1
|
Carzaniga T, Casiraghi L, Nava G, Zanchetta G, Inzani T, Chiari M, Bollati V, Epis S, Bandi C, Lai A, Zehender G, Bellini T, Buscaglia M. Serum antibody fingerprinting of SARS-CoV-2 variants in infected and vaccinated subjects by label-free microarray biosensor. Front Immunol 2024; 15:1323406. [PMID: 38476234 PMCID: PMC10927789 DOI: 10.3389/fimmu.2024.1323406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Both viral infection and vaccination affect the antibody repertoire of a person. Here, we demonstrate that the analysis of serum antibodies generates information not only on the virus type that caused the infection but also on the specific virus variant. We developed a rapid multiplex assay providing a fingerprint of serum antibodies against five different SARS-CoV-2 variants based on a microarray of virus antigens immobilized on the surface of a label-free reflectometric biosensor. We analyzed serum from the plasma of convalescent subjects and vaccinated volunteers and extracted individual antibody profiles of both total immunoglobulin Ig and IgA fractions. We found that Ig level profiles were strongly correlated with the specific variant of infection or vaccination and that vaccinated subjects displayed a larger quantity of total Ig and a lower fraction of IgA relative to the population of convalescent unvaccinated subjects.
Collapse
Affiliation(s)
- Thomas Carzaniga
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Luca Casiraghi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Nava
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Giuliano Zanchetta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Inzani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Marcella Chiari
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, National Research Council of Italy (SCITEC-CNR), Milano, Italy
| | - Valentina Bollati
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy
| | - Sara Epis
- Dipartimento di Bioscienze and Pediatric Clinical Research Center (CRC) ‘Fondazione Romeo ed Enrica Invernizzi’, Università degli Studi di Milano, Milano, Italy
| | - Claudio Bandi
- Dipartimento di Bioscienze and Pediatric Clinical Research Center (CRC) ‘Fondazione Romeo ed Enrica Invernizzi’, Università degli Studi di Milano, Milano, Italy
| | - Alessia Lai
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Gianguglielmo Zehender
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Marco Buscaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Vogl T, Kalka IN, Klompus S, Leviatan S, Weinberger A, Segal E. Systemic antibody responses against human microbiota flagellins are overrepresented in chronic fatigue syndrome patients. SCIENCE ADVANCES 2022; 8:eabq2422. [PMID: 36149952 PMCID: PMC11580831 DOI: 10.1126/sciadv.abq2422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with an unclear etiology and pathogenesis. Both an involvement of the immune system and gut microbiota dysbiosis have been implicated in its pathophysiology. However, potential interactions between adaptive immune responses and the microbiota in ME/CFS have been incompletely characterized. Here, we profiled antibody responses of patients with severe ME/CFS and healthy controls against microbiota and viral antigens represented as a phage-displayed 244,000 variant library. Patients with severe ME/CFS exhibited distinct serum antibody epitope repertoires against flagellins of Lachnospiraceae bacteria. Training machine learning algorithms on this antibody-binding data demonstrated that immune responses against gut microbiota represent a unique layer of information beyond standard blood tests, providing improved molecular diagnostics for ME/CFS. Together, our results point toward an involvement of the microbiota-immune axis in ME/CFS and lay the foundation for comparative studies with inflammatory bowel diseases and illnesses characterized by long-term fatigue symptoms, including post-COVID-19 syndrome.
Collapse
Affiliation(s)
- Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Iris N. Kalka
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shelley Klompus
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Bourgonje AR, Vogl T, Segal E, Weersma RK. Antibody signatures in inflammatory bowel disease: current developments and future applications. Trends Mol Med 2022; 28:693-705. [DOI: 10.1016/j.molmed.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
|
4
|
Paull ML, Bozekowski JD, Daugherty PS. Mapping antibody binding using multiplexed epitope substitution analysis. J Immunol Methods 2021; 499:113178. [PMID: 34757083 DOI: 10.1016/j.jim.2021.113178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/24/2023]
Abstract
A more complete understanding of antibody epitopes would aid the development of diagnostics, therapeutic antibodies, and vaccines. However, current methods for mapping antibody binding to epitopes require a targeted experimental approach, which limits throughput. To address these limitations, we developed Multiplexed Epitope Substitution Analysis (MESA) which can rapidly characterize various distinct epitopes using millions of antibody-binding peptides. We screened peptides from a random 12-mer library that bound to human serum antibody repertoires and determined their sequences using next-generation sequencing (NGS). Computationally, we divided target epitope sequences into overlapping k-mer subsequences and substituted the positions in each k-mer with all 20 amino acids, mimicking a saturation mutagenesis. We then determined enrichments of the substituted k-mers in the screened peptide dataset and used these enrichments to identify substitutions favored for binding at each position in the target epitope, ultimately revealing the precise binding motif. To validate MESA, we determined binding motifs for monoclonal antibodies spiked into serum, recovering the expected binding positions and amino acid preferences. To characterize epitopes bound by a population, we analyzed 50 serum specimens to determine the binding motifs within various target epitopes from common pathogens. Additionally, by analyzing various HSV-1 glycoprotein epitopes, MESA revealed unique binding signatures for HSV-1 seropositive specimens and demonstrated the variability of binding signatures within a population. These results demonstrate that MESA can rapidly identify and characterize binding motifs for an unlimited number of epitopes from a single experiment, accelerating discoveries and enhancing our understanding of antibody-epitope interactions.
