1
|
Popovetskiy PS, Petrochenko SA. Preparation of Silver Nanoparticles in a Water-in-Oil Microemulsion Stabilized by Ecosurf EH3 and Determination of Their Electrophoretic Mobility. Electrophoresis 2024. [PMID: 39508200 DOI: 10.1002/elps.202400200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
This work describes a study on the electrophoresis of silver nanoparticles in reverse microemulsions with varying water content. The microemulsion was stabilized using a nonionic ethoxylated surfactant, 2-ethylhexanol triethoxylate (Ecosurf EH3). This study represents the second example of electrophoresis research conducted in media with a low dielectric constant for etoxylated surfactants. The study also determined the boundaries of thermodynamic stability and the conditions required to obtain nanoparticles with a high yield. The hydrodynamic diameter and electrophoretic mobility of nanoparticles were measured using dynamic light scattering and laser Doppler electrophoresis. The study determined the boundary conditions for applying these methods to laser-absorbing samples. The electrophoretic mobility of nanoparticles was found to be dependent on the fraction of water in the range of 2-5% vol. (equivalent to a metal content of 10-25 mM), as determined by electrophoresis in a free medium. The increase in volume fraction of water leads to agglomeration of micelles, which causes a decrease in the electrokinetic potential of nanoparticles, likely due to the blurring of the diffuse part of the electrical double layer.
Collapse
Affiliation(s)
- Pavel S Popovetskiy
- Department of Chemistry of Coordination, Cluster and Supramolecular Compounds, Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia
| | - Sofia A Petrochenko
- Department of Chemistry of Coordination, Cluster and Supramolecular Compounds, Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
Yang Y, Liu Y, Xu M, Cai J, Li Q, Wan Z, Yang X. Hierarchical Self-Aggregation of Multifunctional Steviol Glycosides in Aqueous Solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16438-16448. [PMID: 38981019 DOI: 10.1021/acs.jafc.4c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Steviol glycosides (SGs) are a natural sweetener widely used in the food and beverage industry, but the low solubility and stability of SG aqueous solutions greatly limit their application performance, especially in liquid formulations. In this work, we explore the solubility behavior of rebaudioside A (Reb A) in water, a major component of SGs, with the aim of clarifying the underlying mechanisms of the solubility and stability constraints of SGs, as well as the impact on their multifunctional properties. We demonstrate for the first time that Reb A exhibits hierarchical self-assembly in solutions, forming spherical micelles first when the concentration exceeds its critical micelle concentration (5.071 mg/mL), which then further assemble into large rod-like aggregates. The formation of such large Reb A aggregates is mainly dominated by hydrogen bonding and short-range Coulomb interaction energy, thus leading to the low solubility and precipitation of Reb A solutions. Surprisingly, aggregated Reb A structures display significantly improved organoleptic properties, revealing that self-aggregation can be developed as a simple, efficient, and green strategy for improving the taste profile of SGs. Additionally, the self-aggregation of Reb A at high concentrations impairs active encapsulation and also affects its interfacial and emulsifying properties.
Collapse
Affiliation(s)
- Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Jiyang Cai
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Eftaiha AF, Qaroush AK, Foudeh DM, Abo-Shunnar AS, Hammad SB, Assaf KI, Paige MF. The effect of structural changes on the self-assembly of novel green pyridinium-carboxylate gemini surfactants in Langmuir and Langmuir-Blodgett films. SOFT MATTER 2024; 20:3742-3754. [PMID: 38619818 DOI: 10.1039/d3sm01671d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Engineered molecules with tailored molecular structures have the potential to advance various disciplines by enhancing the properties of biological membranes. In this study, we investigated the fundamental interfacial behavior of newly synthesized, water insoluble, cationic pyridinium-carboxylate based gemini surfactants (GSs) using picolinic acid (PA), nicotinic acid (NA), and isonicotinic acid (INA) and their interactions with dipalmitoylphosphatidylcholine (DPPC) in Langmuir and Langmuir-Blodgett (LB) films. Two synthetic methodologies were employed: (a) connecting two alkyl pyridinecarboxylates through the nitrogen atoms with a xylenyl spacer, namely, PAGS, NAGS1, and INAGS; and (b) dimerizing two nicotinic acid molecules through ester linkages with 1,4-benzenedimethanol, and then quaternizing the pyridine nitrogens with hexadecyl chains to yield NAGS2. A combination of Brewster angle microscopy (BAM) and atomic force microscopy (AFM) imaging techniques yielded valuable insights into the morphology of the GS films and their mixtures with DPPC. Density functional theory (DFT) calculations were used to gain further information on the GSs structures and understand their assembly. The results indicate that the film of INAGS is the most hydrophobic film, and its monolayer is the least compressible. When the nitrogen atom and a carboxylate group of the headgroup are positioned closer to each other, the GS molecules tend to form aggregates instead of a continuous film which is observed for the INAGS surfactant. This observation is consistent with the DFT energy values of pair interactions, indicating that both PAGS and NAGS1 have closely packed conformations with high stabilization energy.
Collapse
Affiliation(s)
- Ala'a F Eftaiha
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan.
