1
|
Birtele M, Cerise M, Djenoune L, Kale G, Maniou E, Prahl LS, Schuster K, Villeneuve C. Pathway to independence: perspectives on the future. Development 2024; 151:dev204366. [PMID: 39369305 DOI: 10.1242/dev.204366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
In this Perspective, our 2024 Pathway to Independence Fellows provide their thoughts on the future of their field. Covering topics as diverse as plant development, tissue engineering and adaptation to climate change, and using a wide range of experimental organisms, these talented postdocs showcase some of the major open questions and key challenges across the spectrum of developmental biology research.
Collapse
Affiliation(s)
- Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, and Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Martina Cerise
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Lydia Djenoune
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Girish Kale
- Department of Zoology, University of Hohenheim, Stuttgart 70593, Germany
| | - Eirini Maniou
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Louis S Prahl
- Department of Bioengineering and the Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keaton Schuster
- Department of Biology, Division of Developmental Genetics, New York University, New York, NY 10010, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Clementine Villeneuve
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| |
Collapse
|
2
|
Martínez-Ara G, Stapornwongkul KS, Ebisuya M. Scaling up complexity in synthetic developmental biology. Science 2022; 378:864-868. [DOI: 10.1126/science.add9666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The application of synthetic biology approaches to study development opens the possibility to build and manipulate developmental processes to understand them better. Researchers have reconstituted fundamental developmental processes, such as cell patterning and sorting, by engineering gene circuits in vitro. Moreover, new tools have been created that allow for the control of developmental processes in more complex organoids and embryos. Synthetic approaches allow testing of which components are sufficient to reproduce a developmental process and under which conditions as well as what effect perturbations have on other processes. We envision that the future of synthetic developmental biology requires an increase in the diversity of available tools and further efforts to combine multiple developmental processes into one system.
Collapse
Affiliation(s)
| | | | - Miki Ebisuya
- European Molecular Biology Laboratory (EMBL) Barcelona, 08003 Barcelona, Spain
| |
Collapse
|
3
|
Martínez-Ara G, Taberner N, Takayama M, Sandaltzopoulou E, Villava CE, Bosch-Padrós M, Takata N, Trepat X, Eiraku M, Ebisuya M. Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues. Nat Commun 2022; 13:5400. [PMID: 36104355 PMCID: PMC9474505 DOI: 10.1038/s41467-022-33115-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
The emerging field of synthetic developmental biology proposes bottom-up approaches to examine the contribution of each cellular process to complex morphogenesis. However, the shortage of tools to manipulate three-dimensional (3D) shapes of mammalian tissues hinders the progress of the field. Here we report the development of OptoShroom3, an optogenetic tool that achieves fast spatiotemporal control of apical constriction in mammalian epithelia. Activation of OptoShroom3 through illumination in an epithelial Madin-Darby Canine Kidney (MDCK) cell sheet reduces the apical surface of the stimulated cells and causes displacements in the adjacent regions. Light-induced apical constriction provokes the folding of epithelial cell colonies on soft gels. Its application to murine and human neural organoids leads to thickening of neuroepithelia, apical lumen reduction in optic vesicles, and flattening in neuroectodermal tissues. These results show that spatiotemporal control of apical constriction can trigger several types of 3D deformation depending on the initial tissue context.
Collapse
Affiliation(s)
- Guillermo Martínez-Ara
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Núria Taberner
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003, Barcelona, Spain
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, 650-0047, Kobe, Japan
| | - Mami Takayama
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, 650-0047, Kobe, Japan
| | | | - Casandra E Villava
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Miquel Bosch-Padrós
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Nozomu Takata
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, 650-0047, Kobe, Japan
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mototsugu Eiraku
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, 650-0047, Kobe, Japan
| | - Miki Ebisuya
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003, Barcelona, Spain.
