1
|
Hazarika G, Ingole PG. Nano-enabled gas separation membranes: Advancing sustainability in the energy-environment Nexus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173264. [PMID: 38772493 DOI: 10.1016/j.scitotenv.2024.173264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Gas separation membranes serve as crucial to numerous industrial processes, including gas purification, energy production, and environmental protection. Recent advancements in nanomaterials have drastically revolutionized the process of developing tailored gas separation membranes, providing unreachable levels of control over the performance and characteristics of the membrane. The incorporation of cutting-edge nanomaterials into the composition of traditional polymer-based membranes has provided novel opportunities. This review critically analyses recent advancements, exploring the diverse types of nanomaterials employed, their synthesis techniques, and their integration into membrane matrices. The impact of nanomaterial incorporation on separation efficiency, selectivity, and structural integrity is evaluated across various gas separation scenarios. Furthermore, the underlying mechanisms behind nanomaterial-enhanced gas transport are examined, shedding light on the intricate interactions between nanoscale components and gas molecules. The review also discusses potential drawbacks and considerations associated with nanomaterial utilization in membrane development, including scalability and long-term stability. This review article highlights nanomaterials' significant impact in revolutionizing the field of selective gas separation membranes, offering the potential for innovation and future directions in this ever-evolving sector.
Collapse
Affiliation(s)
- Gauri Hazarika
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
2
|
Bauer RA, Qiu M, Schillo-Armstrong MC, Snider MT, Yang Z, Zhou Y, Verweij H. Ultra-Stable Inorganic Mesoporous Membranes for Water Purification. MEMBRANES 2024; 14:34. [PMID: 38392661 PMCID: PMC10890243 DOI: 10.3390/membranes14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Thin, supported inorganic mesoporous membranes are used for the removal of salts, small molecules (PFAS, dyes, and polyanions) and particulate species (oil droplets) from aqueous sources with high flux and selectivity. Nanofiltration membranes can reject simple salts with 80-100% selectivity through a space charge mechanism. Rejection by size selectivity can be near 100% since the membranes can have a very narrow size distribution. Mesoporous membranes have received particular interest due to their (potential) stability under operational conditions and during defouling operations. More recently, membranes with extreme stability became interesting with the advent of in situ fouling mitigation by means of ultrasound emitted from within the membrane structure. For this reason, we explored the stability of available and new membranes with accelerated lifetime tests in aqueous solutions at various temperatures and pH values. Of the available ceria, titania, and magnetite membranes, none were actually stable under all test conditions. In earlier work, it was established that mesoporous alumina membranes have very poor stability. A new nanofiltration membrane was made of cubic zirconia membranes that exhibited near-perfect stability. A new ultrafiltration membrane was made of amorphous silica that was fully stable in ultrapure water at 80 °C. This work provides details of membrane synthesis, stability characterization and data and their interpretation.
Collapse
Affiliation(s)
- Ralph A Bauer
- Global Research and Development Inc., 539 Industrial Mile Road, Columbus, OH 43228, USA
| | - Minghui Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | | | - Matthew T Snider
- Carbon-Carbon Advanced Technologies, 4704 Eden Road, Arlington, TX 76001, USA
| | - Zi Yang
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH 43210, USA
| | - Yi Zhou
- Quantumscape, 1730 Technology Drive, San Jose, CA 95110, USA
| | - Hendrik Verweij
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Elsaid K, Olabi AG, Abdel-Wahab A, Elkamel A, Alami AH, Inayat A, Chae KJ, Abdelkareem MA. Membrane processes for environmental remediation of nanomaterials: Potentials and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162569. [PMID: 36871724 DOI: 10.1016/j.scitotenv.2023.162569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 05/17/2023]
Abstract
Nanomaterials have gained huge attention with their wide range of applications. This is mainly driven by their unique properties. Nanomaterials include nanoparticles, nanotubes, nanofibers, and many other nanoscale structures have been widely assessed for improving the performance in different applications. However, with the wide implementation and utilization of nanomaterials, another challenge is being present when these materials end up in the environment, i.e. air, water, and soil. Environmental remediation of nanomaterials has recently gained attention and is concerned with removing nanomaterials from the environment. Membrane filtration processes have been widely considered a very efficient tool for the environmental remediation of different pollutants. Membranes with their different operating principles from size exclusions as in microfiltration, to ionic exclusion as in reverse osmosis, provide an effective tool for the removal of different types of nanomaterials. This work comprehends, summarizes, and critically discusses the different approaches for the environmental remediation of engineered nanomaterials using membrane filtration processes. Microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) have been shown to effectively remove nanomaterials from the air and aqueous environments. In MF, the adsorption of nanomaterials to membrane material was found to be the main removal mechanism. While in UF and NF, the main mechanism was size exclusion. Membrane fouling, hence requiring proper cleaning or replacement was found to be the major challenge for UF and NF processes. While limited adsorption capacity of nanomaterial along with desorption was found to be the main challenges for MF.