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Abdussalam K Qaroush
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan.
| | - Dina M Foudeh
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan.
| | - Ahmad S Abo-Shunnar
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan.
| | - Suhad B Hammad
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan.
| | - Khaleel I Assaf
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Matthew F Paige
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
4
|
Lamch Ł, Szczęsna W, Balicki SJ, Bartman M, Szyk-Warszyńska L, Warszyński P, Wilk KA. Multiheaded Cationic Surfactants with Dedicated Functionalities: Design, Synthetic Strategies, Self-Assembly and Performance. Molecules 2023; 28:5806. [PMID: 37570776 PMCID: PMC10421305 DOI: 10.3390/molecules28155806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Contemporary research concerning surfactant science and technology comprises a variety of requirements relating to the design of surfactant structures with widely varying architectures to achieve physicochemical properties and dedicated functionality. Such approaches are necessary to make them applicable to modern technologies, such as nanostructure engineering, surface structurization or fine chemicals, e.g., magnetic surfactants, biocidal agents, capping and stabilizing reagents or reactive agents at interfaces. Even slight modifications of a surfactant's molecular structure with respect to the conventional single-head-single-tail design allow for various custom-designed products. Among them, multicharge structures are the most intriguing. Their preparation requires specific synthetic routes that enable both main amphiphilic compound synthesis using appropriate step-by-step reaction strategies or coupling approaches as well as further derivatization toward specific features such as magnetic properties. Some of the most challenging aspects of multicharge cationic surfactants relate to their use at different interfaces for stable nanostructures formation, applying capping effects or complexation with polyelectrolytes. Multiheaded cationic surfactants exhibit strong antimicrobial and antiviral activity, allowing them to be implemented in various biomedical fields, especially biofilm prevention and eradication. Therefore, recent advances in synthetic strategies for multiheaded cationic surfactants, their self-aggregation and performance are scrutinized in this up-to-date review, emphasizing their applications in different fields such as building blocks in nanostructure engineering and their use as fine chemicals.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Weronika Szczęsna
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Sebastian J. Balicki
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Marcin Bartman
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Liliana Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Kazimiera A. Wilk
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| |
Collapse
|
5
|
Shang Y, Wang J, Doutch J, Li P, Yin Q, Cao X, Feng Y, Yin H. Saturated C22-tailed cationic surfactant in concentrated brine: structural evolution of wormlike micelles and rheological properties. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
6
|
Comprehensive review of the interfacial behavior of water/oil/surfactant systems using dissipative particle dynamics simulation. Adv Colloid Interface Sci 2022; 309:102774. [PMID: 36152373 DOI: 10.1016/j.cis.2022.102774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022]
Abstract
A comprehensive understanding of interfacial behavior in water/oil/surfactant systems is critical to evaluating the performance of emulsions in various industries, specifically in the oil and gas industry. To gain fundamental knowledge regarding this interfacial behavior, atomistic methods, e.g., molecular dynamics (MD) simulation, can be employed; however, MD simulation cannot handle phenomena that require more than a million atoms. The coarse-grained mesoscale methods were introduced to resolve this issue. One of the most effective mesoscale coarse-grained approaches for simulating colloidal systems is dissipative particle dynamics (DPD), which bridges the gap between macroscopic time and length scales and molecular-scale simulation. This work reviews the fundamentals of DPD simulation and its progress on colloids and interface systems, especially surfactant/water/oil mixtures. The effects of temperature, salt content, a water/oil ratio, a shear rate, and a type of surfactant on the interfacial behavior in water/oil/surfactant systems using DPD simulation are evaluated. In addition, the obtained results are also investigated through the lens of the chemistry of surfactants and emulsions. The outcome of this comprehensive review demonstrates the importance of DPD simulation in various processes with a focus on the colloidal and interfacial behavior of surfactants at water-oil interfaces.
Collapse
|
7
|
Choudhary M, Kamil SM. Phase Diagram Study of Catanionic Surfactants Using Dissipative Particle Dynamics. ACS OMEGA 2022; 7:29306-29325. [PMID: 36033693 PMCID: PMC9404172 DOI: 10.1021/acsomega.2c03507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Dissipative particle dynamics (DPD) simulations has been performed to study the phase transition of a mixture of cationic and anionic surfactants in an aqueous solution as a function of the total concentration in water and the relative ratio of surfactants. The impact of the relative difference between the tail lengths of the cationic and anionic surfactants on the phase diagram has been simulated by tuning the number of DPD beads in the simulation model. This research also discusses the impact of the frequently used values of the parameters associated with the harmonic bonds among the bonded DPD beads on the obtained self-assemblies. We find remarkable differences in the resultant self-assemblies based on different choices of harmonic bond parameters. The performed simulations show an enhanced spectrum of self-assemblies with augmented tail lengths and disparate harmonic bond parameters. The obtained self-assemblies are quite unique and can potentially be used in the future for various applications. We also compare the simulation results of the vesicle structures obtained by modeling the electrostatic interaction in the simulation among the charged beads by explicitly introducing charges with a long-range interaction with those obtained by tuning the implicit electrostatic interaction without the long-range interaction. The effects of the chain length of the model and the harmonic bond parameters on the internal density of DPD beads and stress profiles within the vesicles are examined closely. These results are a significant contribution to understanding the stability of the phases and tailoring of the desired vesicles.
Collapse
|
8
|
Alves AAS, Sousa FJPM, Sebastião M, Antunes FE. Influence of electrolytes on the structural and viscosity properties of mixed anionic–nonionic–zwitterionic surfactants in detergent formulations. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Li X, Hong B, Schwiedernoch R, Streiff S, Xu Y. Self-assembly of Symmetric Double Chain Surfactants Derived from Internal Ketone in an Aqueous System. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xi Li
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Bing Hong
- Eco-Efficient Products and Processes Laboratory (E2P2L) Solvay (China) Co., Ltd., Shanghai 201108, P. R. China
| | - Renate Schwiedernoch
- Eco-Efficient Products and Processes Laboratory (E2P2L) Solvay (China) Co., Ltd., Shanghai 201108, P. R. China
| | - Stéphane Streiff
- Eco-Efficient Products and Processes Laboratory (E2P2L) Solvay (China) Co., Ltd., Shanghai 201108, P. R. China
| | - Yisheng Xu
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
10
|
Robertson M, Zagho MM, Nazarenko S, Qiang Z. Mesoporous carbons from self‐assembled polymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Moustafa M. Zagho
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Sergei Nazarenko
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Zhe Qiang
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| |
Collapse
|
11
|
Kurosawa Y, Otsuka Y, Goto S. Increased selectivity of sodium deoxycholate to around Tryptophan213 in bovine serum albumin upon micellization as revealed by singular value decomposition for excitation emission matrix. Colloids Surf B Biointerfaces 2022; 212:112344. [PMID: 35101827 DOI: 10.1016/j.colsurfb.2022.112344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
In the present study, we investigated the effect of bile salts (sodium deoxycholate, NaDC) on the conformation of a globular protein (bovine serum albumin, BSA). The two Tryptophan (Trp) residues of BSA and the fluorescence energy of NaDC are in a three-way relationship, and singular value decomposition (SVD) was used to separate each element in the fluorescence spectra. SVD was used to separate the elements in the fluorescence spectra. SVD showed that NaDC had a particularly large effect on the microenvironment around Trp213 and that micellar NaDC enhanced the selectivity for Trp213. In addition, the Stern-Volmer plots of the warfarin (WAR) specific domain (domain I) and ketoprofen (KP) specific domain (domain II) in the presence and absence of NaDC showed that the effect of NaDC was selective for domain II, where Trp213 is located. These results indicate that NaDC induces a localized and selective conformational change in BSA, and that the selectivity varies depending on the aggregation state of NaDC.
