1
|
Cafiero M, Maillard MN, Maniguet S, de La Poterie V, Huc-Mathis D. Natural-Based Microparticles as Sole Stabilizers of High Internal Phase Pickering Emulsions. ACS OMEGA 2025; 10:4534-4547. [PMID: 39959093 PMCID: PMC11822706 DOI: 10.1021/acsomega.4c08147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/18/2025]
Abstract
Designing a water-reduced emulsion is a technical approach to creating more sustainable cosmetic products and reducing the strain on global water resources. This study explores the structuration of highly concentrated O/W emulsions solely stabilized by particles, also known as "high internal phase Pickering emulsions" (HIPPEs). It focuses especially on particles from natural origins with a micrometric scale instead of the highly modified nanometric ones commonly used (which may raise health issues). Highly concentrated O/W emulsions were formulated with different lipid phases (regarding the chemical nature and polarity) of up to 80%. A comprehensive array of particle natural sources (plant, mineral, etc.), micrometric sizes (from 3 to 45 μm), and geometries were screened. Parameters such as droplet size distribution, microstructure, relative stability (backscatter level changes), and pH were systematically monitored over 2 weeks. An experimental design approach was carried out on three particles to determine their stability domains in various formulation combinations, dissecting complex parameter interactions that pilot emulsion characteristics. Micrometric particles demonstrated excellent efficacy in structuring HIPPEs. A wide spectrum of systems can be engineered, exhibiting a wide range of microstructures (droplets ranging from micrometers to several millimeters), stabilities, and intrinsic properties (with pH values extending from approximately 6 to 10). Emulsions displaying resistance to coalescence in W/O systems were also successfully formulated by using hydrophobic natural particles. Waterless emulsions (less than 20% (w/w) water) stabilized exclusively with naturally derived microparticles represent promising architectures for designing future clean-label cosmetic prototypes. By meticulously selecting particle parameters, including their chemical composition, size, or origin, we can tailor the architecture of HIPPEs to obtain the targeted characteristics and functionalities. Beyond particle constituents, other ingredients influence the structural arrangement such as the lipid phase chemistry.
Collapse
Affiliation(s)
- Marie Cafiero
- AgroParisTech,
UMR SayFood, Paris-Saclay University, Palaiseau 91123, France
- INRAE, Palaiseau 91120, France
- LVMH Recherche, Saint Jean de Braye 45800, France
| | - Marie-Noëlle Maillard
- AgroParisTech,
UMR SayFood, Paris-Saclay University, Palaiseau 91123, France
- INRAE, Palaiseau 91120, France
| | | | | | - Delphine Huc-Mathis
- AgroParisTech,
UMR SayFood, Paris-Saclay University, Palaiseau 91123, France
- INRAE, Palaiseau 91120, France
| |
Collapse
|
2
|
Burgos-Díaz C, Leal-Calderon F, Mosi-Roa Y, Chacón-Fuentes M, Garrido-Miranda K, Opazo-Navarrete M, Quiroz A, Bustamante M. Enhancing the Retention and Oxidative Stability of Volatile Flavors: A Novel Approach Utilizing O/W Pickering Emulsions Based on Agri-Food Byproducts and Spray-Drying. Foods 2024; 13:1326. [PMID: 38731696 PMCID: PMC11083764 DOI: 10.3390/foods13091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Spray-drying is a commonly used method for producing powdered flavors, but the high temperatures involved often result in the loss of volatile molecules. To address this issue, our study focused on a novel approach: developing O/W Pickering emulsions with agri-food byproducts to encapsulate and protect D-limonene during spray-drying and storage. Emulsions formulated with lupin hull, lupin-byproduct (a water-insoluble protein-fiber byproduct derived from the production of lupin protein isolate), and camelina press-cake were subjected to spray-drying at 160 °C. The results revealed that these emulsions exhibited good stability against creaming. The characteristics of the dry emulsions (powders) were influenced by the concentration of byproducts. Quantitative analysis revealed that Pickering emulsions enhanced the retention of D-limonene during spray-drying, with the highest retention achieved using 3% lupin hull and 1% camelina press-cake. Notably, lupin-stabilized emulsions yielded powders with enhanced oxidative stability compared to those stabilized with camelina press-cake. Our findings highlight the potential of food-grade Pickering emulsions to improve the stability of volatile flavors during both processing and storage.
Collapse
Affiliation(s)
- César Burgos-Díaz
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4780000, Chile
| | | | - Yohanna Mosi-Roa
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4780000, Chile
| | | | - Karla Garrido-Miranda
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4780000, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco 4811230, Chile
| | - Mariela Bustamante
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Chemical Engineering and Centre for Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
3
|
Alicke A, Stricker L, Vermant J. Model aggregated 2D suspensions in shear and compression: From a fluid layer to an auxetic interface? J Colloid Interface Sci 2023; 652:317-328. [PMID: 37597413 DOI: 10.1016/j.jcis.2023.07.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
HYPOTHESIS Particle-laden interfaces play a crucial role in engineering stability of multiphase systems. However, a full understanding of the mechanical properties in shear and compression, especially in relation to the underlying microstructural changes, is as yet lacking. In this study, we investigate the interfacial rheological moduli in heterogeneous networks of aggregated 2D suspensions using different deformation modes and relate these moduli to changes in the microstructure. EXPERIMENTS Interfacial rheological experiments were conducted at different surface coverages and clean kinematic conditions, namely in (i) simple shear flow in a modified double wall-ring geometry and (ii) isotropic compression in a custom-built radial trough, while monitoring the evolution of the microstructure. FINDINGS The compressive moduli increase non-monotonically with decreasing void fraction, reflecting the combined effect of aggregate densification and reduction of void structures, with rotation of rigid clusters playing a significant role in closing voids. However, the shear moduli increase monotonically, which correlates with the increase in fractal dimension of the aggregates making up the backbone network. We also observe that these interfaces act as 2D auxetic materials at intermediate coverages, which is surprising given their amorphous structure. This finding has potential implications for the resilience of particle-coated bubbles or droplets subjected to time-varying compression-expansion deformations.
