave S, Karunakaran B, Giri J, Benival D, Gorantla S, Kommineni N. Collagen-Based Hydrogels for the Eye: A Comprehensive Review. Gels 2023; 9:643. [PMID: 37623098 PMCID: PMC10454301 DOI: 10.3390/gels9080643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Collagen-based hydrogels have emerged as a highly promising platform for diverse applications in ophthalmology, spanning from drug delivery systems to biomedical interventions. This review explores the diverse sources of collagen, which give rise to different types of collagen protein. The critical isolation and purification steps are discussed, emphasizing their pivotal role in preparing collagen for biomedical use. To ensure collagen quality and purity, and the suitability of collagen for targeted applications, a comprehensive characterization and quality control are essential, encompassing assessments of its physical, chemical, and biological properties. Also, various cross-linking collagen methods have been examined for providing insight into this crucial process. This comprehensive review delves into every facet of collagen and explores the wide-ranging applications of collagen-based hydrogels, with a particular emphasis on their use in drug delivery systems and their potential in diverse biomedical interventions. By consolidating current knowledge and advancements in the field, this review aims to provide a detailed overview of the utilization of engineered collagen-based hydrogels in ocular therapeutics.
Collapse
Affiliation(s)
- Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India; (N.D.); (J.G.)
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India; (N.D.); (J.G.)
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Srividya Gorantla
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
| | | |
Collapse
|
11
|
Zhao Z, Deng J, Fan D. Green biomanufacturing in recombinant collagen biosynthesis: trends and selection in various expression systems. Biomater Sci 2023; 11:5439-5461. [PMID: 37401335 DOI: 10.1039/d3bm00724c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Collagen, classically derived from animal tissue, is an all-important protein material widely used in biomedical materials, cosmetics, fodder, food, etc. The production of recombinant collagen through different biological expression systems using bioengineering techniques has attracted significant interest in consideration of increasing market demand and the process complexity of extraction. Green biomanufacturing of recombinant collagen has become one of the focus topics. While the bioproduction of recombinant collagens (type I, II, III, etc.) has been commercialized in recent years, the biosynthesis of recombinant collagen is extremely challenging due to protein immunogenicity, yield, degradation, and other issues. The rapid development of synthetic biology allows us to perform a heterologous expression of proteins in diverse expression systems, thus optimizing the production and bioactivities of recombinant collagen. This review describes the research progress in the bioproduction of recombinant collagen over the past two decades, focusing on different expression systems (prokaryotic organisms, yeasts, plants, insects, mammalian and human cells, etc.). We also discuss the challenges and future trends in developing market-competitive recombinant collagens.
Collapse
Affiliation(s)
- Zilong Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| |
Collapse
|
12
|
Moshynets OV, Baranovskyi TP, Iungin OS, Krikunov AA, Potochilova VV, Rudnieva KL, Potters G, Pokholenko I. Therapeutic Potential of an Azithromycin-Colistin Combination against XDR K. pneumoniae in a 3D Collagen-Based In Vitro Wound Model of a Biofilm Infection. Antibiotics (Basel) 2023; 12:antibiotics12020293. [PMID: 36830203 PMCID: PMC9952533 DOI: 10.3390/antibiotics12020293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
A therapeutic combination of azithromycin (AZM) and colistin methanesulfonate (CMS) was shown to be effective against both non-PDR and PDR Klebsiella pneumoniae biofilms in vitro. These anti-biofilm effects, however, may not correlate with effects observed in standard plate assays, nor will they representative of in vivo therapeutic action. After all, biofilm-associated infection processes are also impacted by the presence of wound bed components, such as host cells or wound fluids, which can all affect the antibiotic effectiveness. Therefore, an in vitro wound model of biofilm infection which partially mimics the complex microenvironment of infected wounds was developed to investigate the therapeutic potential of an AZM-CMS combination against XDR K. pneumoniae isolates. The model consists of a 3D collagen sponge-like scaffold seeded with HEK293 cells submerged in a fluid milieu mimicking the wound bed exudate. Media that were tested were all based on different strengths of Dulbecco's modified Eagles/high glucose medium supplemented with fetal bovine serum, and/or Bacto Proteose peptone. Use of this model confirmed AZM to be a highly effective antibiofilm component, when applied alone or in combination with CMS, whereas CMS alone had little antibacterial effectiveness or even stimulated biofilm development. The wound model proposed here proves therefore, to be an effective aid in the study of drug combinations under realistic conditions.