Collapse
Affiliation(s)
- Yuya Kurosawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamasaki, Noda, Chiba 278-8510, Japan
| | - Yuta Otsuka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamasaki, Noda, Chiba 278-8510, Japan
| | - Satoru Goto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamasaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
12
|
Mohammed S, Kuzmenko I, Gadikota G. Reversible assembly of silica nanoparticles at water-hydrocarbon interfaces controlled by SDS surfactant. NANOSCALE 2021; 14:127-139. [PMID: 34897361 DOI: 10.1039/d1nr06807e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Achieving reversible and tunable assembly of silica nanoparticles at liquid-liquid interfaces is vital for a wide range of scientific and technological applications including sustainable subsurface energy applications, catalysis, drug delivery and material synthesis. In this study, we report the mechanisms controlling the assembly of silica nanoparticles (dia. 50 nm and 100 nm) at water-heptane and water-toluene interfaces using sodium dodecyl sulfate (SDS) surfactant with concentrations ranging from 0.001-0.1 wt% using operando ultrasmall/small-angle X-ray scattering, cryogenic scanning electron microscopy imaging and classical molecular dynamics simulations. The results show that the assembly of silica nanoparticles at water-hydrocarbon interfaces can be tuned by controlling the concentrations of SDS. Silica nanoparticles are found to: (a) dominate the interfaces in the absence of interfacial SDS molecules, (b) coexist with SDS at the interfaces at low surfactant concentration of 0.001 wt% and (c) migrate toward the aqueous phase at a high SDS concentration of 0.1 wt%. Energetic analyses suggest that the van der Waals and electrostatic interactions between silica nanoparticles and SDS surfactants increase with SDS concentration. However, the favorable van der Waals and electrostatic interactions between the silica nanoparticles and toluene or heptane decrease with increasing SDS concentration. As a result, the silica nanoparticles migrate away from the water-hydrocarbon interface and towards bulk water at higher SDS concentrations. These calibrated investigations reveal the mechanistic basis for tuning silica nanoparticle assembly at complex interfaces.
Collapse
Affiliation(s)
- Sohaib Mohammed
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Ivan Kuzmenko
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Greeshma Gadikota
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
13
|
Structure and dynamics of dibutylphosphate/n-propylamine ionic liquid: A multi-scale theoretical study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Zhao M, Li X, Cho J. Pressure Effects on Self-Assembly in Mixtures Containing Zwitterionic Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3882-3896. [PMID: 33754727 DOI: 10.1021/acs.langmuir.1c00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To understand the responses of self-assembly in mixtures containing zwitterionic amphiphilic chains to high pressure, we introduce a self-consistent field theory in combination with a molecular equation-of-state model for them in a primitive way. The free energy density for those in the bulk state is first formulated. Its locally equilibrated excess part is then incorporated into Edwards Hamiltonian along with the electrostatic energy contributions to elicit the saddle point approximation to the partition function with proper self-consistent field equations. It is shown that charge-charge correlations enhance self-assembling tendency for the amphiphiles with the opposite charges on one component side, as the medium dielectric constant εr decreases. Those with the opposite charges at the two chain ends respond in a more complicated way to εr. Densification by applied pressure strengthens the self-assembly for both at a moderate εr, similar to typical phospholipids, but pressure effects are strongly dependent on the position of charges along the chains at a lower εr. It is argued that the manipulation of the dielectric environment and disparity in component dispersion interactions can yield useful materials exhibiting various types of baroresponsivity or thermoresponsivity with re-entrant self-assembly.
Collapse
Affiliation(s)
- Mingge Zhao
- Department of Polymer Science & Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin, Gyeonggi-do 16890, Korea
| | - Xiang Li
- Department of Polymer Science & Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin, Gyeonggi-do 16890, Korea
| | - Junhan Cho
- Department of Polymer Science & Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin, Gyeonggi-do 16890, Korea
| |
Collapse
|
15
|
Gao M, Du N, Yao Z, Li Y, Chen N, Hou W. Vesicle formation of single-chain amphiphilic 4-dodecylbenzene sulfonic acid in water and micelle-to-vesicle transition induced by wet-dry cycles. SOFT MATTER 2021; 17:2490-2499. [PMID: 33503106 DOI: 10.1039/d0sm02229b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Simple single-chain amphiphiles (SCAs) can form vesicular structures in their single-component aqueous solutions, which has attracted great attention, but the understanding of their aggregation behavior is still limited. In this work, the aggregation behavior of 4-dodecylbenzene sulfonic acid (DBSA), a typical simple SCA, in water was investigated. The structure and properties of the aggregates formed were determined. In particular, the effect of wet-dry cycles on the structures of aggregates was examined. The mechanisms of aggregate formation and structural transition were discussed. It was found that the increase of DBSA concentration can drive the occurrence of a micelle-to-vesicle transition, showing a critical micelle concentration and critical vesicle concentration of ∼0.53 and 2.14 mM, respectively. The vesicles formed coexist with micelles in solution, with a unilamellar structure and ∼80 nm size, and exhibit size-selective permeability. In addition, the vesicles show remarkable stability upon long-term storage, exposure to high temperature, and freeze-thaw cycles. The H-bonding interaction between DBSA species and the interdigitated structure of alkyl chains in bilayers play a key role in the formation and stability of DBSA vesicles. Interestingly, it was found that the wet-dry cycle can induce a micelle-to-vesicle transition and an obvious increase in the size of the original vesicles, accompanied by the formation of some multilamellar vesicles. This work provides a better understanding of the aggregation behavior of simple SCAs in their single-component aqueous solutions.