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, 650-0047, Kobe, Japan.
| |
Collapse
|
4
|
Ferreira MJS, Mancini FE, Humphreys PA, Ogene L, Buckley M, Domingos MAN, Kimber SJ. Pluripotent stem cells for skeletal tissue engineering. Crit Rev Biotechnol 2022; 42:774-793. [PMID: 34488516 DOI: 10.1080/07388551.2021.1968785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we review the use of human pluripotent stem cells for skeletal tissue engineering. A number of approaches have been used for generating cartilage and bone from both human embryonic stem cells and induced pluripotent stem cells. These range from protocols relying on intrinsic cell interactions and signals from co-cultured cells to those attempting to recapitulate the series of steps occurring during mammalian skeletal development. The importance of generating authentic tissues rather than just differentiated cells is emphasized and enabling technologies for doing this are reported. We also review the different methods for characterization of skeletal cells and constructs at the tissue and single-cell level, and indicate newer resources not yet fully utilized in this field. There have been many challenges in this research area but the technologies to overcome these are beginning to appear, often adopted from related fields. This makes it more likely that cost-effective and efficacious human pluripotent stem cell-engineered constructs may become available for skeletal repair in the near future.
Collapse
Affiliation(s)
- Miguel J S Ferreira
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul A Humphreys
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Leona Ogene
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Michael Buckley
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Marco A N Domingos
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Veenvliet JV, Lenne PF, Turner DA, Nachman I, Trivedi V. Sculpting with stem cells: how models of embryo development take shape. Development 2021; 148:dev192914. [PMID: 34908102 PMCID: PMC8722391 DOI: 10.1242/dev.192914] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryogenesis, organisms acquire their shape given boundary conditions that impose geometrical, mechanical and biochemical constraints. A detailed integrative understanding how these morphogenetic information modules pattern and shape the mammalian embryo is still lacking, mostly owing to the inaccessibility of the embryo in vivo for direct observation and manipulation. These impediments are circumvented by the developmental engineering of embryo-like structures (stembryos) from pluripotent stem cells that are easy to access, track, manipulate and scale. Here, we explain how unlocking distinct levels of embryo-like architecture through controlled modulations of the cellular environment enables the identification of minimal sets of mechanical and biochemical inputs necessary to pattern and shape the mammalian embryo. We detail how this can be complemented with precise measurements and manipulations of tissue biochemistry, mechanics and geometry across spatial and temporal scales to provide insights into the mechanochemical feedback loops governing embryo morphogenesis. Finally, we discuss how, even in the absence of active manipulations, stembryos display intrinsic phenotypic variability that can be leveraged to define the constraints that ensure reproducible morphogenesis in vivo.
Collapse
Affiliation(s)
- Jesse V. Veenvliet
- Stembryogenesis Lab, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Pierre-François Lenne
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, 13288, Marseille, France
| | - David A. Turner
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, L7 8TX, UK
| | - Iftach Nachman
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Vikas Trivedi
- European Molecular Biology Laboratories (EMBL), Barcelona, 08003, Spain
- EMBL Heidelberg, Developmental Biology Unit, 69117, Heidelberg, Germany
| |
Collapse
|
6
|
Ishii M, Tateya T, Matsuda M, Hirashima T. Stalling interkinetic nuclear migration in curved pseudostratified epithelium of developing cochlea. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211024. [PMID: 34909216 PMCID: PMC8652271 DOI: 10.1098/rsos.211024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/05/2021] [Indexed: 05/15/2023]
Abstract
The bending of epithelial tubes is a fundamental process in organ morphogenesis, driven by various multicellular behaviours. The cochlea in the mammalian inner ear is a representative example of spiral tissue architecture where the continuous bending of the duct is a fundamental component of its morphogenetic process. Although the cochlear duct morphogenesis has been studied by genetic approaches extensively, it is still unclear how the cochlear duct morphology is physically formed. Here, we report that nuclear behaviour changes are associated with the curvature of the pseudostratified epithelium during murine cochlear development. Two-photon live-cell imaging reveals that the nuclei shuttle between the luminal and basal edges of the cell is in phase with cell-cycle progression, known as interkinetic nuclear migration, in the flat region of the pseudostratified epithelium. However, the nuclei become stationary on the luminal side following mitosis in the curved region. Mathematical modelling together with perturbation experiments shows that this nuclear stalling facilitates luminal-basal differential growth within the epithelium, suggesting that the nuclear stalling would contribute to the bending of the pseudostratified epithelium during the cochlear duct development. The findings suggest a possible scenario of differential growth which sculpts the tissue shape, driven by collective nuclear dynamics.
