1
|
Hu L, Cohen RI, Barroso M, Boustany NN. Comparison of vinculin tension in cellular monolayers and three-dimensional multicellular aggregates. BIOMEDICAL OPTICS EXPRESS 2024; 15:5199-5214. [PMID: 39296399 PMCID: PMC11407257 DOI: 10.1364/boe.529156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024]
Abstract
Confocal frequency-domain fluorescence lifetime and Förster resonance energy transfer (FRET) microscopy of Chinese hamster ovary (CHO-K1) cells expressing the vinculin tension sensor (VinTS) is used to compare vinculin tension in three-dimensional (3D) multicellular aggregates and 2D cellular monolayers. In both 2D and 3D cultures, the FRET efficiency of VinTS is 5-6% lower than that of VinTL (p < 0.05), a tail-less control which cannot bind actin or paxillin. The difference between VinTS and VinTL FRET efficiency can be mitigated by treatment with the Rho-associated kinase inhibitor Y-27632, demonstrating that VinTS is under tension in both 2D and 3D cultures. However, there is an overall decrease in FRET efficiency of both VinTS and VinTL in the 3D multicellular aggregates compared with the 2D monolayers. Expression of VinTS in 2D and 3D cultures exhibits puncta consistent with cellular adhesions. While paxillin is present at the sites of VinTS expression in the 2D monolayers, it is generally absent from VinTS puncta in the 3D aggregates. The results suggest that VinTS experiences a modified environment in 3D aggregates compared with 2D monolayers and provide a basis for further investigation of molecular tension sensors in 3D tissue models.
Collapse
Affiliation(s)
- Luni Hu
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Rick I Cohen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Nada N Boustany
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Shoyer TC, Collins KL, Ham TR, Blanchard AT, Malavade JN, Johns BA, West JL, Hoffman BD. Detection of fluorescent protein mechanical switching in cellulo. CELL REPORTS METHODS 2024; 4:100815. [PMID: 38986612 PMCID: PMC11294842 DOI: 10.1016/j.crmeth.2024.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, determining the mechanisms by which forces affect protein function inside cells remains challenging. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated whether force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo within a synthetic actin crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cell force generation, external stiffness, and force-sensitive bond dynamics of the biosensor. This work describes a framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells.
Collapse
Affiliation(s)
- T Curtis Shoyer
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Kasie L Collins
- Department of Chemistry, Duke University, Durham NC 27708, USA
| | - Trevor R Ham
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Aaron T Blanchard
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Juilee N Malavade
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Benjamin A Johns
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA.
| |
Collapse
|
3
|
Singh Y, Hocky GM. Improved Prediction of Molecular Response to Pulling by Combining Force Tempering with Replica Exchange Methods. J Phys Chem B 2024; 128:706-715. [PMID: 38230998 PMCID: PMC10823473 DOI: 10.1021/acs.jpcb.3c07081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Small mechanical forces play important functional roles in many crucial cellular processes, including in the dynamic behavior of the cytoskeleton and in the regulation of osmotic pressure through membrane-bound proteins. Molecular simulations offer the promise of being able to design the behavior of proteins that sense and respond to these forces. However, it is difficult to predict and identify the effect of the relevant piconewton (pN) scale forces due to their small magnitude. Previously, we introduced the Infinite Switch Simulated Tempering in Force (FISST) method, which allows one to estimate the effect of a range of applied forces from a single molecular dynamics simulation, and also demonstrated that FISST additionally accelerates sampling of a molecule's conformational landscape. For some problems, we find that this acceleration is not sufficient to capture all relevant conformational fluctuations, and hence, here we demonstrate that FISST can be combined with either temperature replica exchange or solute tempering approaches to produce a hybrid method that enables more robust prediction of the effect of small forces on molecular systems.