Collapse
Affiliation(s)
- Meihua Gao
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Na Du
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Zhiyin Yao
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Ying Li
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Nan Chen
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Wanguo Hou
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China. and National Engineering Technology Research Center of Colloidal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
16
|
Non-ideal mixing behavior in dibutyl phosphate-propylamine binary liquids: Dielectric and nuclear magnetic resonance investigations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Grueso E, Giráldez-Pérez RM, Kuliszewska E, Guerrero JA, Prado-Gotor R. Reversible cationic gemini surfactant-induced aggregation of anionic gold nanoparticles for sensing biomolecules. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Endter LJ, Risselada HJ. Where are those lipid nano rings? J Colloid Interface Sci 2020; 587:789-796. [PMID: 33246654 DOI: 10.1016/j.jcis.2020.11.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/28/2022]
Abstract
Highly curved toroidal micelles with diameters as small as 100 nm have been successfully constructed by self-assembly of amphiphilic block copolymers. These structures may have potential applications in gene or drug delivery. Experimental observations suggest that toroidal micelles likely originate from spherical or disc-like micelles which are tricked into forming toroidal micelles upon external stimuli ('smart' materials). Since self-assembly of polymeric and lipid surfactants is guided by the same physical principles, we hypothesize that 'smart' lipid surfactants can be equivalently tricked into forming highly curved toroidal micelles that are tenfold smaller (≃10 nm diameter). Paradoxically, these 'nano rings' have never been observed. Using coarse-grained molecular dynamics (MD) simulations in conjunction with a state-of-the-art free energy calculation method (a string method), we illustrate how a thermo-responsive lipid surfactant is able to form toroidal micelles. These micelles originate from disc-like micelles that are spontaneously perforated upon heat shocking, thereby supporting a longstanding hypothesis on the possible origin of polymeric toroidal micelle phases observed in experiments. We illustrate that kinetically stable 'nano rings' are substantially shorter lived than their tenfold larger polymeric analogs. The estimated life-time (milliseconds) is in fact similar to the characteristic breaking time of the corresponding worm-like micelle. Finally, we resolve the characteristic finger print which 'nano rings' leave in time-resolved X-ray spectra and illustrate how the uptake of small DNA fragments may enhance their stability. Despite a shared kinetics of self-assembly, length scale dependent differences in the life-time of surfactant phases can occur when phases are kinetically rather than thermodynamically stable. This results in the apparent absence or presence of toroidal micelle phases on different length scales. Our theoretical work precisely illustrates that the universality of surfactants nevertheless remains conserved even at different length scales.
Collapse
Affiliation(s)
- Laura Josefine Endter
- Georg-August University Göttingen, Institute for Theoretical Physics, 37077 Göttingen, Germany
| | - Herre Jelger Risselada
- Georg-August University Göttingen, Institute for Theoretical Physics, 37077 Göttingen, Germany; Leiden University, Leiden Institute of Chemistry (LIC), 2311 Leiden, Netherlands.
| |
Collapse
|
19
|
Rakshit S, Das S, Poonia P, Maini R, Kumar A, Datta A. White Light Generation from a Self-Assembled Fluorogen–Surfactant Composite Light Harvesting Platform. J Phys Chem B 2020; 124:7484-7493. [DOI: 10.1021/acs.jpcb.0c02373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Soumyadipta Rakshit
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Priyanka Poonia
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ratika Maini
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anil Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
20
|
Kuyukina MS, Kochina OA, Gein SV, Ivshina IB, Chereshnev VA. Mechanisms of Immunomodulatory and Membranotropic Activity of Trehalolipid Biosurfactants (a Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Wang J, Wang T, Liu X, Lu Y, Geng J. Multiple-responsive supramolecular vesicle based on azobenzene-cyclodextrin host-guest interaction. RSC Adv 2020; 10:18572-18580. [PMID: 35518297 PMCID: PMC9053703 DOI: 10.1039/d0ra02123g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple-responsive supramolecular vesicles have been successfully fabricated by the complexation between β-cyclodextrin (β-CD) and a pH/photo dual-responsive amphiphile 4-(4-(hexyloxy)phenylazo)benzoate sodium (HPB) with azobenzene and carboxylate groups. When mixing β-CD with HPB to reach a host/guest molar ratio of 1 : 1, the azobenzene group of HPB could be spontaneously included by β-CD molecules. Then, the formed inclusion complexes (HPB@β-CD) could self-assemble into vesicles, which was driven by the hydrophobic interaction of the alkyl chain of HPB and the hydrogen bonds between neighboring β-CDs. The reversible assembly/disassembly of the vesicles could be simply regulated under UV or visible light irradiation. The reversible phase transformation between vesicles and microbelts could also be realized by adjusting the pH values of the sample. Adding both competitive guest molecules (1-adamantane carboxylic acid sodium (ADA)) and α-amylase would result in the phase transformation from vesicles to micelles. Moreover, the vesicles would be destroyed when β-CD was continuously added until the ratio of host/guest reached 2 : 1. Such an interesting quintuple-responsive vesicle system reported here not only has potential applications in various fields such as controlled release or drug delivery, but also provides a reference for the design and construction of multiple responsive systems. A quintuple-responsive vesicle system was successfully fabricated by simply mixing HPB with an equal amount of β-CD.![]()
Collapse
Affiliation(s)
- Jiao Wang
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Ting Wang
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Xiaohui Liu
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Yan Lu
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Jingjing Geng
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| |
Collapse
|
22
|