Collapse
Affiliation(s)
- Khaled Elsaid
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - A G Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham B4 7ET, UK
| | - Ahmed Abdel-Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Ali Elkamel
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Abdul Hai Alami
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abrar Inayat
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, South Korea
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt.
| |
Collapse
|
4
|
Recent advance in biomass membranes: Fabrication, functional regulation, and antimicrobial applications. Carbohydr Polym 2023; 305:120537. [PMID: 36737189 DOI: 10.1016/j.carbpol.2023.120537] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
Both inorganic and polymeric membranes have been widely applied for antimicrobial applications. However, these membranes exhibit low biocompatibility, weak biodegradability, and potential toxicity to human being and environment. Biomass materials serve as excellent candidates for fabricating functional membranes to address these problems due to their unique physical, chemical, and biological properties. Here we present recent progress in the fabrication, functional regulation, and antimicrobial applications of various biomass-based membranes. We first introduce the types of biomass membranes and their fabrication methods, including the phase inversion, vacuum filtration, electrospinning, layer-by-layer self-assembly, and coating. Then, the strategies on functional regulation of biomass membranes by adding 0D, 1D, and 2D nanomaterials are presented and analyzed. In addition, antibacterial, antifungal, and antiviral applications of biomass-based functional membranes are summarized. Finally, potential development aspects of biomass membranes are discussed and prospected. This comprehensive review is valuable for guiding the design, synthesis, structural/functional tailoring, and sustainable utilization of biomass membranes.
Collapse
|
5
|
Non-Solvent- and Temperature-Induced Phase Separations of Polylaurolactam Solutions in Benzyl Alcohol as Methods for Producing Microfiltration Membranes. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The possibility of obtaining porous films through solutions of polylaurolactam (PA12) in benzyl alcohol (BA) was considered. The theoretical calculation of the phase diagram showed the presence of the upper critical solution temperature (UCST) for the PA12/BA system at 157 °C. The PA12 completely dissolved in BA at higher temperatures, but the resulting solutions underwent phase separation upon cooling down to 120–140 °C because of the PA12’s crystallization. The viscosity of the 10–40% PA12 solutions increased according to a power law but remained low and did not exceed 5 Pa·s at 160 °C. Regardless of the concentration, PA12 formed a dispersed phase when its solutions were cooled, which did not allow for the obtention of strong films. On the contrary, the phase separation of the 20–30% PA12 solutions under the action of a non-solvent (isopropanol) leads to the formation of flexible microporous films. The measurement of the porosity, wettability, strength, permeability, and rejection of submicron particles showed the best results for a porous film produced from a 30% solution by non-solvent-induced phase separation. This process makes it possible to obtain a membrane material with a 240 nm particle rejection of 99.6% and a permeate flow of 1.5 kg/m2hbar for contaminated water and 69.9 kg/m2hbar for pure water.
Collapse
|
6
|
Setnickova K, Petrickovic R, Uchytil P, Loimer T. Experimental and numerical study of the flux of isobutane vapors near saturation through multi-layered ceramic membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Lee J, Shin Y, Boo C, Hong S. Performance, limitation, and opportunities of acid-resistant nanofiltration membranes for industrial wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Kukobat R, Sakai M, Tanaka H, Otsuka H, Vallejos-Burgos F, Lastoskie C, Matsukata M, Sasaki Y, Yoshida K, Hayashi T, Kaneko K. Ultrapermeable 2D-channeled graphene-wrapped zeolite molecular sieving membranes for hydrogen separation. SCIENCE ADVANCES 2022; 8:eabl3521. [PMID: 35584226 PMCID: PMC9116883 DOI: 10.1126/sciadv.abl3521] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
The efficient separation of hydrogen from methane and light hydrocarbons for clean energy applications remains a technical challenge in membrane science. To address this issue, we prepared a graphene-wrapped MFI (G-MFI) molecular-sieving membrane for the ultrafast separation of hydrogen from methane at a permeability reaching 5.8 × 106 barrers at a single gas selectivity of 245 and a mixed gas selectivity of 50. Our results set an upper bound for hydrogen separation. Efficient molecular sieving comes from the subnanoscale interfacial space between graphene and zeolite crystal faces according to molecular dynamic simulations. The hierarchical pore structure of the G-MFI membrane enabled rapid permeability, indicating a promising route for the ultrafast separation of hydrogen/methane and carbon dioxide/methane in view of energy-efficient industrial gas separation.