Collapse
Affiliation(s)
- Alexandra Alicke
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland.
| | - Laura Stricker
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland.
| |
Collapse
|
4
|
Nejadmansouri M, Eskandari MH, Yousefi GH, Riazi M, Hosseini SMH. Promising application of probiotic microorganisms as Pickering emulsions stabilizers. Sci Rep 2023; 13:15915. [PMID: 37741896 PMCID: PMC10517997 DOI: 10.1038/s41598-023-43087-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023] Open
Abstract
The purpose of this work was to study the ability of nineteen food-grade microorganisms as Pickering emulsion (PE) stabilizers. Medium-chain triacylglycerol (MCT) oil-in-water (50:50) PEs were fabricated by 10 wt% or 15 wt% of thermally-inactivated yeast, cocci, Bacillus spp. and lactobacilli cells. The characteristics of microorganisms related to "Pickering stabilization" including morphology, surface charge, interfacial tension, and "contact angle" were firstly studied. After that, the cells-stabilized PEs were characterized from both kinetic and thermodynamic viewpoints, microstructure and rheological properties. The interfacial tension and "contact angle" values of various microorganisms ranged from 16.33 to 38.31 mN/m, and from 15° to 106°, respectively. The mean droplet size of PEs ranged from 11.51 to 57.69 µm. Generally, the physical stability of cell-stabilized PEs followed this order: lactobacilli > Bacillus spp. > cocci > yeast. These variations were attributed to the morphology and cell wall composition. Increasing the microorganism concentration significantly increased the physical stability of PEs from a maximum of 12 days at 10 wt% to 35 days at 15 wt% as a result of better interface coverage. Shear-thinning and dominant elastic behaviors were observed in PEs. Physical stability was affected by the free energy of detachment. Therefore, food-grade microorganisms are suggested for stabilizing PEs.
Collapse
Affiliation(s)
- Maryam Nejadmansouri
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Gholam Hossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Riazi
- Enhanced Oil Recovery (EOR) Research Centre, IOR/EOR Research Institute, Shiraz University, Shiraz, Iran
- Department of Petroleum Engineering, School of Chemical and Petroleum Eng, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
5
|
Cardoso BD, Castanheira EMS, Lanceros‐Méndez S, Cardoso VF. Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies. Adv Healthc Mater 2023; 12:e2202936. [PMID: 36898671 PMCID: PMC11468737 DOI: 10.1002/adhm.202202936] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/27/2023] [Indexed: 03/12/2023]
Abstract
The clinical translations of drugs and nanomedicines depend on coherent pharmaceutical research based on biologically accurate screening approaches. Since establishing the 2D in vitro cell culture method, the scientific community has improved cell-based drug screening assays and models. Those advances result in more informative biochemical assays and the development of 3D multicellular models to describe the biological complexity better and enhance the simulation of the in vivo microenvironment. Despite the overall dominance of conventional 2D and 3D cell macroscopic culture methods, they present physicochemical and operational challenges that impair the scale-up of drug screening by not allowing a high parallelization, multidrug combination, and high-throughput screening. Their combination and complementarity with microfluidic platforms enable the development of microfluidics-based cell culture platforms with unequivocal advantages in drug screening and cell therapies. Thus, this review presents an updated and consolidated view of cell culture miniaturization's physical, chemical, and operational considerations in the pharmaceutical research scenario. It clarifies advances in the field using gradient-based microfluidics, droplet-based microfluidics, printed-based microfluidics, digital-based microfluidics, SlipChip, and paper-based microfluidics. Finally, it presents a comparative analysis of the performance of cell-based methods in life research and development to achieve increased precision in the drug screening process.
Collapse
Affiliation(s)
- Beatriz D. Cardoso
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
- Center for MicroElectromechanical Systems (CMEMS‐UMinho)Campus de AzurémUniversity of Minho4800‐058GuimarãesPortugal
- LABBELS‐Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical SystemsUniversity of MinhoBraga/GuimarãesPortugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
| | - Senentxu Lanceros‐Méndez
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
- BCMaterialsBasque Center for MaterialsApplications and NanostructuresUPV/EHU Science ParkLeioa48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - Vanessa F. Cardoso
- Center for MicroElectromechanical Systems (CMEMS‐UMinho)Campus de AzurémUniversity of Minho4800‐058GuimarãesPortugal
- LABBELS‐Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical SystemsUniversity of MinhoBraga/GuimarãesPortugal
| |
Collapse
|
6
|
Mao Y, Lanzon AL, Zheng B, Xu Z, Jiang J, Harbottle D, Yu K, Chen M, Sheng Y, Zhang H. Nanofluids of Amphiphilic Kaolinite-Based Janus Nanosheets for Enhanced Oil Recovery: The Importance of Stable Emulsion. Polymers (Basel) 2023; 15:polym15112515. [PMID: 37299314 DOI: 10.3390/polym15112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
To meet the increasing global demand for energy, better recovery of crude oil from reservoirs must be achieved using methods that are economical and environmentally benign. Here, we have developed a nanofluid of amphiphilic clay-based Janus nanosheets via a facile and scalable method that provides potential to enhance oil recovery. With the aid of dimethyl sulfoxide (DMSO) intercalation and ultrasonication, kaolinite was exfoliated into nanosheets (KaolNS) before being grafted with 3-methacryloxypropyl-triemethoxysilane (KH570) on the Alumina Octahedral Sheet at 40 and 70 °C to form amphiphilic Janus nanosheets (i.e., KaolKH@40 and KaolKH@70). The amphiphilicity and Janus nature of the KaolKH nanosheets have been well demonstrated, with distinct wettability obtained on two sides of the nanosheets, and the KaolKH@70 was more amphiphilic than the KaolKH@40. Upon preparing Pickering emulsion in a hydrophilic glass tube, the KaolKH@40 preferentially stabilized emulsions, while the KaolNS and KaolKH@70 tended to form an observable and high-strength elastic planar interfacial film at the oil-water interface as well as films climbing along the tube's surface, which were supposed to be the result of emulsion instability and the strong adherence of Janus nanosheets towards tube's surface. Subsequently, the KaolKH was grafted with poly(N-Isopropylacrylamide) (PNIPAAm), and the prepared thermo-responsive Janus nanosheets demonstrated a reversible transformation between stable emulsion and the observable interfacial films. Finally, when the samples were subjected to core flooding tests, the nanofluid containing 0.01 wt% KaolKH@40 that formed stable emulsions showed an enhanced oil recovery (EOR) rate of 22.37%, outperforming the other nanofluids that formed observable films (an EOR rate ~13%), showcasing the superiority of Pickering emulsions from interfacial films. This work demonstrates that KH-570-modified amphiphilic clay-based Janus nanosheets have the potential to be used to improve oil recovery, especially when it is able to form stable Pickering emulsions.