Collapse
Affiliation(s)
- Michael L Paull
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Joel D Bozekowski
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.
| | - Patrick S Daugherty
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
5
|
Population-wide diversity and stability of serum antibody epitope repertoires against human microbiota. Nat Med 2021; 27:1442-1450. [PMID: 34282338 DOI: 10.1038/s41591-021-01409-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
Serum antibodies can recognize both pathogens and commensal gut microbiota. However, our current understanding of antibody repertoires is largely based on DNA sequencing of the corresponding B-cell receptor genes, and actual bacterial antigen targets remain incompletely characterized. Here we have profiled the serum antibody responses of 997 healthy individuals against 244,000 rationally selected peptide antigens derived from gut microbiota and pathogenic and probiotic bacteria. Leveraging phage immunoprecipitation sequencing (PhIP-Seq) based on phage-displayed synthetic oligo libraries, we detect a wide breadth of individual-specific as well as shared antibody responses against microbiota that associate with age and gender. We also demonstrate that these antibody epitope repertoires are more longitudinally stable than gut microbiome species abundances. Serum samples of more than 200 individuals collected five years apart could be accurately matched and could serve as an immunologic fingerprint. Overall, our results suggest that systemic antibody responses provide a non-redundant layer of information about microbiota beyond gut microbial species composition.
Collapse
|
6
|
Ashkenazy H, Avram O, Ryvkin A, Roitburd-Berman A, Weiss-Ottolenghi Y, Hada-Neeman S, Gershoni JM, Pupko T. Motifier: An IgOme Profiler Based on Peptide Motifs Using Machine Learning. J Mol Biol 2021; 433:167071. [PMID: 34052285 DOI: 10.1016/j.jmb.2021.167071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/26/2021] [Accepted: 05/22/2021] [Indexed: 11/26/2022]
Abstract
Antibodies provide a comprehensive record of the encounters with threats and insults to the immune system. The ability to examine the repertoire of antibodies in serum and discover those that best represent "discriminating features" characteristic of various clinical situations, is potentially very useful. Recently, phage display technologies combined with Next-Generation Sequencing (NGS) produced a powerful experimental methodology, coined "Deep-Panning", in which the spectrum of serum antibodies is probed. In order to extract meaningful biological insights from the tens of millions of affinity-selected peptides generated by Deep-Panning, advanced bioinformatics algorithms are a must. In this study, we describe Motifier, a computational pipeline comprised of a set of algorithms that systematically generates discriminatory peptide motifs based on the affinity-selected peptides identified by Deep-Panning. These motifs are shown to effectively characterize antibody binding activities and through the implementation of machine-learning protocols are shown to accurately classify complex antibody mixtures representing various biological conditions.
Collapse
Affiliation(s)
- Haim Ashkenazy
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oren Avram
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Arie Ryvkin
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Roitburd-Berman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yael Weiss-Ottolenghi
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Smadar Hada-Neeman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan M Gershoni
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
7
|
Paull ML, Johnston T, Ibsen KN, Bozekowski JD, Daugherty PS. A general approach for predicting protein epitopes targeted by antibody repertoires using whole proteomes. PLoS One 2019; 14:e0217668. [PMID: 31490930 PMCID: PMC6730857 DOI: 10.1371/journal.pone.0217668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022] Open
Abstract
Antibodies are essential to functional immunity, yet the epitopes targeted by antibody repertoires remain largely uncharacterized. To aid in characterization, we developed a generalizable strategy to predict antibody-binding epitopes within individual proteins and entire proteomes. Specifically, we selected antibody-binding peptides for 273 distinct sera out of a random library and identified the peptides using next-generation sequencing. To predict antibody-binding epitopes and the antigens from which these epitopes were derived, we tiled the sequences of candidate antigens into short overlapping subsequences of length k (k-mers). We used the enrichment over background of these k-mers in the antibody-binding peptide dataset to predict antibody-binding epitopes. As a positive control, we used this approach, termed K-mer Tiling of Protein Epitopes (K-TOPE), to predict epitopes targeted by monoclonal and polyclonal antibodies of well-characterized specificity, accurately recovering their known epitopes. K-TOPE characterized a commonly targeted antigen from Rhinovirus A, predicting four epitopes recognized by antibodies present in 87% of sera (n = 250). An analysis of 2,908 proteins from 400 viral taxa that infect humans predicted seven enterovirus epitopes and five Epstein-Barr virus epitopes recognized by >30% of specimens. Analysis of Staphylococcus and Streptococcus proteomes similarly predicted 22 epitopes recognized by >30% of specimens. Twelve of these common viral and bacterial epitopes agreed with previously mapped epitopes with p-values < 0.05. Additionally, we predicted 30 HSV2-specific epitopes that were 100% specific against HSV1 in novel and previously reported antigens. Experimentally validating these candidate epitopes could help identify diagnostic biomarkers, vaccine components, and therapeutic targets. The K-TOPE approach thus provides a powerful new tool to elucidate the organisms, antigens, and epitopes targeted by human antibody repertoires.
Collapse
Affiliation(s)
- Michael L. Paull
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
- * E-mail: (MLP); (PSD)
| | - Tim Johnston
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
| | - Kelly N. Ibsen
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
| | - Joel D. Bozekowski
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
| | - Patrick S. Daugherty
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
- * E-mail: (MLP); (PSD)
| |
Collapse
|
8
|
Editorial overview - Biological engineering: Emerging strategies to understand & engineer the human immune system. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|