Collapse
Affiliation(s)
- Yuvraj Singh
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Glen M. Hocky
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
4
|
Shoyer TC, Collins KL, Ham TR, Blanchard AT, Malavade JN, West JL, Hoffman BD. Detection of Fluorescent Protein Mechanical Switching in Cellulo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575065. [PMID: 38260589 PMCID: PMC10802509 DOI: 10.1101/2024.01.10.575065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, the mechanisms by which forces affect protein function inside cells remain unclear. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated if force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo in a synthetic actin-crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cellular force generation as well as force-sensitive bond dynamics of the biosensor. Together, this work describes a new framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells. MOTIVATION The ability of cells to sense mechanical forces is critical in developmental, physiological, and pathological processes. Cells sense mechanical cues via force-induced alterations in protein structure and function, but elucidation of the molecular mechanisms is hindered by the lack of approaches to directly probe the effect of forces on protein structure and function inside cells. Motivated by in vitro observations of reversible fluorescent protein mechanical switching, we developed an approach for detecting fluorescent protein mechanical switching in cellulo . This enables the visualization of force-sensitive protein function inside living cells.
Collapse
|
5
|
Holt LJ, Delarue M. Macromolecular crowding: Sensing without a sensor. Curr Opin Cell Biol 2023; 85:102269. [PMID: 37897928 DOI: 10.1016/j.ceb.2023.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/30/2023]
Abstract
All living cells are crowded with macromolecules. Crowding can directly modulate biochemical reactions to various degrees depending on the sizes, shapes, and binding affinities of the reactants. Here, we explore the possibility that cells can sense and adapt to changes in crowding through the widespread modulation of biochemical reactions without the need for a dedicated sensor. Additionally, we explore phase separation as a general physicochemical response to changes in crowding, and a mechanism to both transduce information and physically restore crowding homeostasis.
Collapse
Affiliation(s)
- Liam J Holt
- New York University Grossman School of Medicine, Institute for Systems Genetics, New York, NY, USA
| | - Morgan Delarue
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
6
|
Dubois C, Houel-Renault L, Erard M, Boustany NN, Westbrook N. Förster resonance energy transfer efficiency measurements on vinculin tension sensors at focal adhesions using a simple and cost-effective setup. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:082808. [PMID: 37441563 PMCID: PMC10335361 DOI: 10.1117/1.jbo.28.8.082808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Significance Forces inside cells play a fundamental role in tissue growth, affecting important processes such as cancer cell migration or tissue repair after injury. Förster resonance energy transfer (FRET)-based tension sensors are a remarkable tool for studying these forces and should be made easier to use. Aim We prove that absolute FRET efficiency can be measured on a simple setup, an order of magnitude more cost-effective than a standard FRET microscopy setup, by applying it to vinculin tension sensors (VinTS) at the focal adhesions of live CHO-K1 cells. Approach Our setup located at Université Paris-Saclay acquires donor and acceptor fluorescence in parallel on two low-cost CMOS cameras and uses two LEDs for rapid switching of the excitation wavelength at a reduced cost. The calibration required to extract FRET efficiency was achieved using a single construct (TSMod). FRET efficiencies were measured for VinTS and the tail-less control VinTL, lacking the actin-binding domain of vinculin. Measurements were confirmed on the same cell type using a more standard intensity-based setup located at Rutgers University. Results The average FRET efficiency of VinTS (22.0 % ± 4 % ) over more than 10,000 focal adhesions is significantly lower (p < 10 - 6 ) than that of VinTL (30.4 % ± 5 % ), our control that is insensitive to force, in agreement with the force exerted on vinculin at focal adhesions. Attachment of the CHO-K1 cells on fibronectin decreases FRET efficiency, thus increasing the force, compared with poly-lysine. FRET efficiency for the VinTL control is consistent with all measurements currently available in the literature, confirming the validity of our measurements and hence of our simpler setup. Conclusions Force measurements, resolved spatially inside a cell, can be achieved using FRET-based tension sensors with a cost effective intensity-based setup. This will facilitate combining FRET with techniques for applying controlled forces such as optical tweezers.