Collapse
Affiliation(s)
- Radovan Kukobat
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, Banja Luka 78000, Bosnia and Herzegovina
| | - Motomu Sakai
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-Tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Hideki Tanaka
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Hayato Otsuka
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Fernando Vallejos-Burgos
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
- Morgan Advanced Materials, Carbon Science Centre of Excellence, 310 Innovation Blvd., Suite 250, State College, PA 16803, USA
| | - Christian Lastoskie
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, Ann Arbor, MI 48109-2125, USA
| | - Masahiko Matsukata
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-Tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Advanced Research Institute for Science and Engineering, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Yukichi Sasaki
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
| | - Kaname Yoshida
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
| | - Takuya Hayashi
- Department of Water Environment and Civil Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Katsumi Kaneko
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
9
|
Thomas AM, de Grooth J, Wood JA. Synthetic guidelines for highly selective mixed matrix membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
More N, Avhad M, Utekar S, More A. Polylactic acid (PLA) membrane—significance, synthesis, and applications: a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04135-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Fang Y, Li Y, Dou Y, He Z, Zhao J. Effect of steam on heat storage and attrition performance of limestone under fluidization during CaO/CaCO 3 heat storage cycles. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mixture of high-concentration steam and CO2 is proposed as a calcination medium for a CaO/CaCO3 heat storage system.
Collapse
Affiliation(s)
- Yi Fang
- Shandong Engineering Laboratory for High-efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Yingjie Li
- Shandong Engineering Laboratory for High-efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Yehui Dou
- Shandong Engineering Laboratory for High-efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Zirui He
- Institute of Mechanics, Materials and Civil Engineering (iMMC), Materials & Process Engineering (IMAP), Université Catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-la-Neuve, Belgium
| | - Jianli Zhao
- Shandong Engineering Laboratory for High-efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
12
|
Asghari M, Saadatmandi S, Afsari M. Graphene Oxide and its Derivatives for Gas Separation Membranes. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Morteza Asghari
- University of Science and Technology of Mazandaran Separation Processes Research Group (SPRG) Behshahr Mazandaran Iran
| | | | - Morteza Afsari
- University of Technology Sydney (UTS) Center for Technology in Water and Wastewater (CTWW) School of Civil and Environmental Engineering 2007 Sydney NSW Australia
| |
Collapse
|
13
|
Cui Y, An X, Zhang S, Tang Q, Lan H, Liu H, Qu J. Emerging graphitic carbon nitride-based membranes for water purification. WATER RESEARCH 2021; 200:117207. [PMID: 34020332 DOI: 10.1016/j.watres.2021.117207] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Membrane separation is a promising technology that can effectively remove various existing contaminants from water with low energy consumption and small carbon footprint. The critical issue of membrane technology development is to obtain a low-cost, stable, tunable and multifunctional material for membrane fabrication. Graphitic carbon nitride (g-C3N4) has emerged as a promising membrane material, owing to the unique structure characteristics and outstanding catalytic activity. This review paper outlined the advanced material strategies used to regulate the molecule structure of g-C3N4 for membrane separation. The presentative progresses on the applications of g-C3N4-based membranes for water purification have been elaborated. Essentially, we highlighted the innovation integration of physical separation, catalysis and energy conversion during water purification, which was of great importance for the sustainability of water treatment techniques. Finally, the continuing challenges of g-C3N4-based membranes and the possible breakthrough directions in the future research was prospected.
Collapse
Affiliation(s)
- Yuqi Cui
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shun Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingwen Tang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Roslyakov IV, Petukhov DI, Napolskii KS. Permeability of anodic alumina membranes grown on low-index aluminium surfaces. NANOTECHNOLOGY 2021; 32:33LT01. [PMID: 33962402 DOI: 10.1088/1361-6528/abfeea] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Porous anodic aluminium oxide (AAO) membranes have various practical applications in separation and purification technologies. Numerous approaches have been utilized to tailor the transport properties of porous AAO films, but all of them assume an isotropic nature of anodized aluminium. Here, the impact of aluminium crystallography on the permeability of AAO membranes is disclosed. A comparative study of AAO membranes formed on low-index aluminium surfaces by anodizing in a sulphuric acid electrolyte is presented. Small-angle x-ray scattering is used to quantify the out-of-plane pore arrangement. AAO grown on an Al(100) substrate possesses a porous structure with minimal point defects and pore tortuosity, providing the highest permeability of individual gases in a series of AAO membranes. These findings can also be applied for the fabrication of highly permeable AAO membranes on polycrystalline Al foils.