Collapse
Affiliation(s)
- Olena V. Moshynets
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnoho Str. 150, 03680 Kyiv, Ukraine
- Correspondence: (O.V.M.); (G.P.)
| | - Taras P. Baranovskyi
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, A-1090 Vienna, Austria
| | - Olga S. Iungin
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnoho Str. 150, 03680 Kyiv, Ukraine
- Department of Biotechnology, Leather and Fur, Faculty of Chemical and Biopharmaceutical Technologies, Kyiv National University of Technologies and Design, Nemyrovycha-Danchenka Street 2, 01011 Kyiv, Ukraine
| | - Alexey A. Krikunov
- National Amosov Institute of Cardio-Vascular Surgery Affiliated to National Academy of Medical Sciences of Ukraine, Amosov Str. 6, 02000 Kyiv, Ukraine
| | | | - Kateryna L. Rudnieva
- Kyiv Regional Clinical Hospital, Baggovutovskaya Str. 1, 04107 Kyiv, Ukraine
- Department of Microbiology, Virology and Immunology, Bogomolets National Medical University, Shevchenka Blvd. 13, 01601 Kyiv, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, Noordkasteel Oost 6, 2030 Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Correspondence: (O.V.M.); (G.P.)
| | - Ianina Pokholenko
- Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnoho Str., 03680 Kyiv, Ukraine
- The Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Gueta O, Amiram M. Expanding the chemical repertoire of protein-based polymers for drug-delivery applications. Adv Drug Deliv Rev 2022; 190:114460. [PMID: 36030987 DOI: 10.1016/j.addr.2022.114460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 01/24/2023]
Abstract
Expanding the chemical repertoire of natural and artificial protein-based polymers (PBPs) can enable the production of sequence-defined, yet chemically diverse, biopolymers with customized or new properties that cannot be accessed in PBPs composed of only natural amino acids. Various approaches can enable the expansion of the chemical repertoire of PBPs, including chemical and enzymatic treatments or the incorporation of unnatural amino acids. These techniques are employed to install a wide variety of chemical groups-such as bio-orthogonally reactive, cross-linkable, post-translation modifications, and environmentally responsive groups-which, in turn, can facilitate the design of customized PBP-based drug-delivery systems with modified, fine-tuned, or entirely new properties and functions. Here, we detail the existing and emerging technologies for expanding the chemical repertoire of PBPs and review several chemical groups that either demonstrate or are anticipated to show potential in the design of PBP-based drug delivery systems. Finally, we provide our perspective on the remaining challenges and future directions in this field.
Collapse
Affiliation(s)
- Osher Gueta
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Miriam Amiram
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
14
|
Liu W, Lin H, Zhao P, Xing L, Li J, Wang Z, Ju S, Shi X, Liu Y, Deng G, Gao G, Sun L, Zhang X. A regulatory perspective on recombinant collagen-based medical devices. Bioact Mater 2022; 12:198-202. [PMID: 35310384 PMCID: PMC8897173 DOI: 10.1016/j.bioactmat.2021.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022] Open
Abstract
As a class of novel biomaterials manufactured by synthetic biology technologies, recombinant collagens are candidates for a variety of medical applications. In this article, a regulatory scientific perspective on recombinant collagens and their medical devices is presented with a focus on the definition, translation, classification and technical review. Recombinant collagens are categorized as recombinant human collagen, recombinant humanized collagen and recombinant collagen-like protein, as differentiated by specific compositions and structures. Based on their intended uses and associated risks, recombinant collagen-based medical devices are generally classified as Class Ⅱ or Ⅲ in China. The regulatory review of recombinant collagen-based medical devices aims to assess their safety and efficacy demonstrated by scientific evidences generated from preclinical and clinical evaluations. Taken together, opportunities as well as challenges for their future clinical translation of recombinant collagen-based medical devices abound, which highlights the essential role of regulatory science to provide new tools, standards, guidelines and methods to evaluate the safety and efficacy of medical products. Recombinant collagens are novel biomaterials manufactured by biosynthesis methods. The first regulatory article on recombinant collagen-based medical devices. Recombinant collagen-based medical devices are defined and classified by NMPA. Regulatory review assesses the safety and efficacy of medical devices. Translation of recombinant collagens from bench to clinic needs regulatory science.