Collapse
Affiliation(s)
- Camille Dubois
- Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
| | - Ludivine Houel-Renault
- Université Paris-Saclay, Institut des Sciences Moléculaires d’Orsay, CNRS, Centre de Photonique pour la Biologie et les Matériaux, Orsay, France
| | - Marie Erard
- Université Paris-Saclay, Institut de Chimie Physique, CNRS, Orsay, France
| | - Nada N. Boustany
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| | - Nathalie Westbrook
- Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
| |
Collapse
|
7
|
Danielsson BE, George Abraham B, Mäntylä E, Cabe JI, Mayer CR, Rekonen A, Ek F, Conway DE, Ihalainen TO. Nuclear lamina strain states revealed by intermolecular force biosensor. Nat Commun 2023; 14:3867. [PMID: 37391402 PMCID: PMC10313699 DOI: 10.1038/s41467-023-39563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Nuclear lamins have been considered an important structural element of the nucleus. The nuclear lamina is thought both to shield DNA from excessive mechanical forces and to transmit mechanical forces onto the DNA. However, to date there is not yet a technical approach to directly measure mechanical forces on nuclear lamins at the protein level. To overcome this limitation, we developed a nanobody-based intermolecular tension FRET biosensor capable of measuring the mechanical strain of lamin filaments. Using this sensor, we were able to show that the nuclear lamina is subjected to significant force. These forces are dependent on nuclear volume, actomyosin contractility, functional LINC complex, chromatin condensation state, cell cycle, and EMT. Interestingly, large forces were also present on nucleoplasmic lamins, indicating that these lamins may also have an important mechanical role in the nucleus. Overall, we demonstrate that the nanobody-based approach allows construction of biosensors for complex protein structures for mechanobiology studies.
Collapse
Affiliation(s)
- Brooke E Danielsson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bobin George Abraham
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jolene I Cabe
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Carl R Mayer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Anna Rekonen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Frans Ek
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Daniel E Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| | - Teemu O Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland.
| |
Collapse
|
8
|
Pawlak MR, Smiley AT, Ramirez MP, Kelly MD, Shamsan GA, Anderson SM, Smeester BA, Largaespada DA, Odde DJ, Gordon WR. RAD-TGTs: high-throughput measurement of cellular mechanotype via rupture and delivery of DNA tension probes. Nat Commun 2023; 14:2468. [PMID: 37117218 PMCID: PMC10147940 DOI: 10.1038/s41467-023-38157-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Mechanical forces drive critical cellular processes that are reflected in mechanical phenotypes, or mechanotypes, of cells and their microenvironment. We present here "Rupture And Deliver" Tension Gauge Tethers (RAD-TGTs) in which flow cytometry is used to record the mechanical history of thousands of cells exerting forces on their surroundings via their propensity to rupture immobilized DNA duplex tension probes. We demonstrate that RAD-TGTs recapitulate prior DNA tension probe studies while also yielding a gain of fluorescence in the force-generating cell that is detectable by flow cytometry. Furthermore, the rupture propensity is altered following disruption of the cytoskeleton using drugs or CRISPR-knockout of mechanosensing proteins. Importantly, RAD-TGTs can differentiate distinct mechanotypes among mixed populations of cells. We also establish oligo rupture and delivery can be measured via DNA sequencing. RAD-TGTs provide a facile and powerful assay to enable high-throughput mechanotype profiling, which could find various applications, for example, in combination with CRISPR screens and -omics analysis.