Pal A, Punia R. Self-aggregation behaviour of cationic surfactant tetradecyltrimethylammonium bromide and bi-amphiphilic surface active ionic liquid 3-methyl-1-pentylimidazolium dodecylsulfate in aqueous solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Emami S, Shayanfar A. Deep eutectic solvents for pharmaceutical formulation and drug delivery applications. Pharm Dev Technol 2020; 25:779-796. [DOI: 10.1080/10837450.2020.1735414] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shahram Emami
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Use of N-oxide and cationic surfactants to enhance antioxidant properties of (+)-usnic acid loaded liposomes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124154] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Wang J, Qi W, Lei N, Chen X. Lamellar hydrogel fabricated by host-guest interaction between α-cyclodextrin and amphiphilic phytosterol ethoxylates. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Vasilieva EA, Lukashenko SS, Vasileva LA, Pavlov RV, Gaynanova GA, Zakharova LY. Aggregation behavior of the surfactant bearing pyrrolidinium head group in the presence of polyacrylic acid. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2390-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Sidim T, Akbaş H. Thermodynamic and Interfacial Properties of Cationic Gemini Surfactant in the Presence of Alcohols. TENSIDE SURFACT DET 2018. [DOI: 10.3139/113.110565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The micellar properties of the cationic Gemini surfactant ethanediyl-1,2-bis(dimethyldodecyl ammonium bromide), C12H25 · (CH3)2N+–(CH2)2–N+(CH3)2C12H25 · 2Br− (12-2-12), with short chain alcohols have been studied by conductivity and surface tension measurements within the temperature range 293.15 K–313.15 K and alcohol percentage. The critical micelle concentration (CMC) of 12-2-12 solution, degree of ionization (α) and standard Gibbs free energy of micellization (ΔG°m), standard enthalpy of micellization (ΔH°m) were calculated from conductivity and surface tension data. The experimental data show that the CMC values of cationic Gemini surfactants increased with addition of methanol, ethanol and n-propanol. The thermodynamic parameters (ΔG°m), (ΔH°m) and (ΔS°m) of micellization of 12-2-12 in alcohol were also calculated from the temperature dependence of the CMC values. CMC, (α), (ΔH°m) and (ΔS°m) increased linearly with increasing temperature. In the mixture of dimeric cationic surfactant (12-2-12) and alcohol solutions, the CMC values showed a slight increase with increasing alcohol concentration. CMC, maximum surface excess concentration at the solution/air interface, Γmax, minimum area per surfactant molecule, Amin, and the surface pressure at CMC, ¶CMC, values calculated from the surface tension measurements and thermodynamic parameters have been evaluated at same temperatures.
Collapse
|
28
|
Li ZY, Chen Y, Wu H, Liu Y. Photoinduced Assembly/Disassembly of Supramolecular Nanoparticle Based on Polycationic Cyclodextrin and Azobenzene-Containing Surfactant. ChemistrySelect 2018. [DOI: 10.1002/slct.201703091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zhong-Yi Li
- College of Chemistry, State Key Laboratory of Elemento-; Organic Chemistry Nankai University; Tianjin 300071 China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-; Organic Chemistry Nankai University; Tianjin 300071 China
| | - Huang Wu
- College of Chemistry, State Key Laboratory of Elemento-; Organic Chemistry Nankai University; Tianjin 300071 China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-; Organic Chemistry Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300071 China
| |
Collapse
|
29
|
Jiang J, Xu Q, Wang G, Cui Z. Light and CO 2/N 2 dual stimuli-responsive wormlike micelles based on a zwitterionic surfactant and an azobenzene surfactant. SOFT MATTER 2018; 14:773-779. [PMID: 29302673 DOI: 10.1039/c7sm02064c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Stimulus-responsive surfactant wormlike micelles have been widely investigated in the past decade. In this article, we report light and CO2/N2 dual stimuli-responsive wormlike micelles using a zwitterionic surfactant (SDAP) and an azobenzene surfactant (C4AzoC6N). In contrast to traditional amine-containing wormlike micelles, a fast and reversible CO2-triggered thinning behavior was observed. The system can also be reversibly switched by UV irradiation. The dual stimuli-responsive wormlike micelles (C4AzoC6N-SDAP) may have applications in the development of functional materials for microfluidics and analytical chemistry.
Collapse
Affiliation(s)
- Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, P. R. China.
| | | | | | | |
Collapse
|
30
|
Joondan N, Jhaumeer Laulloo S, Caumul P. Amino acids: Building blocks for the synthesis of greener amphiphiles. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2017.1421085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nausheen Joondan
- Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | | | - Prakashanand Caumul
- Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
31
|
Xu H, Du N, Song Y, Song S, Hou W. Spontaneous vesicle formation and vesicle-to-micelle transition of sodium 2-ketooctanate in water. J Colloid Interface Sci 2018; 509:265-274. [DOI: 10.1016/j.jcis.2017.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 11/24/2022]
|
32
|
|
33
|
Sharma R, Kamal A, Abdinejad M, Mahajan RK, Kraatz HB. Advances in the synthesis, molecular architectures and potential applications of gemini surfactants. Adv Colloid Interface Sci 2017; 248:35-68. [PMID: 28800974 DOI: 10.1016/j.cis.2017.07.032] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
Gemini surfactants have been the subject of intensive scrutiny by virtue of their unique combination of physical and chemical properties and being used in ordinary household objects to multifarious industrial processes. In this review, we summarize the recent developments of gemini surfactants, highlighting the classification of gemini surfactants based on the variation in headgroup polarity, flexibility/rigidity of spacer, hydrophobic alkyl chain and counterion along with potential applications of gemini surfactants, depicting the truly remarkable journey of gemini surfactants that has just come of age. We have focused on those objectives which will act as suitable candidates to take the field forward. The preceding information will permit us to estimate the effect of structural variation on the aggregation behavior of gemini surfactants for nanoscience and biological applications like antimicrobial, anti-fungal agent, better gene and drug delivery agent with low cytotoxicity and biodegradability, which makes them more advantageous for a number of technological processes and hence reduces the impact of these gemini surfactants on the environment.