Collapse
Affiliation(s)
- Yixuan Mao
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Alain Luigi Lanzon
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Botuo Zheng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhengxiao Xu
- School of Petroleum Engineering, Changzhou University, Changzhou 213164, China
| | - Jiatong Jiang
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Kai Yu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingfeng Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yu Sheng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Huagui Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
7
|
Puel E, Coumes CCD, Poulesquen A, Testard F, Thill A. Pickering emulsions stabilized by inside/out Janus nanotubes: Oil triggers an evolving solid interfacial layer. J Colloid Interface Sci 2023; 647:478-487. [PMID: 37271092 DOI: 10.1016/j.jcis.2023.04.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/06/2023]
Abstract
HYPOTHESIS In the field of Pickering emulsion, original inside/ouside Janus clays nanoparticles are investigated for their emulsification properties. Imogolite is a tubular nanomineral of the clay family having both inner and outer hydrophilic surfaces. A Janus version of this nanomineral with an inner surface fully covered by methyl groups can be obtained directly by synthesis (Imo-CH3, hybrid imogolite). The hydrophilic/hydrophobic duality of the Janus Imo-CH3 allows the nanotubes to be dispersed in an aqueous suspension and enables emulsification of non-polar compounds due to the hydrophobic inner cavity of the nanotube. EXPERIMENTS Through the combination of Small Angle X-ray Scattering (SAXS), interfacial observations and rheology, the stabilization mechanism of imo-CH3 in oil-water emulsions has been investigated. FINDINGS Here, we show that interfacial stabilization of an oil-in-water emulsion is rapidly obtained at a critical Imo-CH3 concentration as low as 0.6 wt%. Below this concentration threshold, no arrested coalescence is observed, and excess oil is expelled from the emulsion through a cascading coalescence mechanism. The stability of the emulsion above the concentration threshold is reinforced by an evolving interfacial solid layer resulting from the aggregation of Imo-CH3 nanotubes that is triggered by the penetration of confined oil front into the continuous phase.
Collapse
Affiliation(s)
- Estelle Puel
- Université Paris-Saclay, CEA Saclay, CNRS, NIMBE, UMR 3685, LIONS, 91191 Gif-Sur-Yvette Cedex, France
| | - Céline Cau Dit Coumes
- CEA, DES, ISEC, DE2D, Université Montpellier, Marcoule, 30207 Bagnols-Sur-Cèze Cedex, France
| | - Arnaud Poulesquen
- CEA, DES, ISEC, DE2D, Université Montpellier, Marcoule, 30207 Bagnols-Sur-Cèze Cedex, France
| | - Fabienne Testard
- Université Paris-Saclay, CEA Saclay, CNRS, NIMBE, UMR 3685, LIONS, 91191 Gif-Sur-Yvette Cedex, France
| | - Antoine Thill
- Université Paris-Saclay, CEA Saclay, CNRS, NIMBE, UMR 3685, LIONS, 91191 Gif-Sur-Yvette Cedex, France.
| |
Collapse
|
8
|
Layan E, Gupta J, Ly I, Nallet F, Bentaleb A, Laurichesse E, Vallée R, Blin JL, Lebeau B, Louërat F, Le Bechec M, Moonen P, Toupance T, Pigot T, Backov R. TiO 2-SiO 2 Self-Standing Materials bearing Hierarchical Porosity: MUB-200(x) Series toward 3D-Efficient VOC Photoabatement Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3871-3882. [PMID: 36878006 DOI: 10.1021/acs.langmuir.2c03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Three-dimensional photoactive self-standing porous materials have been synthesized through the integration of soft chemistry and colloids (emulsions, lyotrope mesophases, and P25 titania nanoparticles). Final multiscale porous ceramics bear 700-1000 m2 g-1 of micromesoporosity depending on the P25 nanoparticle contents. The applied thermal treatment does not affect the P25 anatase/rutile allotropic phase ratio. Photonic investigations correlated with the foams' morphologies suggest that the larger amount of TiO2 that is introduced, the larger the walls' density and the smaller the mean size of the void macroscopic diameters, with both effects inducing a reduction of the photon transport mean free path (lt) with the P25 content increase. A light penetration depth in the range of 6 mm is reached, thus depicting real 3D photonic scavenger behavior. The 3D photocatalytic properties of the MUB-200(x) series, studied in a dynamic "flow-through" configuration, show that the highest photoactivity (concentration of acetone ablated and concentration of CO2 formed) is obtained with the highest monolith height (volume) while providing an average of 75% mineralization. These experimental results validate the fact that these materials, bearing 3D photoactivity, are paving the path for air purification operating with self-standing porous monolith-type materials, which are much easier to handle than powders. As such, the photocatalytic systems can now be advantageously miniaturized, thereby offering indoor air treatment within vehicles/homes while drastically limiting the associated encumbrance. This volumetric counterintuitive acting mode for light-induced reactions may find other relevant advanced applications for photoinduced water splitting, solar fuel, and dye-sensitized solar cells while both optimizing photon scavenging and opening the path for the miniaturization of the processes where encumbrance or a foot-print penalty would be advantageously circumvented.