Collapse
Affiliation(s)
- Matthew R Pawlak
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Adam T Smiley
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Maria Paz Ramirez
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Marcus D Kelly
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ghaidan A Shamsan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sarah M Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Wendy R Gordon
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Tao A, LaCroix AS, Shoyer TC, Venkatraman V, Xu KL, Feiger B, Hoffman BD. Identifying constitutive and context-specific molecular-tension-sensitive protein recruitment within focal adhesions. Dev Cell 2023; 58:522-534.e7. [PMID: 36924770 PMCID: PMC10080727 DOI: 10.1016/j.devcel.2023.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/28/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023]
Abstract
Mechanosensitive processes often rely on adhesion structures to strengthen, or mature, in response to applied loads. However, a limited understanding of how the molecular tensions that are experienced by a particular protein affect the recruitment of other proteins represents a major obstacle in the way of deciphering molecular mechanisms that underlie mechanosensitive processes. Here, we describe an imaging-based technique, termed fluorescence-tension co-localization (FTC), for studying molecular-tension-sensitive protein recruitment inside cells. Guided by discrete time Markov chain simulations of protein recruitment, we integrate immunofluorescence labeling, molecular tension sensors, and machine learning to determine the sensitivity, specificity, and context dependence of molecular-tension-sensitive protein recruitment. The application of FTC to the mechanical linker protein vinculin in mouse embryonic fibroblasts reveals constitutive and context-specific molecular-tension-sensitive protein recruitment that varies with adhesion maturation. FTC overcomes limitations associated with the alteration of numerous proteins during the manipulation of cell contractility, providing molecularly specific insights into tension-sensitive protein recruitment.
Collapse
Affiliation(s)
- Arnold Tao
- Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | | | - Karen L Xu
- Biomedical Engineering, Duke University, Durham, NC, USA
| | - Bradley Feiger
- Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brenton D Hoffman
- Biomedical Engineering, Duke University, Durham, NC, USA; Cell Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
10
|
Windgasse L, Grashoff C. Multiplexed Molecular Tension Sensor Measurements Using PIE-FLIM. Methods Mol Biol 2023; 2600:221-237. [PMID: 36587101 DOI: 10.1007/978-1-0716-2851-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Genetically encoded Förster Resonance Energy Transfer (FRET)-based tension sensors were developed to enable the quantification of piconewton (pN)-scale forces that act across distinct proteins in living cells and organisms. An important extension of this technology is the multiplexing of tension sensors to monitor several independent FRET probes in parallel. Here we describe how pulsed interleaved excitation (PIE)-fluorescence lifetime imaging microscopy (FLIM) can be implemented to enable the analysis of two co-expressed tension sensor constructs. Our protocol covers all essential steps from biosensor expression and live cell PIE image acquisition to lifetime calculations.
Collapse
Affiliation(s)
- Lukas Windgasse
- Department of Quantitative Cell Biology, Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Carsten Grashoff
- Department of Quantitative Cell Biology, Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany.
| |
Collapse
|
11
|
Blanchard AT, Li Z, Duran EC, Scull CE, Hoff JD, Wright KR, Pan V, Walter NG. Ultra-photostable DNA FluoroCubes: Mechanism of Photostability and Compatibility with FRET and Dark Quenching. NANO LETTERS 2022; 22:6235-6244. [PMID: 35881934 PMCID: PMC10080265 DOI: 10.1021/acs.nanolett.2c01757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
DNA-based FluoroCubes were recently developed as a solution to photobleaching, a ubiquitous limitation of fluorescence microscopy (Niekamp; ; Stuurman; ; Vale Nature Methods, 2020). FluoroCubes, that is, compact ∼4 × 4 × 5.4 nm3 four-helix bundles coupled to ≤6 fluorescent dyes, remain fluorescent up to ∼50× longer than single dyes and emit up to ∼40× as many photons. The current work answers two important questions about the FluoroCubes. First, what is the mechanism by which photostability is enhanced? Second, are FluoroCubes compatible with Förster resonance energy transfer (FRET) and similar techniques? We use single particle photobleaching studies to show that photostability arises through interactions between the fluorophores and the four-helix DNA bundle. Supporting this, we discover that smaller ∼4 × 4 × 2.7 nm3 FluoroCubes also confer ultraphotostability. However, we find that certain dye-dye interactions negatively impact FluoroCube performance. Accordingly, 4-dye FluoroCubes lacking these interactions perform better than 6-dye FluoroCubes. We also demonstrate that FluoroCubes are compatible with FRET and dark quenching applications.