Collapse
|
15
|
Hadar D, Strugach DS, Amiram M. Conjugates of Recombinant Protein‐Based Polymers: Combining Precision with Chemical Diversity. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dagan Hadar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Daniela S. Strugach
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| |
Collapse
|
16
|
Xiang ZX, Gong JS, Li H, Shi WT, Jiang M, Xu ZH, Shi JS. Heterologous expression, fermentation strategies and molecular modification of collagen for versatile applications. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34907819 DOI: 10.1080/10408398.2021.2016599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collagen is a kind of high macromolecular protein with unique tissue distribution and distinctive functions in the body. At present, most collagen products are extracted from the tissues and organs of mammals or marine fish. However, this method exhibits several disadvantages, including low efficiency and serious waste generation, which makes it difficult to meet the current market demand. With the rapid development of synthetic biology and the deepening of high-density fermentation technology, the collagen preparation by biosynthesis strategy emerges as the times require. Co-expression with the proline hydroxylase gene can solve the problem of non-hydroxylated collagen, but the yield may be affected. Therefore, improving the expression through molecular modification and dynamic regulation of synthesis is an entry point for future research. Due to the defects in certain properties of the natural collagen, modification of properties would be benefit for meeting the requirements of practical application. In this paper, in-depth investigations on recombinant expression, fermentation, and modification studies of collagen are conducted. Also, it summarizes the research progress of collagen in food, medicine, and beauty industry in recent years. Furthermore, the future development trend and application prospect of collagen are discussed, which would provide guidance for its preparation and application.
Collapse
Affiliation(s)
- Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Wei-Ting Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, PR China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| |
Collapse
|
17
|
Qiu Y, Zhai C, Chen L, Liu X, Yeo J. Current Insights on the Diverse Structures and Functions in Bacterial Collagen-like Proteins. ACS Biomater Sci Eng 2021. [PMID: 33871954 DOI: 10.1021/acsbiomaterials.1c00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dearth of knowledge on the diverse structures and functions in bacterial collagen-like proteins is in stark contrast to the deep grasp of structures and functions in mammalian collagen, the ubiquitous triple-helical scleroprotein that plays a central role in tissue architecture, extracellular matrix organization, and signal transduction. To fill and highlight existing gaps due to the general paucity of data on bacterial CLPs, we comprehensively reviewed the latest insight into their functional and structural diversity from multiple perspectives of biology, computational simulations, and materials engineering. The origins and discovery of bacterial CLPs were explored. Their genetic distribution and molecular architecture were analyzed, and their structural and functional diversity in various bacterial genera was examined. The principal roles of computational techniques in understanding bacterial CLPs' structural stability, mechanical properties, and biological functions were also considered. This review serves to drive further interest and development of bacterial CLPs, not only for addressing fundamental biological problems in collagen but also for engineering novel biomaterials. Hence, both biology and materials communities will greatly benefit from intensified research into the diverse structures and functions in bacterial collagen-like proteins.