Collapse
|
34
|
Dutta R, Pyne A, Kundu S, Banerjee P, Sarkar N. Concentration-Driven Fascinating Vesicle-Fibril Transition Employing Merocyanine 540 and 1-Octyl-3-methylimidazolium Chloride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9811-9821. [PMID: 28849933 DOI: 10.1021/acs.langmuir.7b02136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this article, anionic lipophilic dye merocyanine 540(MC540) and cationic surface-active ionic liquid (SAIL) 1-octyl-3-methylimidazolium chloride (C8mimCl) are employed to construct highly ordered fibrillar and vesicular aggregates exploiting an ionic self-assembly (ISA) strategy. It is noteworthy that the concentration of the counterions has exquisite control over the morphology, in which lowering the concentration of both the building blocks in a stoichiometric ratio of 1:1 provides a vesicle to fibril transition. Here, we have reported the concentration-controlled fibril-vesicle transition utilizing the emerging fluorescence lifetime imaging microscopy (FLIM) technique. Furthermore, we have detected this morphological transformation by means of other microscopic techniques such as field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and cryogenic-transmission electron microscopy (cryo-TEM) to gain additional support. Besides, multiwavelength FLIM (MW-FLIM) and atomic force microscopy (AFM) techniques assist us in knowing the microheterogeneity and the height profile of the vesicles, respectively. We have replaced the SAIL, C8mimCl, by an analogous traditional surfactant, n-octyltrimethylammonium bromide (OTAB), and it provides a discernible change in morphology similar to that of C8mimCl, whereas 1-octanol is unable to exhibit any structural aggregation and thus reveals the importance of electrostatic interaction in supramolecular aggregate formation. However, the SAILs having the same imidazolium headgroup with different chain lengths other than C8mimCl are unable to display any structural transition and determine the importance of the correct chain length for efficient packing of the counterions to form a specific self-assembly. Therefore, this study reveals the synergistic interplay of electrostatic, hydrophobic, and π-π stacking interactions to construct the self-assembly and their concentration-dependent morphological transition.
Collapse
Affiliation(s)
- Rupam Dutta
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Sangita Kundu
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| |
Collapse
|
35
|
Kazakova J, García-Povea A, Fernández-Palacios M, Villar-Navarro M, Carnerero JM, Jimenez-Ruiz A, Prado-Gotor R. A colorimetric study of the interaction of cationic and anionic surfactants with anionic gold nanoparticles. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4186-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Fan W, Liu L, Zhao H. Co-assembly of Patchy Polymeric Micelles and Protein Molecules. Angew Chem Int Ed Engl 2017; 56:8844-8848. [PMID: 28561455 DOI: 10.1002/anie.201704955] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Indexed: 11/05/2022]
Abstract
The development in the synthesis and self-assembly of patchy nanoparticles has resulted in the creation of complex hierarchical structures. Co-assembly of polymeric nanoparticles and protein molecules combines the advantages of polymeric materials and biomolecules, and will produce new functional materials. Co-assembly of positively charged patchy micelles and negatively charged bovine serum albumin (BSA) molecules is investigated. The patchy micelles, which were synthesized using block copolymer brushes as templates, leads to co-assembly with protein molecules into vesicular structures. The average size of the assembled structures can be controlled by the molar ratio of BSA to patchy micelles. The assembled structures are dissociated in the presence of trypsin. The protein-polymer hybrid vesicles could find potential applications in medicine.
Collapse
Affiliation(s)
- Weijing Fan
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
37
|
Fan W, Liu L, Zhao H. Co-assembly of Patchy Polymeric Micelles and Protein Molecules. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704955] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Weijing Fan
- Key Laboratory of Functional Polymer Materials; Ministry of Education, College of Chemistry; Nankai University; Tianjin 300071 China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials; Ministry of Education, College of Chemistry; Nankai University; Tianjin 300071 China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials; Ministry of Education, College of Chemistry; Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 China
| |
Collapse
|
38
|
Indelicato S, Bongiorno D, Calabrese V, Perricone U, Almerico AM, Ceraulo L, Piazzese D, Tutone M. Micelles, Rods, Liposomes, and Other Supramolecular Surfactant Aggregates: Computational Approaches. Interdiscip Sci 2017; 9:392-405. [PMID: 28478537 DOI: 10.1007/s12539-017-0234-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
Surfactants are an interesting class of compounds characterized by the segregation of polar and apolar domains in the same molecule. This peculiarity makes possible a whole series of microscopic and macroscopic effects. Among their features, their ability to segregate particles (fluids or entire domains) and to reduce the surface/interfacial tension is the utmost important. The interest in the chemistry of surfactants never weakened; instead, waves of increasing interest have occurred every time a new field of application of these molecules has been discovered. All these special characteristics depend largely on the ability of surfactants to self-assemble and constitute supramolecular structures where their chemical properties are amplified. The possibility to obtain structural and energy information and, above all, the possibility of forecast the self-organizing mechanisms of surfactants have had a significant boost via computational chemistry. The molecular dynamics models, initially coarse-grained and subsequently (with the increasing computer power) using more accurate models, allowed, over the years, to better understand different aspects of the processes of dispersion, self-assembly, segregation of surfactant. Moreover, several other aspects have been investigated as the effect of the counterions of many ionic surfactants in defining the final supramolecular structures, the mobility of side chains, and the capacity of some surfactant to envelope entire proteins. This review constitutes a perspective/prospective view of these results. On the other hand, some comparison of in silico results with experimental information recently acquired through innovative analytical techniques such as ion mobility mass spectrometry which have been introduced.