Collapse
Affiliation(s)
- Aaron T. Blanchard
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Michigan Society of Fellows, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zi Li
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Elizabeth C. Duran
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Catherine E. Scull
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - J. Damon Hoff
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Keenan R. Wright
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Victor Pan
- Department of Biomedical Engineering, Emory University and the Georgia Institute of Technology, Atlanta, Georgia, 30322
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
12
|
Chang Chien CY, Chou SH, Lee HH. Integrin molecular tension required for focal adhesion maturation and YAP nuclear translocation. Biochem Biophys Rep 2022; 31:101287. [PMID: 35669986 PMCID: PMC9162951 DOI: 10.1016/j.bbrep.2022.101287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Focal adhesions (FAs) provide the cells linkages to extracellular matrix (ECM) at sites of integrins binding and transmit mechanical forces between the ECM and the actin cytoskeleton. Cells sense and respond to physical stimuli from their surrounding environment through the activation of mechanosensitive signaling pathways, a process called mechanotransduction. In this study, we used RGD-peptide conjugated DNA tension gauge tethers (TGTs) with different tension tolerance (Ttol) to determine the molecular forces required for FA maturation in different sizes and YAP nuclear translocation. We found that the limitation of FA sizes in cells seeded on TGTs with different Ttol were less than 1 μm, 2 μm, 3 μm, and 6 μm for Ttol values of 43 pN, 50 pN, 54 pN, and 56 pN, respectively. This suggests that the molecular tension across integrins increases gradually as FA size increases throughout FA maturation. For YAP nuclear translocation, significant YAP nuclear localization was observed only in the cells seeded on the TGTs with Ttol ≥ 54 pN, but not on TGTs with Ttol ≤ 50 pN, suggesting a threshold of molecular force across integrins for YAP nuclear translocation lies in the range of 50 pN–54 pN. Defining forces required for FA maturation and YAP nuclear translocation. Integrin tension enhances gradually with the increase of FA size. Forces required for YAP nuclear translocation lies in the range of 50–54 pN.
Collapse
Affiliation(s)
- Cheng-Yu Chang Chien
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taiwan
| | - Shih-Hua Chou
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taiwan
| | - Hsiao-Hui Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Taiwan
| |
Collapse
|
13
|
Coeyman SJ, Richardson WJ, Bradshaw AD. Mechanics & Matrix: Positive Feedback Loops between Fibroblasts and ECM Drive Interstitial Cardiac Fibrosis. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Ayad MA, Mahon T, Patel M, Cararo-Lopes MM, Hacihaliloglu I, Firestein BL, Boustany NN. Förster resonance energy transfer efficiency of the vinculin tension sensor in cultured primary cortical neuronal growth cones. NEUROPHOTONICS 2022; 9:025002. [PMID: 35651869 PMCID: PMC9150715 DOI: 10.1117/1.nph.9.2.025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Significance: Interaction of neurons with their extracellular environment and the mechanical forces at focal adhesions and synaptic junctions play important roles in neuronal development. Aim: To advance studies of mechanotransduction, we demonstrate the use of the vinculin tension sensor (VinTS) in primary cultures of cortical neurons. VinTS consists of TS module (TSMod), a Förster resonance energy transfer (FRET)-based tension sensor, inserted between vinculin's head and tail. FRET efficiency decreases with increased tension across vinculin. Approach: Primary cortical neurons cultured on glass coverslips coated with poly-d-lysine and laminin were transfected with plasmids encoding untargeted TSMod, VinTS, or tail-less vinculinTS (VinTL) lacking the actin-binding domain. The neurons were imaged between day in vitro (DIV) 5 to 8. We detail the image processing steps for calculation of FRET efficiency and use this system to investigate the expression and FRET efficiency of VinTS in growth cones. Results: The distribution of fluorescent constructs was similar within growth cones at DIV 5 to 8. The mean FRET efficiency of TSMod ( 28.5 ± 3.6 % ) in growth cones was higher than the mean FRET efficiency of VinTS ( 24.6 ± 2 % ) and VinTL ( 25.8 ± 1.8 % ) ( p < 10 - 6 ). While small, the difference between the FRET efficiency of VinTS and VinTL was statistically significant ( p < 10 - 3 ), suggesting that vinculin is under low tension in growth cones. Two-hour treatment with the Rho-associated kinase inhibitor Y-27632 did not affect the mean FRET efficiency. Growth cones exhibited dynamic changes in morphology as observed by time-lapse imaging. VinTS FRET efficiency showed greater variance than TSMod FRET efficiency as a function of time, suggesting a greater dependence of VinTS FRET efficiency on growth cone dynamics compared with TSMod. Conclusions: The results demonstrate the feasibility of using VinTS to probe the function of vinculin in neuronal growth cones and provide a foundation for studies of mechanotransduction in neurons using this tension probe.