Collapse
Affiliation(s)
- Yimin Qiu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chenxi Zhai
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Ling Chen
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Xiaoyan Liu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
18
|
Chen Z, Fan D, Shang L. Exploring the potential of the recombinant human collagens for biomedical and clinical applications: a short review. ACTA ACUST UNITED AC 2020; 16:012001. [PMID: 32679570 DOI: 10.1088/1748-605x/aba6fa] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural animal collagen and its recombinant collagen are favourable replacements in human tissue engineering due to their remarkable biomedical property. However, this exploitation is largely restricted due to the potential of immunogenicity and virus contamination. Exploring new ways to produce human collagen is fundamental to its biomedical and clinical application. All human fibrillar collagen molecules have three polypeptide chains constructed from a repeating Gly-Xaa-Yaa triplet, where Xaa and Yaa represent one random amino acid. Using cDNA techniques to modify several repeat sequences of the cDNA fragment, a novel human collagen, named recombinant human-like collagen (rHLC), with low immunogenicity and little risk from hidden virus can be engineered and notably tailored to specific applications. Human-like collagen (HLC) was initially used as a coating to modify the tissue engineering scaffold, and then used as the scaffold after cross-link agents were added to increase its mechanical strength. Due to its good biocompatibility, low immunogenicity, stabilised property, and the ability of mass production, HLC has been widely used in skin injury treatments, vascular scaffolds engineering, cartilage, bone defect repair, skincare, haemostatic sponge, and drug delivery, including coating with medical nanoparticles. In this review, we symmetrically reviewed the development, recent advances in design and application of HLC, and other recombinant human collagen-based biomedicine potentials. At the end, future improvements are also discussed.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China. Shaanxi Key Laboratory of Degradable Biomedical Materials; Shaanxi R&D Center of Biomaterial and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China
| | | | | |
Collapse
|
19
|
Khan S, Rehman A, Shah H, Aadil RM, Ali A, Shehzad Q, Ashraf W, Yang F, Karim A, Khaliq A, Xia W. Fish Protein and Its Derivatives: The Novel Applications, Bioactivities, and Their Functional Significance in Food Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1828452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sohail Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haroon Shah
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Fangshan, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Ahmad Ali
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qayyum Shehzad
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Waqas Ashraf
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Adnan Khaliq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahem Yar Khan, Pakistan
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
20
|
Abstract
After decades of research and development, recombinant protein polymers have begun to find applications outside the pharmaceutical and biomedical fields. Several recombinant derivatives of natural structural proteins are now being sold in personal care products, providing novel functionality while also being animal-free, not derived from petroleum, biocompatible, and biodegradable. Consumers are now demanding these material characteristics in their personal care products, and a backlog of well-characterized recombinant protein polymers could become the future of personal care ingredients.
Collapse
Affiliation(s)
- David N Breslauer
- Bolt Threads, 5858 Horton Street, Suite 400, Emeryville, California 94608, United States
| |
Collapse
|
21
|
Farajollahi S, Dennis PB, Crosby MG, Slocik JM, Pelton AT, Hampton CM, Drummy LF, Yang SJ, Silberstein MN, Gupta MK, Naik RR. Disulfide Crosslinked Hydrogels Made From the Hydra Stinging Cell Protein, Minicollagen-1. Front Chem 2020; 7:950. [PMID: 32039158 PMCID: PMC6989532 DOI: 10.3389/fchem.2019.00950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/31/2019] [Indexed: 11/28/2022] Open
Abstract
Minicollagens from cnidarian nematocysts are attractive potential building blocks for the creation of strong, lightweight and tough polymeric materials with the potential for dynamic and reconfigurable crosslinking to modulate functionality. In this study, the Hydra magnipapillata minicollagen-1 isoform was recombinantly expressed in bacteria, and a high throughput purification protocol was developed to generate milligram levels of pure protein without column chromatography. The resulting minicollagen-1 preparation demonstrated spectral properties similar to those observed with collagen and polyproline sequences as well as the ability to self-assemble into oriented fibers and bundles. Photo-crosslinking with Ru(II)( bpy ) 3 2 + was used to create robust hydrogels that were analyzed by mechanical testing. Interestingly, the minicollagen-1 hydrogels could be dissolved with reducing agents, indicating that ruthenium-mediated photo-crosslinking was able to induce disulfide metathesis to create the hydrogels. Together, this work is an important first step in creating minicollagen-based materials whose properties can be manipulated through static and reconfigurable post-translational modifications.
Collapse
Affiliation(s)
- Sanaz Farajollahi
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
- UES Inc., Dayton, OH, United States
| | - Patrick B. Dennis
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Marquise G. Crosby
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Joseph M. Slocik
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
- UES Inc., Dayton, OH, United States
| | - Anthony T. Pelton
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
- UES Inc., Dayton, OH, United States
| | - Cheri M. Hampton
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
- UES Inc., Dayton, OH, United States
| | - Lawrence F. Drummy
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Steven J. Yang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Meredith N. Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Maneesh K. Gupta
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Rajesh R. Naik
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| |
Collapse
|