Collapse
Affiliation(s)
- Serena Indelicato
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università degli Studi di Palermo, Palermo, Italy
| | - David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Valentina Calabrese
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Ugo Perricone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Daniela Piazzese
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università degli Studi di Palermo, Palermo, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy.
| |
Collapse
|
39
|
Kuo YC, Rajesh R. Nerve growth factor-loaded heparinized cationic solid lipid nanoparticles for regulating membrane charge of induced pluripotent stem cells during differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:680-689. [PMID: 28532079 DOI: 10.1016/j.msec.2017.03.303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 01/12/2023]
Abstract
Nerve growth factor (NGF)-loaded heparinized cationic solid lipid nanoparticles (NGF-loaded HCSLNs) were developed using heparin-stearic acid conjugate, cacao butter, cholesterol, stearylamine (SA), and esterquat 1 (EQ 1). The effect of cationic lipids and lipid matrix composition on the particle size, particle structure, surface molecular composition, chemical structure, electrophoretic mobility, and zeta potential of HCSLNs was investigated. The effect of HCSLNs on the membrane charge of induced pluripotent stem cells (iPSCs) was also studied. The results indicated that the average diameter of HCSLNs was 90-240nm and the particle size of HCSLNs with EQ 1 was smaller than that with SA. The zeta potential and electrophoresis analysis showed that HCSLNs with SA had a positively charged potential and HCSLNs with EQ 1 had a negatively charged potential at pH7.4. The high-resolution transmission electron microscope confirmed the loading of NGF on the surface of HCSLNs. Differentiation of iPSCs using NGF-loaded HCSLNs with EQ 1 exhibited higher absolute values of the electrophoretic mobility and zeta potential than differentiation using NGF-loaded HCSLNs with SA. The immunochemical staining of neuronal nuclei revealed that NGF-loaded HCSLNs can be used for differentiation of iPSCs into neurons. NGF-loaded HCSLNs with EQ 1 had higher viability of iPSCs than NGF-loaded HCSLNs with SA. NGF-loaded HCSLNs with EQ 1 may be promising formulation to regulate the membrane charge of iPSCs during neuronal differentiation.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China.
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| |
Collapse
|
40
|
Surface adsorption and spontaneous aggregation of rhamnolipid mixtures in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.06.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Hayashi K, Iwai H, Kamei T, Iwamoto K, Shimanouchi T, Fujita S, Nakamura H, Umakoshi H. Tailor-made drug carrier: Comparison of formation-dependent physicochemical properties within self-assembled aggregates for an optimal drug carrier. Colloids Surf B Biointerfaces 2017; 152:269-276. [DOI: 10.1016/j.colsurfb.2017.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/30/2016] [Accepted: 01/07/2017] [Indexed: 10/20/2022]
|
42
|
Wang J, Yao M, Li Q, Yi S, Chen X. β-Cyclodextrin induced hierarchical self-assembly of a cationic surfactant bearing an adamantane end group in aqueous solution. SOFT MATTER 2016; 12:9641-9648. [PMID: 27858041 DOI: 10.1039/c6sm02329k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A cationic surfactant with adamantane as the end group, 1-[11-((adamantane-1-carbonyl)oxy)-undecyl]pyridinium bromide (AP), has been synthesized. Its β-cyclodextrin (β-CD) induced hierarchical self-assembling behaviors in aqueous solution were investigated using transmission or scanning electron microscopy methods and small-angle X-ray scattering measurements. Like conventional single chain surfactants, micelles could be formed by AP itself in dilute solutions. However, the dramatic phase transitions of these micelles occurred when host-guest inclusions between AP and β-CD were sequentially produced at different host/guest molar ratios (R), corresponding to the supramolecules with different chemical structures. The AP micelles could be changed into spherical unilamellar vesicles by adding β-CD to reach an R value of 1 : 1. Such vesicles then evolved into multi-wall nanotubes or hydrogels when the β-CD amount was further increased to obtain an R value of 2 : 1. The unique structural characteristics of these supramolecular aggregates come from their "monolayer-like" walls, which have rarely been reported in the past for CD/surfactant inclusion complexes. The interesting results obtained here not only enrich the β-CD/surfactant aggregation systems, but also provide a novel and facile strategy to tune the morphology and structure of aggregates.