Collapse
Affiliation(s)
- Elodie Layan
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Juhi Gupta
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Isabelle Ly
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Frédéric Nallet
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Ahmed Bentaleb
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Eric Laurichesse
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Renaud Vallée
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Jean-Luc Blin
- Institut Jean Barriol, UMR CNRS 7053 L2CM, Université de Lorraine, Faculté des Sciences et Technologies, BP 70239, 54506 Vandoeuvre lès Nancy cedex, France
| | - Bénédicte Lebeau
- CNRS - Institut de Science des Matériaux de Mulhouse (IS2M), 15 rue Jean Starcky - BP 2488, 68057 Mulhouse cedex, France
| | - Frédéric Louërat
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Mickael Le Bechec
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| | - Peter Moonen
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Total, LFCR, 64000 Pau, France
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, DMEX, 64000 Pau, France
| | - Thierry Toupance
- Université de Bordeaux, Institut des Sciences Moléculaires CNRS UMR 5255, Bât. A12, 351 Cours de la Libération, 33405 Talence cedex, France
| | - Thierry Pigot
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| | - Rénal Backov
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| |
Collapse
|
9
|
Pickering Emulsions Based in Inorganic Solid Particles: From Product Development to Food Applications. Molecules 2023; 28:molecules28062504. [PMID: 36985475 PMCID: PMC10054141 DOI: 10.3390/molecules28062504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Pickering emulsions (PEs) have attracted attention in different fields, such as food, pharmaceuticals and cosmetics, mainly due to their good physical stability. PEs are a promising strategy to develop functional products since the particles’ oil and water phases can act as carriers of active compounds, providing multiple combinations potentiating synergistic effects. Moreover, they can answer the sustainable and green chemistry issues arising from using conventional emulsifier-based systems. In this context, this review focuses on the applicability of safe inorganic solid particles as emulsion stabilisers, discussing the main stabilisation mechanisms of oil–water interfaces. In particular, it provides evidence for hydroxyapatite (HAp) particles as Pickering stabilisers, discussing the latest advances. The main technologies used to produce PEs are also presented. From an industrial perspective, an effort was made to list new productive technologies at the laboratory scale and discuss their feasibility for scale-up. Finally, the advantages and potential applications of PEs in the food industry are also described. Overall, this review gathers recent developments in the formulation, production and properties of food-grade PEs based on safe inorganic solid particles.
Collapse
|
10
|
Unique Fiber Morphologies from Emulsion Electrospinning—A Case Study of Poly(ε-caprolactone) and Its Applications. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The importance of electrospinning to produce biomimicking micro- and nano-fibrous matrices is realized by many who work in the area of fibers. Based on the solubility of the materials to be spun, organic solvents are typically utilized. The toxicity of the utilized organic solvent could be extremely important for various applications, including tissue engineering, biomedical, agricultural, etc. In addition, the high viscosities of such polymer solutions limit the use of high polymer concentrations and lower down productivity along with the limitations of obtaining desired fiber morphology. This emphasizes the need for a method that would allay worries about safety, toxicity, and environmental issues along with the limitations of using concentrated polymer solutions. To mitigate these issues, the use of emulsions as precursors for electrospinning has recently gained significant attention. Presence of dispersed and continuous phase in emulsion provides an easy route to incorporate sensitive bioactive functional moieties within the core-sheath fibers which otherwise could only be hardly achieved using cumbersome coaxial electrospinning process in solution or melt based approaches. This review presents a detailed understanding of emulsion behavior during electrospinning along with the role of various constituents and process parameters during fiber formation. Though many polymers have been studied for emulsion electrospinning, poly(ε-caprolactone) (PCL) is one of the most studied polymers for this technique. Therefore, electrospinning of PCL based emulsions is highlighted as unique case-study, to provide a detailed theoretical understanding, discussion of experimental results along with their suitable biomedical applications.
Collapse
|
11
|
Silva JTDP, Janssen A, Nicoletti VR, Schroën K, de Ruiter J. Synergistic effect of whey proteins and their derived microgels in the stabilization of O/W emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Sarker M, Watts S, Salentinig S, Lim S. Protein Cage-Stabilized Emulsions: Formulation and Characterization. Methods Mol Biol 2023; 2671:219-239. [PMID: 37308648 DOI: 10.1007/978-1-0716-3222-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The formulation of Pickering emulsions using protein cages is gaining interest for applications in molecular delivery. Despite the growing interest, methods to investigate the at the liquid-liquid interface are limited. This chapter describes standard methods to formulate and protocols to characterize protein cage-stabilized emulsions. The characterization methods are dynamic light scattering (DLS), intrinsic fluorescence spectroscopy (TF), circular dichroism (CD), and small angle X-ray scattering (SAXS). Combining these methods allows understanding of the protein cage nanostructure at the oil/water interface.
Collapse
Affiliation(s)
- Mridul Sarker
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Samuel Watts
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland.
| | - Sierin Lim
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
13
|
He J, Jia H, Wang Q, Xu Y, Zhang L, Jia H, Song L, Wang Y, Xie Q. Investigation on pH and redox-trigged emulsions stabilized by ferrocenyl surfactants in combination with Al2O3 nanoparticles and their application for enhanced oil recovery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Li K, Dai H, Li J, Zhang Q, Wang B. Development of recyclable pH-responsive magnetic nanospheres via RAFT polymerization and their application in Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Heidari F, Jafari SM, Ziaiifar AM, Anton N. Preparation of Pickering Emulsions Stabilized by Modified Silica Nanoparticles via the Taguchi Approach. Pharmaceutics 2022; 14:pharmaceutics14081561. [PMID: 36015190 PMCID: PMC9415153 DOI: 10.3390/pharmaceutics14081561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/05/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, oil-in-water Pickering emulsions (PEs) were prepared by modified silica nanoparticles (MSNs) with cetyltrimethylammonium bromide (CTAB) using the Taguchi approach. The surface modification of SiO2 nanoparticles (NPs) was performed in different conditions, temperatures, pH levels, and amounts of CTAB as a coating agent, followed by an evaluation of their physicochemical properties. After treatment of the SiO2 NPs, the relationship of the MSNs’ surface properties and their efficiency in stabilizing Pickering emulsions was investigated by considering the zeta potential (ZP) and emulsion physical stability as main responses, respectively. Results disclosed were then supported by additional characterization, such as thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, contact angle (CA), and scanning electron microscopy. Results demonstrated that temperature has the most important role in the treatment of SiO2 nanoparticles, and allows for the identification of the best experimental conditions, i.e., range of zeta potential of MSNs to produce more efficient NPs, as well as the best stabilization of PEs.