Collapse
Affiliation(s)
- Mamoru Ishii
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoko Tateya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Speech and Hearing Sciences and Disorders, Faculty of Health and Medical Sciences, Kyoto University of Advanced Science, Kyoto, Japan
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Hirashima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- The Hakubi Center, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| |
Collapse
|
7
|
Walczak PA, Perez-Esteban P, Bassett DC, Hill EJ. Modelling the central nervous system: tissue engineering of the cellular microenvironment. Emerg Top Life Sci 2021; 5:507-517. [PMID: 34524411 PMCID: PMC8589431 DOI: 10.1042/etls20210245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022]
Abstract
With the increasing prevalence of neurodegenerative diseases, improved models of the central nervous system (CNS) will improve our understanding of neurophysiology and pathogenesis, whilst enabling exploration of novel therapeutics. Studies of brain physiology have largely been carried out using in vivo models, ex vivo brain slices or primary cell culture from rodents. Whilst these models have provided great insight into complex interactions between brain cell types, key differences remain between human and rodent brains, such as degree of cortical complexity. Unfortunately, comparative models of human brain tissue are lacking. The development of induced Pluripotent Stem Cells (iPSCs) has accelerated advancement within the field of in vitro tissue modelling. However, despite generating accurate cellular representations of cortical development and disease, two-dimensional (2D) iPSC-derived cultures lack an entire dimension of environmental information on structure, migration, polarity, neuronal circuitry and spatiotemporal organisation of cells. As such, researchers look to tissue engineering in order to develop advanced biomaterials and culture systems capable of providing necessary cues for guiding cell fates, to construct in vitro model systems with increased biological relevance. This review highlights experimental methods for engineering of in vitro culture systems to recapitulate the complexity of the CNS with consideration given to previously unexploited biophysical cues within the cellular microenvironment.
Collapse
Affiliation(s)
- Paige A. Walczak
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| | - Patricia Perez-Esteban
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| | - David C. Bassett
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, U.K
| | - Eric James Hill
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| |
Collapse
|
8
|
Gritti N, Oriola D, Trivedi V. Rethinking embryology in vitro: A synergy between engineering, data science and theory. Dev Biol 2021; 474:48-61. [DOI: 10.1016/j.ydbio.2020.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
|
9
|
Bretherton RC, DeForest CA. The Art of Engineering Biomimetic Cellular Microenvironments. ACS Biomater Sci Eng 2021; 7:3997-4008. [PMID: 33523625 DOI: 10.1021/acsbiomaterials.0c01549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cells and their surrounding microenvironment exist in dynamic reciprocity, where bidirectional feedback and feedforward crosstalk drives essential processes in development, homeostasis, and disease. With the ongoing explosion of customizable biomaterial innovation for dynamic cell culture, an ever-expanding suite of user-programmable scaffolds now exists to probe cell fate in response to spatiotemporally controlled biophysical and biochemical cues. Here, we highlight emerging trends in these efforts, emphasizing strategies that offer tunability over complex network mechanics, present biomolecular cues anisotropically, and harness cells as physiochemical actuators of the pericellular niche. Altogether, these material advances will lead to breakthroughs in our basic understanding of how cells interact with, integrate signals from, and influence their surrounding microenvironment.
Collapse
Affiliation(s)
- Ross C Bretherton
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States.,Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States.,Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Saha K, Lippmann E. Editorial overview: Modeling, measuring, and controlling how cells communicate using engineered multicellular systems. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|