Collapse
Affiliation(s)
- Marina A. Ayad
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| | - Timothy Mahon
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| | - Mihir Patel
- Rutgers University, Department of Cell Biology and Neuroscience, Piscataway, New Jersey, United States
| | - Marina M. Cararo-Lopes
- Rutgers University, Department of Cell Biology and Neuroscience, Piscataway, New Jersey, United States
| | - Ilker Hacihaliloglu
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| | - Bonnie L. Firestein
- Rutgers University, Department of Cell Biology and Neuroscience, Piscataway, New Jersey, United States
| | - Nada N. Boustany
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| |
Collapse
|
15
|
Alegre-Cebollada J. Protein nanomechanics in biological context. Biophys Rev 2021; 13:435-454. [PMID: 34466164 PMCID: PMC8355295 DOI: 10.1007/s12551-021-00822-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
How proteins respond to pulling forces, or protein nanomechanics, is a key contributor to the form and function of biological systems. Indeed, the conventional view that proteins are able to diffuse in solution does not apply to the many polypeptides that are anchored to rigid supramolecular structures. These tethered proteins typically have important mechanical roles that enable cells to generate, sense, and transduce mechanical forces. To fully comprehend the interplay between mechanical forces and biology, we must understand how protein nanomechanics emerge in living matter. This endeavor is definitely challenging and only recently has it started to appear tractable. Here, I introduce the main in vitro single-molecule biophysics methods that have been instrumental to investigate protein nanomechanics over the last 2 decades. Then, I present the contemporary view on how mechanical force shapes the free energy of tethered proteins, as well as the effect of biological factors such as post-translational modifications and mutations. To illustrate the contribution of protein nanomechanics to biological function, I review current knowledge on the mechanobiology of selected muscle and cell adhesion proteins including titin, talin, and bacterial pilins. Finally, I discuss emerging methods to modulate protein nanomechanics in living matter, for instance by inducing specific mechanical loss-of-function (mLOF). By interrogating biological systems in a causative manner, these new tools can contribute to further place protein nanomechanics in a biological context.
Collapse
|
16
|
Barvitenko N, Aslam M, Lawen A, Saldanha C, Skverchinskaya E, Uras G, Manca A, Pantaleo A. Two Motors and One Spring: Hypothetic Roles of Non-Muscle Myosin II and Submembrane Actin-Based Cytoskeleton in Cell Volume Sensing. Int J Mol Sci 2021; 22:7967. [PMID: 34360739 PMCID: PMC8347689 DOI: 10.3390/ijms22157967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Changes in plasma membrane curvature and intracellular ionic strength are two key features of cell volume perturbations. In this hypothesis we present a model of the responsible molecular apparatus which is assembled of two molecular motors [non-muscle myosin II (NMMII) and protrusive actin polymerization], a spring [a complex between the plasma membrane (PM) and the submembrane actin-based cytoskeleton (smACSK) which behaves like a viscoelastic solid] and the associated signaling proteins. We hypothesize that this apparatus senses changes in both the plasma membrane curvature and the ionic strength and in turn activates signaling pathways responsible for regulatory volume increase (RVI) and regulatory volume decrease (RVD). During cell volume changes hydrostatic pressure (HP) changes drive alterations in the cell membrane curvature. HP difference has opposite directions in swelling versus shrinkage, thus allowing distinction between them. By analogy with actomyosin contractility that appears to sense stiffness of the extracellular matrix we propose that NMMII and actin polymerization can actively probe the transmembrane gradient in HP. Furthermore, NMMII and protein-protein interactions in the actin cortex are sensitive to ionic strength. Emerging data on direct binding to and regulating activities of transmembrane mechanosensors by NMMII and actin cortex provide routes for signal transduction from transmembrane mechanosensors to cell volume regulatory mechanisms.