Collapse
Affiliation(s)
- Fatemeh Heidari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran; (F.H.); (A.M.Z.)
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran; (F.H.); (A.M.Z.)
- Correspondence:
| | - Aman Mohammad Ziaiifar
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran; (F.H.); (A.M.Z.)
| | - Nicolas Anton
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, University of Strasbourg, F-67000 Strasbourg, France;
| |
Collapse
|
16
|
Chen Q, Liang F, Yang T, Li Q, Wu S, Song XM. Asymmetric ultrathin silica nanonets as a super-performance emulsifier. J Colloid Interface Sci 2022; 628:109-120. [PMID: 35914423 DOI: 10.1016/j.jcis.2022.07.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 10/17/2022]
Abstract
HYPOTHESIS Pickering emulsions have been used in many fields such as catalytic synthesis, pharmaceutics and oilfield chemicals. They usually have good stability, but in some extreme conditions such as at high temperatures or in special liquid-liquid systems, poor stability is often encountered. EXPERIMENTS Herein, ultrathin silica nanosheets with controllable morphologies were synthesized via a simple interfacial anisotropic self-assembly approach integrated with pore-forming techniques. By regulating the size, density and pattern of the apertures, three types of unique nanosheets including mesoporous nanosheets, meso/macroporous topology-nanosheets and asymmetric nanonets with hollows were obtained. FINDINGS After a simple hydrophobic modification, the nanonets exhibited super-performance as particulate emulsifiers, owing to their two-dimensional (2D) structures of large pore volume and hierarchical pore/hollow arrangements. As a result, those silica nanonets can stabilize various emulsion systems at considerably high temperatures that are difficult to be stabilized by conventional particulate emulsifiers even at a dose of 100x higher. This work paves a promising way to develop novel 2D asymmetric nanomaterials with tunable compositions, aperture parameters and morphologies for emulsification and potential applications.
Collapse
Affiliation(s)
- Qinan Chen
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Tao Yang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Quan Li
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA.
| | - Shuyao Wu
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Xi-Ming Song
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
17
|
Cionti C, Vavassori G, Pargoletti E, Meroni D, Cappelletti G. One-step, highly stable Pickering emulsions stabilized by ZnO: tuning emulsion stability by in situ functionalization. J Colloid Interface Sci 2022; 628:82-89. [PMID: 35908434 DOI: 10.1016/j.jcis.2022.07.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
Abstract
HYPOTHESIS Oxide-stabilized emulsions generally require a surface functionalization step to tune the oxide wettability, often involving hazardous hydrophobizing agents. Here, we propose the in situ functionalization of ZnO in vegetable oils without the addition of any modifier, resulting in the one-step formation of highly stable Pickering emulsions. EXPERIMENTS The role of ZnO surface features was studied by modifying the particles' wettability through surface functionalization and by comparing different oil phases. The emulsion stability was assessed through aging tests, multiple hot-and-cold cycles, centrifugation, and addition of multiple electrolytes. FINDINGS While the wetting features of the functionalized oxide play a crucial role when the oil phase is methyl octanoate, emulsions based on vegetable oils form also using hydrophilic ZnO. During the emulsification, an in situ functionalization of bare ZnO particles takes place due to the fatty acids present in vegetable oil. These in situ-generated systems lead to stable emulsions showing < 2 μm-diameter oil droplets. The resulting emulsions display excellent stability over time (over seven months) and against temperature variations, mechanical stress and increased ionic strength. Finally, we demonstrate that this approach can be extended to a variety of vegetable oils and oxides with different morphologies.
Collapse
Affiliation(s)
- Carolina Cionti
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, Milano 20133, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, Florence 50121, Italy
| | - Giovanni Vavassori
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, Milano 20133, Italy
| | - Eleonora Pargoletti
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, Milano 20133, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, Florence 50121, Italy
| | - Daniela Meroni
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, Milano 20133, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, Florence 50121, Italy.
| | - Giuseppe Cappelletti
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, Milano 20133, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, Florence 50121, Italy.
| |
Collapse
|
18
|
Perspectives in the stability of emulsion explosive. Adv Colloid Interface Sci 2022; 307:102745. [PMID: 35872440 DOI: 10.1016/j.cis.2022.102745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 11/24/2022]
Abstract
This review explores the stability of emulsion explosive, through summarizing its instability reason, stability mechanism, affecting factors, improvement ways and evaluation methods. The emulsion explosive can be recognized as highly concentrated emulsion due to the volume fraction of dispersed phase exceed 74%. The polydispersity, deformation of compassed droplets and the high content of AN in dispersed phase should be considered for the stability of emulsion explosive. The coalescence is one of the important factor for the instability of emulsion explosive as the droplets bound to each other tightly, together with that, the crystallization of AN in dispersed droplets will occur. This process will further decrease the stability of emulsion explosive. Interfacial tension, the strength of interfacial film and electrical properties of droplets are the important mechanism for preparation and stability of emulsion explosive, among the three, the effect of the strength of interfacial film is most important, and the greater the strength of the interfacial film, the more stable the emulsion explosive. The stability of emulsion explosive will be affected by the emulsifier's structure, the viscosity and polarity of oil, the crystallization point of AN and the nature of matrix, in which, it is important to pay attention to the influence of emulsifier structure because adjusting emulsifier structure is a key channel to improve the stability of emulsion explosive. Besides that, the targeted methods to improve the stability of different emulsion explosive, such as bulk emulsion explosive, packaged emulsion explosive and powdery emulsion explosive, were concluded and established. Finally, we proposed some effective methods for evaluating and predicting stability of emulsion explosive. These results will facilitate the further development of the researches in the mechanism and improvement approach of stability, as well as it will also provide effective technical support for exploring the stability of other similar highly concentrated emulsions.