Collapse
Affiliation(s)
- I V Roslyakov
- Lomonosov Moscow State University, Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry RAS, Moscow, Russia
| | - D I Petukhov
- Lomonosov Moscow State University, Moscow, Russia
| | - K S Napolskii
- Lomonosov Moscow State University, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
16
|
Zagho MM, Hassan MK, Khraisheh M, Al-Maadeed MAA, Nazarenko S. A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs). CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100091] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Raza W, Wang J, Yang J, Tsuru T. Progress in pervaporation membranes for dehydration of acetic acid. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118338] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Zirconia-supported hybrid organosilica microporous membranes for CO2 separation and pervaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Hao S, Jia Z, Wen J, Li S, Peng W, Huang R, Xu X. Progress in adsorptive membranes for separation – A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117772] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Surface Modifications of Nanofillers for Carbon Dioxide Separation Nanocomposite Membrane. Symmetry (Basel) 2020. [DOI: 10.3390/sym12071102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CO2 separation is an important process for a wide spectrum of industries including petrochemical, refinery and coal-fired power plant industries. The membrane-based process is a promising operation for CO2 separation owing to its fundamental engineering and economic benefits over the conventionally used separation processes. Asymmetric polymer–inorganic nanocomposite membranes are endowed with interesting properties for gas separation processes. The presence of nanosized inorganic nanofiller has offered unprecedented opportunities to address the issues of conventionally used polymeric membranes. Surface modification of nanofillers has become an important strategy to address the shortcomings of nanocomposite membranes in terms of nanofiller agglomeration and poor dispersion and polymer–nanofiller incompatibility. In the context of CO2 gas separation, surface modification of nanofiller is also accomplished to render additional CO2 sorption capacity and facilitated transport properties. This article focuses on the current strategies employed for the surface modification of nanofillers used in the development of CO2 separation nanocomposite membranes. A review based on the recent progresses made in physical and chemical modifications of nanofiller using various techniques and modifying agents is presented. The effectiveness of each strategy and the correlation between the surface modified nanofiller and the CO2 separation performance of the resultant nanocomposite membranes are thoroughly discussed.
Collapse
|
21
|
Preparation of a Zirconia-Based Ceramic Membrane and Its Application for Drinking Water Treatment. Symmetry (Basel) 2020. [DOI: 10.3390/sym12060933] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work concerns the preparation of a mineral membrane by the slip casting method based on zirconium oxide (ZrO2) and kaolin. The membrane support is produced from a mixture of clay (kaolin) and calcium carbonate (calcite) powders using heat treatment (sintering). Membrane and support characterization were performed by Scanning Electron Microscopy (SEM), X-ray Fluorescence (XRF), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Raman Spectroscopy. The prepared mineral membrane was tested to treat drinking water obtained from different zones of the El Athmania (Algeria) water station (raw, coagulated, decanted, and bio filtered water). Experimental parameters such as permeate flux, turbidity, and total coliforms were monitored. The results showed that the mineral membrane was mainly composed of SiO2 and Al2O3 and the outer surface, which represented the membrane support, was much more porous than the inner surface where the membrane was deposited. The permeate flux of the raw water decreased with filtration time, due to a rejection of the organic matters contained in the raw water. Moreover, the absence of total coliforms in the filtrate and the increase in concentration in the concentrate indicate that the prepared mineral membrane can be used for drinking water treatment.