Collapse
Affiliation(s)
| | - Muhammad Aslam
- Department of Internal Medicine I, Experimental Cardiology, Justus Liebig University, 35392 Giessen, Germany;
| | - Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Carlota Saldanha
- Institute of Biochemistry, Institute of Molecular Medicine, Faculty of Medicine University of Lisbon, 1649-028 Lisboa, Portugal;
| | | | - Giuseppe Uras
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK;
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| |
Collapse
|
17
|
Lavrenyuk K, Conway D, Dahl KN. Imaging methods in mechanosensing: a historical perspective and visions for the future. Mol Biol Cell 2021; 32:842-854. [PMID: 33788578 PMCID: PMC8108522 DOI: 10.1091/mbc.e20-10-0671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over the past three decades, as mechanobiology has become a distinct area of study, researchers have developed novel imaging tools to discover the pathways of biomechanical signaling. Early work with substrate engineering and particle tracking demonstrated the importance of cell–extracellular matrix interactions on the cell cycle as well as the mechanical flux of the intracellular environment. Most recently, tension sensor approaches allowed directly measuring tension in cell–cell and cell–substrate interactions. We retrospectively analyze how these various optical techniques progressed the field and suggest our vision forward for a unified theory of cell mechanics, mapping cellular mechanosensing, and novel biomedical applications for mechanobiology.
Collapse
Affiliation(s)
- Kirill Lavrenyuk
- Carnegie Mellon University, College of Engineering, Pittsburgh, PA 15213
| | - Daniel Conway
- Virginia Commonwealth University, College of Engineering, Richmond, VA 23284
| | - Kris Noel Dahl
- Carnegie Mellon University, College of Engineering, Pittsburgh, PA 15213
| |
Collapse
|
18
|
Wang WY, Jarman EH, Lin D, Baker BM. Dynamic Endothelial Stalk Cell-Matrix Interactions Regulate Angiogenic Sprout Diameter. Front Bioeng Biotechnol 2021; 9:620128. [PMID: 33869150 PMCID: PMC8044977 DOI: 10.3389/fbioe.2021.620128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is a complex, multicellular process that involves bidirectional interactions between extracellular matrix (ECM) and collectively invading endothelial cell (EC) sprouts that extend the microvasculature during development, wound healing, and disease processes. While many aspects of angiogenesis have been well studied, the relationship between endothelial sprout morphology and subsequent neovessel function remains relatively unknown. Here, we investigated how various soluble and physical matrix cues that regulate endothelial sprouting speed and proliferation correspond to changes in sprout morphology, namely, sprout stalk diameter. We found that sprout stalk cells utilize a combination of cytoskeletal forces and proteolysis to physically compact and degrade the surrounding matrix, thus creating sufficient space in three-dimensional (3D) ECM for lateral expansion. As increasing sprout diameter precedes lumenization to generate perfusable neovessels, this work highlights how dynamic endothelial stalk cell-ECM interactions promote the generation of functional neovessels during sprouting angiogenesis to provide insight into the design of vascularized, implantable biomaterials.
Collapse
Affiliation(s)
| | | | | | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Missirlis D, Haraszti T, Heckmann L, Spatz JP. Substrate Resistance to Traction Forces Controls Fibroblast Polarization. Biophys J 2020; 119:2558-2572. [PMID: 33217384 DOI: 10.1016/j.bpj.2020.10.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
The mechanics of fibronectin-rich extracellular matrix regulate cell physiology in a number of diseases, prompting efforts to elucidate cell mechanosensing mechanisms at the molecular and cellular scale. Here, the use of fibronectin-functionalized silicone elastomers that exhibit considerable frequency dependence in viscoelastic properties unveiled the presence of two cellular processes that respond discreetly to substrate mechanical properties. Weakly cross-linked elastomers supported efficient focal adhesion maturation and fibroblast spreading because of an apparent stiff surface layer. However, they did not enable cytoskeletal and fibroblast polarization; elastomers with high cross-linking and low deformability were required for polarization. Our results suggest as an underlying reason for this behavior the inability of soft elastomer substrates to resist traction forces rather than a lack of sufficient traction force generation. Accordingly, mild inhibition of actomyosin contractility rescued fibroblast polarization even on the softer elastomers. Our findings demonstrate differential dependence of substrate physical properties on distinct mechanosensitive processes and provide a premise to reconcile previously proposed local and global models of cell mechanosensing.