Collapse
|
19
|
Conidial Emulsion Formulation and Thermal Storability of Metarhizium anisopliae against Red Palm Weevil, Rhynchophorusferrugineus Olivier (Coleoptera: Dryophthoridae). Microorganisms 2022; 10:microorganisms10071460. [PMID: 35889178 PMCID: PMC9320691 DOI: 10.3390/microorganisms10071460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Industrial crops including coconut palm and other palm species are seriously infested by red palm weevil (RPW), resulting in significant economic damage globally. Therefore, this study aimed to develop a mycoinsecticide utilizing conidia of Metarhizium anisopliae to control RPW and sought to investigate a new emulsion formulation for the influences of storage temperature and heat stress on conidia germination in an oil-in-glycerol emulsion system. The mycoinsecticide is an emulsion formulation which comprises an oil carrier, non-ionic surfactants, water, and glycerol, which was optimized by premixing the oil and non-ionic surfactant in different weight ratios (1:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4: 6, 3: 7, 2:8, 1:9, and 0:1). From three selected oil-in-glycerol formulations, F25 was more stable in storage and had a smaller particle size (between 154.3 and 236.4 nm in diameter) and stable zeta potential (above + 30 mV) with low surface tension (29.83 ± 0.24 mN/m to 30.72 ± 0.11 mN/m at room temperature. Extended conidial viability was observed at 4 °C overall; the emulsion formulation maintained 12–15% conidial viability until the eighth week at room temperature. Heat of over 30 °C showed an inhibitory effect on conidial germination. This study revealed that the oil-in-glycerol formulation was stable and able to prolong conidial shelf life as compared to non-formulated conidia.
Collapse
|
20
|
Recio-Colmenares C, Ortíz-Rios D, Pelayo-Vázquez JB, Moreno-Medrano ED, Arratia-Quijada J, Torres-Lubian JR, Huerta-Marcial ST, Mota-Morales JD, Pérez-García MG. Polystyrene Macroporous Magnetic Nanocomposites Synthesized through Deep Eutectic Solvent-in-Oil High Internal Phase Emulsions and Fe 3O 4 Nanoparticles for Oil Sorption. ACS OMEGA 2022; 7:21763-21774. [PMID: 35785308 PMCID: PMC9245104 DOI: 10.1021/acsomega.2c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
In this work, we report a nonaqueous one-step method to synthesize polystyrene macroporous magnetic nanocomposites through high internal phase emulsions (HIPEs) formulated with the deep eutectic solvent (DES) composed of urea:choline chloride (U:ChCl, in a 2:1 molar ratio) as the internal phase and co-stabilized with mixtures of Span 60 surfactant and non-functionalized magnetite nanoparticles (Fe3O4 NPs). The porous structure and the magnetic and lipophilic properties of the nanocomposite materials were easily tailored by varying the amount of Fe3O4 NPs (0, 2, 5 and 10 wt %) and the surfactant Span 60 (0, 5, 10, and 20 wt %) used in the precursor emulsion. The resultant nanocomposite polyHIPEs exhibit high sorption capacity toward different oils (hexane, gasoline, and vegetable oil) due to their high porosity, interconnectivity, and hydrophobic surface. It was observed that the oil sorption capacity was improved when the amount of surfactant decreased and Fe3O4 NPs increased in HIPE formulation. Therefore, polyHIPE formulated with 5 and 10 wt % Span 60 and Fe3O4 NPs, respectively, showed the highest oil sorption capacities of 4.151, 3.556, and 3.266 g g-1 for gasoline, hexane, and vegetable oil, respectively. In addition, the magnetic monoliths were reused for more than ten sorption/desorption cycles without losing their oil sorption capacity.
Collapse
Affiliation(s)
| | - Daniela Ortíz-Rios
- Centro
Universitario de Tonalá, Universidad
de Guadalajara, Tonalá, Jalisco 45425, México
| | - José B. Pelayo-Vázquez
- Centro
Universitario de Tonalá, Universidad
de Guadalajara, Tonalá, Jalisco 45425, México
| | | | - Jenny Arratia-Quijada
- Centro
Universitario de Tonalá, Universidad
de Guadalajara, Tonalá, Jalisco 45425, México
| | | | - Silvia T. Huerta-Marcial
- Centro
de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Josué D. Mota-Morales
- Centro
de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - María G. Pérez-García
- Centro
Universitario de Tonalá, Universidad
de Guadalajara, Tonalá, Jalisco 45425, México
| |
Collapse
|
21
|
Merland T, Waldmann L, Guignard O, Tatry MC, Wirotius AL, Lapeyre V, Garrigue P, Nicolai T, Benyahia L, Ravaine V. Thermo-induced inversion of water-in-water emulsion stability by bis-hydrophilic microgels. J Colloid Interface Sci 2022; 608:1191-1201. [PMID: 34735854 DOI: 10.1016/j.jcis.2021.10.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
HYPOTHESIS Stabilization of water-in-water (W/W) emulsions resulting from the separation of polymeric phases such as dextran (DEX) and poly(ethyleneoxide) (PEO) is highly challenging, because of the very low interfacial tensions between the two phases and because of the interface thickness extending over several nanometers. In the present work, we present a new type of stabilizers, based on bis-hydrophilic, thermoresponsive microgels, incorporating in the same structure poly(N-isopropylacrylamide) (pNIPAM) chains having an affinity for the PEO phase and dextran moieties. We hypothesize that these particles allow better control of the stability of the W/W emulsions. EXPERIMENTS The microgels were synthesized by copolymerizing the NIPAM monomer with a multifunctional methacrylated dextran. They were characterized by dynamic light scattering, zeta potential measurements and nuclear magnetic resonance as a function of temperature. Microgels with different compositions were tested as stabilizers of droplets of the PEO phase dispersed in the DEX phase (P/D) or vice-versa (D/P), at different concentrations and temperatures. FINDINGS Only microgels with the highest DEX content revealed excellent stabilizing properties for the emulsions by adsorbing at the droplet surface, thus demonstrating the fundamental role of bis-hydrophilicity. At room temperature, both pNIPAM and DEX chains were swollen by water and stabilized better D/P emulsions. However, above the volume phase transition temperature (VPTT ≈ 32 °C) of pNIPAM the microgels shrunk and stabilized better P/D emulsions. At all temperatures, excess microgels partitioned more to the PEO phase. The change in structure and interparticle interaction induced by heating can be exploited to control the W/W emulsion stability.