Collapse
|
22
|
Suhaimi NH, Yeong YF, Ch’ng CWM, Jusoh N. Tailoring CO 2/CH 4 Separation Performance of Mixed Matrix Membranes by Using ZIF-8 Particles Functionalized with Different Amine Groups. Polymers (Basel) 2019; 11:polym11122042. [PMID: 31835373 PMCID: PMC6960569 DOI: 10.3390/polym11122042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/17/2023] Open
Abstract
CO2 separation from CH4 by using mixed matrix membranes has received great attention due to its higher separation performance compared to neat polymeric membrane. However, Robeson’s trade-off between permeability and selectivity still remains a major challenge for mixed matrix membrane in CO2/CH4 separation. In this work, we report the preparation, characterization and CO2/CH4 gas separation properties of mixed matrix membranes containing 6FDA-durene polyimide and ZIF-8 particles functionalized with different types of amine groups. The purpose of introducing amino-functional groups into the filler is to improve the interaction between the filler and polymer, thus enhancing the CO2 /CH4 separation properties. ZIF-8 were functionalized with three differents amino-functional group including 3-(Trimethoxysilyl)propylamine (APTMS), N-[3-(Dimethoxymethylsilyl)propyl ethylenediamine (AAPTMS) and N1-(3-Trimethoxysilylpropyl) diethylenetriamine (AEPTMS). The structural and morphology properties of the resultant membranes were characterized by using different analytical tools. Subsequently, the permeability of CO2 and CH4 gases over the resultant membranes were measured. The results showed that the membrane containing 0.5 wt% AAPTMS-functionalized ZIF-8 in 6FDA- durene polymer matrix displayed highest CO2 permeability of 825 Barrer and CO2/CH4 ideal selectivity of 26.2, which successfully lies on Robeson upper bound limit.
Collapse
Affiliation(s)
- Nadia Hartini Suhaimi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.H.S.); (C.W.M.C.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Yin Fong Yeong
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.H.S.); (C.W.M.C.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Correspondence: ; Tel.: +60-5-368-7564
| | - Christine Wei Mann Ch’ng
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.H.S.); (C.W.M.C.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Norwahyu Jusoh
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.H.S.); (C.W.M.C.); (N.J.)
- Centre for Contaminant Control & Utilization (CenCoU), Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
23
|
Van Gestel T, Sebold D. Hydrothermally stable mesoporous ZrO2 membranes prepared by a facile nanoparticle deposition process. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Zou D, Xu J, Chen X, Drioli E, Qiu M, Fan Y. A novel thermal spraying technique to fabricate fly ash/alumina composite membranes for oily emulsion and spent tin wastewater treatment. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Singha NR, Karmakar M, Chattopadhyay PK, Roy S, Deb M, Mondal H, Mahapatra M, Dutta A, Mitra M, Roy JSD. Structures, Properties, and Performances-Relationships of Polymeric Membranes for Pervaporative Desalination. MEMBRANES 2019; 9:E58. [PMID: 31052381 PMCID: PMC6572519 DOI: 10.3390/membranes9050058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/03/2022]
Abstract
For the fulfilment of increasing global demand and associated challenges related to the supply of clean-and-safe water, PV has been considered as one of the most attractive and promising areas in desalinating salty-water of varied salinities. In pervaporative desalination, the sustainability, endurance, and structural features of membrane, along with operating parameters, play the dominant roles and impart paramount impact in governing the overall PV efficiency. Indeed, polymeric- and organic-membranes suffer from several drawbacks, including inferior structural stability and durability, whereas the fabrication of purely inorganic membranes is complicated and costly. Therefore, recent development on the high-performance and cost-friendly PV membrane is mostly concentrated on synthesizing composite- and NCP-membranes possessing the advantages of both organic- and inorganic-membranes. This review reflects the insights into the physicochemical properties and fabrication approaches of different classes of PV membranes, especially composite- and NCP-membranes. The mass transport mechanisms interrelated to the specialized structural features have been discussed. Additionally, the performance potential and application prospects of these membranes in a wide spectrum of desalination and wastewater treatment have been elaborated. Finally, the challenges and future perspectives have been identified in developing and scaling up different high-performance membranes suitable for broader commercial applications.
Collapse
Affiliation(s)
- Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Mrinmoy Karmakar
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Sagar Roy
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Himarati Mondal
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Madhushree Mitra
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| |
Collapse
|
26
|
|
27
|
Kayvani Fard A, McKay G, Buekenhoudt A, Al Sulaiti H, Motmans F, Khraisheh M, Atieh M. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E74. [PMID: 29304024 PMCID: PMC5793572 DOI: 10.3390/ma11010074] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 11/26/2022]
Abstract
Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.
Collapse
Affiliation(s)
- Ahmad Kayvani Fard
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha 5825, Qatar.
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 5825, Qatar.
| | - Gordon McKay
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 5825, Qatar.
| | - Anita Buekenhoudt
- Department of Separation and Conversion Technology, VITO (Flemish Institute of Technological Research), Boeretang 200, B-2400 Mol, Belgium.
| | - Huda Al Sulaiti
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha 5825, Qatar.
| | - Filip Motmans
- Department of Separation and Conversion Technology, VITO (Flemish Institute of Technological Research), Boeretang 200, B-2400 Mol, Belgium.
| | - Marwan Khraisheh
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha 5825, Qatar.
| | - Muataz Atieh
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha 5825, Qatar.