Collapse
Affiliation(s)
- Dimitris Missirlis
- Max-Planck-Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany.
| | - Tamás Haraszti
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; RWTH Aachen University, Institute for Technical and Macromolecular Chemistry, Aachen, Germany
| | - Lara Heckmann
- Max-Planck-Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany
| | - Joachim P Spatz
- Max-Planck-Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany; Heidelberg University, Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg, Germany
| |
Collapse
|
20
|
Okkelman IA, McGarrigle R, O’Carroll S, Berrio DC, Schenke-Layland K, Hynes J, Dmitriev RI. Extracellular Ca2+-Sensing Fluorescent Protein Biosensor Based on a Collagen-Binding Domain. ACS APPLIED BIO MATERIALS 2020; 3:5310-5321. [DOI: 10.1021/acsabm.0c00649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Irina A. Okkelman
- Metabolic Imaging Group, Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, College Road, Cork T12 YN60, Ireland
| | - Ryan McGarrigle
- Agilent Technologies Ireland Limited, Little
Island T45 WK12, Cork, Ireland
| | - Shane O’Carroll
- Metabolic Imaging Group, Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, College Road, Cork T12 YN60, Ireland
| | - Daniel Carvajal Berrio
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, Tübingen 72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” (iFIT), Eberhard Karls University Tübingen, Geschwister-Scholl-Platz, Tübingen 72074, Germany
| | - Katja Schenke-Layland
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, Tübingen 72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” (iFIT), Eberhard Karls University Tübingen, Geschwister-Scholl-Platz, Tübingen 72074, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles 90095, California, United States
| | - James Hynes
- Agilent Technologies Ireland Limited, Little
Island T45 WK12, Cork, Ireland
| | - Ruslan I. Dmitriev
- Metabolic Imaging Group, Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, College Road, Cork T12 YN60, Ireland
- I.M. Sechenov First Moscow State University, Institute for Regenerative Medicine, Moscow 119992, Russian Federation
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
21
|
Abstract
At the nanoscale, pushing, pulling, and shearing forces drive biochemical processes in development and remodeling as well as in wound healing and disease progression. Research in the field of mechanobiology investigates not only how these loads affect biochemical signaling pathways but also how signaling pathways respond to local loading by triggering mechanical changes such as regional stiffening of a tissue. This feedback between mechanical and biochemical signaling is increasingly recognized as fundamental in embryonic development, tissue morphogenesis, cell signaling, and disease pathogenesis. Historically, the interdisciplinary field of mechanobiology has been driven by the development of technologies for measuring and manipulating cellular and molecular forces, with each new tool enabling vast new lines of inquiry. In this review, we discuss recent advances in the manufacturing and capabilities of molecular-scale force and strain sensors. We also demonstrate how DNA nanotechnology has been critical to the enhancement of existing techniques and to the development of unique capabilities for future mechanosensor assembly. DNA is a responsive and programmable building material for sensor fabrication. It enables the systematic interrogation of molecular biomechanics with forces at the 1- to 200-pN scale that are needed to elucidate the fundamental means by which cells and proteins transduce mechanical signals.
Collapse
Affiliation(s)
- Susana M. Beltrán
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania
| | - Marvin J. Slepian
- Department of Medicine and Sarver Heart Center, University
of Arizona, Tucson
- Department of Biomedical Engineering, University of
Arizona, Tucson
- Department of Materials Science and Engineering, University
of Arizona, Tucson
| | - Rebecca E. Taylor
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania
- Department of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania
- Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|