Collapse
Affiliation(s)
- Théo Merland
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS - Le Mans Université, 1, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Léa Waldmann
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Oksana Guignard
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | | | | | - Véronique Lapeyre
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Taco Nicolai
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS - Le Mans Université, 1, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Lazhar Benyahia
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS - Le Mans Université, 1, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
22
|
Abe K, Inasawa S. Deformation and coalescence of particle-stabilized oil droplets in drying aqueous NaCl solutions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Facanali R, Porto NDA, Crucello J, Carvalho RM, Vaz BG, Hantao LW. Naphthenic Acids: Formation, Role in Emulsion Stability, and Recent Advances in Mass Spectrometry-Based Analytical Methods. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6078084. [PMID: 34956687 PMCID: PMC8709775 DOI: 10.1155/2021/6078084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/24/2021] [Indexed: 05/08/2023]
Abstract
Naphthenic acids (NAs) are compounds naturally present in most petroleum sources comprised of complex mixtures with a highly variable composition depending on their origin. Their occurrence in crude oil can cause severe corrosion problems and catalysts deactivation, decreasing oil quality and consequently impacting its productivity and economic value. NAs structures also allow them to behave as surfactants, causing the formation and stabilization of emulsions. In face of the ongoing challenge of treatment of water-in-oil (W/O) or oil-in-water (O/W) emulsions in the oil and gas industry, it is important to understand how NAs act in emulsified systems and which acids are present in the interface. Considering that, this review describes the properties of NAs, their role in the formation and stability of oil emulsions, and the modern analytical methods used for the qualitative analysis of such acids.
Collapse
Affiliation(s)
- Roselaine Facanali
- Institute of Chemistry, University of Campinas, Campinas 13083-862, SP, Brazil
| | | | - Juliana Crucello
- Institute of Chemistry, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Rogerio M. Carvalho
- Leopoldo Américo Miguez de Mello Research and Development Center, Petrobras, Rio de Janeiro 20031-912, RJ, Brazil
| | - Boniek G. Vaz
- Institute of Chemistry, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Leandro W. Hantao
- Institute of Chemistry, University of Campinas, Campinas 13083-862, SP, Brazil
| |
Collapse
|
24
|
Villeneuve P, Bourlieu-Lacanal C, Durand E, Lecomte J, McClements DJ, Decker EA. Lipid oxidation in emulsions and bulk oils: a review of the importance of micelles. Crit Rev Food Sci Nutr 2021:1-41. [PMID: 34839769 DOI: 10.1080/10408398.2021.2006138] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lipid oxidation is a major cause of quality deterioration in food products. In these foods, lipids are often present in a bulk or in emulsified forms. In both systems, the rate, extent and pathway of oxidation are highly dependent on the presence of colloidal structures and interfaces because these are the locations where oxidation normally occurs. In bulk oils, reverse micelles (association colloids) are present and are believed to play a crucial role on lipid oxidation. Conversely, in emulsions, surfactant micelles are present that also play a major role in lipid oxidation pathways. After a brief description of lipid oxidation and antioxidants mechanisms, this review discusses the current understanding of the influence of micellar structures on lipid oxidation. In particular, is discussed the major impact of the presence of micelles in emulsions, or reverse micelles (association colloids) in bulk oil on the oxidative stability of both systems. Indeed, both micelles in emulsions and associate colloids in bulk oils are discussed in this review as nanoscale structures that can serve as reservoirs of antioxidants and pro-oxidants and are involved in their transport within the concerned system. Their role as nanoreactors where lipid oxidation reactions occur is also commented.
Collapse
Affiliation(s)
- Pierre Villeneuve
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Claire Bourlieu-Lacanal
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France.,UMR IATE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | | | - Eric A Decker
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
25
|
Zhang Q, Shen X, Chang S, Ou W, Zhang W. Effect of oil properties on the formation and stability of Pickering emulsions stabilized by ultrafine pearl powder. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Fabrication and characterization of novel high internal Pickering emulsions stabilized solely by ultrafine pearl powder. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Dammak I, Luciano CG, Pérez-Córdoba LJ, Monteiro ML, Conte-Junior CA, Sobral PJDA. Advances in biopolymeric active films incorporated with emulsified lipophilic compounds: a review. RSC Adv 2021; 11:28148-28168. [PMID: 35480739 PMCID: PMC9038010 DOI: 10.1039/d1ra04888k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
The attention towards active films has increased due to consumer demand for high-quality foods without chemical additives. Active biopolymer-based films have shown great potential for active films by impacting food safety, acting as the carriers of various natural antioxidant and antimicrobial compounds, and decreasing environmental pollution from petrol-derived packaging materials. However, there is a wide range of challenges concerning the different characteristics of biopolymers and plasticizers, often hygroscopic/hydrophilic, compared to numerous lipophilic bioactive compounds. Therefore, recent studies have focused on applying oil-in-water emulsion-based systems to enhance the lipophilic bioactive compounds' dispersibility into the film matrix, improving their performance. It is worth emphasizing that resulting complex systems give rise to new challenges such as (i) dispersion technology of the bioactive compounds with minimum adverse effects on its bioactivities, (ii) interactions between different components of the active films, giving rise to new physicochemical properties, and (iii) the change of the diffusion properties of bioactive compounds into the active films, resulting in different release properties. These challenges are profound and critically discussed in this review, as well as the encapsulation techniques employed in preparing emulsions loaded with lipophilic bioactive compounds for the active film development. An outlook of future directions in the research, development, and application of these active films are given.