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 5825, Qatar.
| |
Collapse
|
28
|
Feijani EA, Mahdavi H, Tavassoli A. Synthesis and gas permselectivity of CuBTC–GO–PVDF mixed matrix membranes. NEW J CHEM 2018. [DOI: 10.1039/c8nj00796a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A CuBTC (copper(ii) benzene-1,3,5-tricarboxylate) metal organic framework (MOF) and graphene oxide (GO) nanosheets were introduced into a semi-crystalline PVDF to produce mixed matrix membranes (MMMs) to promote gas separation performance.
Collapse
Affiliation(s)
| | - Hossein Mahdavi
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | - Ahmad Tavassoli
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| |
Collapse
|
29
|
Kinetic effects of methane on binary mixture separation on methyltriethoxysilane templated silica membranes. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Avila AM, Arancibia EL. On a Rational Performance Evaluation for the Development of Inorganic Membrane Technology in Gas Separation and Membrane Reactors. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2016. [DOI: 10.1515/ijcre-2015-0219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Inorganic membranes can be made of different materials. However, there have been only few reports on membrane evaluation to convert lab-scale membranes into a prototype for industrial applications. In order to fill this significant gap, new approaches for the development and optimization of membrane products are required. This work focuses on the different aspects related to the performance assessment of membranes used for gas separation and membrane reactors. This approach can be visualized as an algorithm consisting of three specific loops involving different aspects of the overall membrane evaluation. Several factors that have an impact on membrane performance are discussed. These factors are divided into two categories: directly affecting the measurements (setup leakage, concentration polarization, repeatability, pressure gradient) and related to the intrinsic characteristics of permeation flux across the membrane (single and mixture permeation, transport modeling, defect flux, microstructure flexibility). This evaluation protocol includes a literature review with the most recent breakthroughs in this research area.
Collapse
Affiliation(s)
- Adolfo M. Avila
- INQUINOA, CONICET (CCT-Tucuman), National University of Tucuman, Ayacucho 471, C.P. (T4000INI), Tucumán, Argentina
| | - Eleuterio L. Arancibia
- INQUINOA, CONICET (CCT-Tucuman), National University of Tucuman, Ayacucho 471, C.P. (T4000INI), Tucumán, Argentina
| |
Collapse
|
31
|
Castillo SIR, Thies-Weesie DME, Philipse AP. Formation and liquid permeability of dense colloidal cube packings. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022311. [PMID: 25768509 DOI: 10.1103/physreve.91.022311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 06/04/2023]
Abstract
The liquid permeability of dense random packings of cubic colloids with rounded corners is studied for solid hematite cubes and hollow microporous silica cubes. The permeabilities of these two types of packings are similar, confirming that the micropores in the silica shell of the hollow cubes do not contribute to the permeability. From the Brinkman screening length √k of ∼16 nm, we infer that the relevant pores are indeed intercube pores. Furthermore, we relate the permeability to the volume fraction and specific solid volume of the cubes using the Kozeny-Carman relation. The Kozeny-Carman relation contains a constant that accounts for the topology and size distribution of the pores in the medium. The constant obtained from our study with aspherical particles is of the same order of magnitude as those from studies with spherical and ellipsoidal particles, which supports the notion that the Kozeny-Carman relation is applicable for any dense particle packing with (statistically) isotropic microstructures, irrespective of the particle shape.
Collapse
Affiliation(s)
- Sonja I R Castillo
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dominique M E Thies-Weesie
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert P Philipse
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
32
|
Qin L, Mergos IA, Verweij H. Obtaining accurate cross-section images of supported polymeric and inorganic membrane structures. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Cay-Durgun P, Fink SG, Shabilla A, Yin H, Sasaki KA, Lind ML. Analysis of the Water Permeability of Linde Type A Zeolites in Reverse Osmosis. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2014.946147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Large mass flux differences for opposite flow directions of a condensable gas through an asymmetric porous membrane. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.07.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Gun’ko V, Sulym I, Borysenko M, Turov V. Interfacial behavior of water bound to zirconia/nanosilica with adsorbed poly(dimethylsiloxane). Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.02.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Yang GC, Yen CH. The use of different materials to form the intermediate layers of tubular carbon nanofibers/carbon/alumina composite membranes for removing pharmaceuticals from aqueous solutions. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|