Collapse
Affiliation(s)
- Jiao Wang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| | - Meihuan Yao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Qintang Li
- State Key Laboratory of Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Sijing Yi
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| | - Xiao Chen
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| |
Collapse
|
43
|
Liu Z, Wang P, Pei S, Liu B, Sun X, Zhang J. Molecular insights into the pH-induced self-assembly of CTAB/PPA system. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Gordon R, Stober ST, Abrams CF. Aggregation of 12-Hydroxystearic Acid and Its Lithium Salt in Hexane: Molecular Dynamics Simulations. J Phys Chem B 2016; 120:7164-73. [DOI: 10.1021/acs.jpcb.6b04193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan Gordon
- Department
of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Spencer T. Stober
- ExxonMobil Research
and Engineering, Annandale, New Jersey 08801, United States
| | - Cameron F. Abrams
- Department
of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
45
|
Vashishat R, Chabba S, Mahajan RK. Effect of surfactant head group on micellization and morphological transitions in drug-Surfactant catanionic mixture: A multi-technique approach. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.03.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Tomašić V, Mihelj T. The review on properties of solid catanionic surfactants: Main applications and perspectives of new catanionic surfactants and compounds with catanionic assisted synthesis. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1180992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vlasta Tomašić
- Department of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tea Mihelj
- Department of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
47
|
Zhang Y, Zhao H. Surfactant Behavior of Amphiphilic Polymer-Tethered Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3567-3579. [PMID: 27018567 DOI: 10.1021/acs.langmuir.6b00267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, an emerging research area has been the surfactant behavior of polymer-tethered nanoparticles. In this feature article, we have provided a general introduction to the synthesis, self-assembly, and interfacial activity of polymer-tethered inorganic nanoparticles, polymer-tethered organic nanoparticles, and polymer-tethered natural nanoparticles. In addition, applications of the polymer-tethered nanoparticles in colloidal and materials science are briefly reviewed. All research demonstrates that amphiphilic polymer-tethered nanoparticles exhibit surfactant behavior and can be used as elemental building blocks for the fabrication of advanced structures by the self-assembly approach. The polymer-tethered nanoparticles provide new opportunities to engineer materials and biomaterials possessing specific functionality and physical properties.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University , Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
48
|
Jeong YM, Ha JH, Park SN. Cytoprotective effects against UVA and physical properties of luteolin-loaded cationic solid lipid nanoparticle. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2015.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Kuyukina MS, Ivshina IB, Korshunova IO, Stukova GI, Krivoruchko AV. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Express 2016; 6:14. [PMID: 26888203 PMCID: PMC4759446 DOI: 10.1186/s13568-016-0186-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 11/10/2022] Open
Abstract
This study evaluated the effects of a trehalolipid biosurfactant produced by Rhodococcus ruber IEGM 231 on the bacterial adhesion and biofilm formation on the surface of polystyrene microplates. The adhesion of Gram-positive (Arthrobacter simplex, Bacillus subtilis, Brevibacterium linens, Corynebacterium glutamicum, Micrococcus luteus) and Gram-negative (Escherichia coli, Pseudomonas fluorescencens) bacteria correlated differently with the cell hydrophobicity and surface charge. In particular, exponentially growing bacterial cells with increased hydrophobicities adhered stronger to polystyrene compared to more hydrophilic stationary phase cells. Also, a moderate correlation (0.56) was found between zeta potential and adhesion values of actively growing bacteria, suggesting that less negatively charged cells adhered stronger to polystyrene. Efficient biosurfactant concentrations (10-100 mg/L) were determined, which selectively inhibited (up to 76 %) the adhesion of tested bacterial cultures, however without inhibiting their growth. The biosurfactant was more active against growing bacteria rather than resting cells, thus showing high biofilm-preventing properties. Contact angle measurements revealed more hydrophilic surface of the biosurfactant-covered polystyrene compared to bare polystyrene, which allowed less adhesion of hydrophobic bacteria. Furthermore, surface free-energy calculations showed a decrease in the Wan der Waals (γ(LW)) component and an increase in the acid-based (γ(AB)) component caused by the biosurfactant coating of polysterene. However, our results suggested that the biosurfactant inhibited the adhesion of bacteria independently on their surface charges. AFM scanning revealed three-type biosurfactant structures (micelles, cord-like assemblies and large vesicles) formed on glass, depending on concentrations used, that could lead to diverse anti-adhesive effects against different bacterial species.
Collapse
|
50
|
Bongiorno D, Ceraulo L, Indelicato S, Turco Liveri V, Indelicato S. Charged supramolecular assemblies of surfactant molecules in gas phase. MASS SPECTROMETRY REVIEWS 2016; 35:170-187. [PMID: 26113001 DOI: 10.1002/mas.21476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 06/04/2023]
Abstract
The aim of this review is to critically analyze recent literature on charged supramolecular assemblies formed by surfactant molecules in gas phase. Apart our specific interest on this research area, the stimuli to undertake the task arise from the widespread theoretical and applicative benefits emerging from a comprehensive view of this topic. In fact, the study of the formation, stability, and physicochemical peculiarities of non-covalent assemblies of surfactant molecules in gas phase allows to unveil interesting aspects such as the role of attractive, repulsive, and steric intermolecular interactions as driving force of supramolecular organization in absence of interactions with surrounding medium and the size and charge state dependence of aggregate structural and dynamical properties. Other interesting aspects worth to be investigated are joined to the ability of these assemblies to incorporate selected solubilizates molecules as well as to give rise to chemical reactions within a single organized structure. In particular, the incorporation of large molecules such as proteins has been of recent interest with the objective to protect their structure and functionality during the transition from solution to gas phase. Exciting fall-out of the study of gas phase surfactant aggregates includes mass and energy transport in the atmosphere, origin of life and simulation of supramolecular aggregation in the interstellar space. Moreover, supramolecular assemblies of amphiphilic molecules in gas phase could find remarkable applications as atmospheric cleaning agents, nanosolvents and nanoreactors for specialized chemical processes in confined space. Mass spectrometry techniques have proven to be particularly suitable to generate these assemblies and to furnish useful information on their size, size polydispersity, stability, and structural organization. On the other hand molecular dynamics simulations have been very useful to rationalize many experimental findings and to furnish a vivid picture of the structural and dynamic features of these aggregates. Thus, in this review, we will focus on the most important achievements gained in recent years by both these investigative tools.
Collapse
Affiliation(s)
- David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
- Centro Grandi Apparecchiature-UniNetLab, Università degli Studi di Palermo, Via Marini 14, I-90128, Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
- Centro Grandi Apparecchiature-UniNetLab, Università degli Studi di Palermo, Via Marini 14, I-90128, Palermo, Italy
| | - Sergio Indelicato
- Core Laboratory of Quality control and Chemical Risk, Policlinico P. Giaccone, Università di Palermo, via del Vespro 129, I-90127, Palermo, Italy
| | - Vincenzo Turco Liveri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - Serena Indelicato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
- Centro Grandi Apparecchiature-UniNetLab, Università degli Studi di Palermo, Via Marini 14, I-90128, Palermo, Italy
| |
Collapse
|