Collapse
Affiliation(s)
- Ilyes Dammak
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
| | - Carla Giovana Luciano
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
| | | | - Maria Lúcia Monteiro
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
| | - Carlos Adam Conte-Junior
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
- Food Research Center (FoRC), University of São Paulo (USP) São Paulo (SP) Brazil
| |
Collapse
|
28
|
Gao Y, Zhao CX, Sainsbury F. Droplet shape control using microfluidics and designer biosurfactants. J Colloid Interface Sci 2021; 584:528-538. [PMID: 33129162 DOI: 10.1016/j.jcis.2020.09.126] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022]
Abstract
Many uses of emulsion droplets require precise control over droplet size and shape. Here we report a 'shape-memorable' micro-droplet formulation stabilized by a polyethylene glycol (PEG)-modified protein -surfactant, the droplets are stable against coalescence for months and can maintain non-spherical shapes for hours, depending on the surface coverage of PEGylated protein. Monodisperse droplets with aspect ratios ranging from 1.0 to 3.4 were controllably synthesized with a flow-focusing microfluidic device. Mechanical properties of the interfacial protein network were explored to elucidate the mechanism behind the droplet shape conservation phenomenon. Characterization of the protein film revealed that the presence of a PEG layer at interfaces alters the mechanical responses of the protein film, resulting in interfacial networks with improved strength. Taking advantage of the prolonged stabilization of non-spherical droplets, we demonstrate functionalization of the droplet interface with accessible biotins. The stabilization of micro-droplet shape with surface-active proteins that also serve as an anchor for integrating functional moieties, provides a tailorable interface for diverse biomimetic applications.
Collapse
Affiliation(s)
- Yuan Gao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Frank Sainsbury
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia; Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia; Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organization (CSIRO), Brisbane, QLD 4001, Australia.
| |
Collapse
|
29
|
Adilbekova A, Yertayeva A. Pickering emulsions stabilized by some inorganic materials. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2021. [DOI: 10.15328/cb1135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The paper presents studies of various solid stabilizers of emulsions based on inorganic materials. Inorganic colloidal particles have an advantage for obtaining of stable emulsions due to their safety for use in food, cosmetics, pharmaceutical industry and medicine. Pickering emulsions have a higher biodegradability compared to classical emulsions stabilized with surfactants. An overview of inorganic substances such as silicon dioxide, clay materials, metal and metal oxide nanoparticles, calcium compounds and carbon particles used for stabilizing of Pickering emulsions is considered. A variety of solid inorganic particles as well as modification of their surfaces by surfactants allows to obtain the stable Pickering emulsions of different types for a wide range of applications. It should be noted that despite a large number of studies, this class of disperse systems is still not studied fully; various methods of their preparation and influence of solid particle size on stability and size of emulsions droplets are shown.
Collapse
|
30
|
Velandia SF, Marchal P, Lemaitre C, Sadtler V, Roques-Carmes T. Evaluation of the repartition of the particles in Pickering emulsions in relation with their rheological properties. J Colloid Interface Sci 2021; 589:286-297. [PMID: 33472148 DOI: 10.1016/j.jcis.2021.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS The distribution of particles in Pickering emulsions can be estimated through a percolation-type approach coupled to the evolution of their rheological features with the dispersed phase volume fraction ϕ. EXPERIMENTS The rheological behavior of water-in-dodecane Pickering emulsions stabilized with hydrophobic silica nanoparticles is addressed. The emulsions viscosity and elastic modulus are investigated at ϕ varying from 0.1 to 0.75. Various rheological models are adjusted to the experimental data. FINDINGS The comparison of the elastic modulus evolution of the Pickering emulsions with those of emulsions stabilized with surfactants confirms a major contribution of the particles to the rheological behavior of Pickering emulsions and supports the existence of a three-dimensional network between the droplets. The applied percolation approach allows to quantitively estimate a nanoparticles viscoelastic link between the droplets and opposes the classic vision of interfacial monolayers stabilizing the Pickering emulsions. This network of interconnected particles and droplets contributes significantly to the viscosity as well as the elastic modulus of these emulsions. To our knowledge, the applied percolation-based model is the only one capable of providing a structural explanation while describing the abrupt viscosity and elastic modulus growth of Pickering emulsions across the range of ϕ.
Collapse
Affiliation(s)
- Santiago F Velandia
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville, 54001 Nancy, France.
| | - Philippe Marchal
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville, 54001 Nancy, France.
| | - Cécile Lemaitre
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville, 54001 Nancy, France.
| | - Véronique Sadtler
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville, 54001 Nancy, France.
| | - Thibault Roques-Carmes
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville, 54001 Nancy, France.
| |
Collapse
|
31
|
Yang Y, Ali N, Bilal M, Khan A, Ali F, Mao P, Ni L, Gao X, Hong K, Rasool K, Iqbal HM. Robust membranes with tunable functionalities for sustainable oil/water separation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Encapsulation of fragrances and oils by core-shell structures from silica nanoparticles, surfactant and polymer: Effect of particle size. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Residual lignin in cellulose nanofibrils enhances the interfacial stabilization of Pickering emulsions. Carbohydr Polym 2020; 253:117223. [PMID: 33278985 DOI: 10.1016/j.carbpol.2020.117223] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/14/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022]
Abstract
Lignocellulose nanofibrils (LCNF) were used to prepare oil-in-water Pickering emulsions and to assess the role residual lignin in interfacial stabilization. Two LCNF fractions of similar morphology (length ∼700 nm and width ∼8 nm) and structure (polymorphism and crystallinity) were obtained by microfluidization of fibers obtained by hydrothermal treatment of wood with a recyclable organic acid. The LCNF with higher residual lignin was less hydrophilic and, correspondingly, performed better as Pickering stabilizer, producing emulsions of smaller droplet size and higher resistance to creaming. Long-term emulsion stabilization (over 40 days) was achieved with LCNF at concentrations as low as 0.24 (w/v)% based on emulsion volume. We conclude that LCNF-stabilized Pickering emulsions can be finely tuned by varying the residual lignin content, providing a rationale for LCNF selection according to lignin type and concentration as variables affecting stabilization. Complementary considerations include the possible benefits of the residual lignin in LCNF, including antioxidant and UV absorption properties.
Collapse
|
34
|
Inverting structures: from micelles via emulsions to internally self-assembled water and oil continuous nanocarriers. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Dupont H, Fouché C, Dourges MA, Schmitt V, Héroguez V. Polymerization of cellulose nanocrystals-based Pickering HIPE towards green porous materials. Carbohydr Polym 2020; 243:116411. [DOI: 10.1016/j.carbpol.2020.116411] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/16/2023]
|
36
|
Venkataramani D, Tsulaia A, Amin S. Fundamentals and applications of particle stabilized emulsions in cosmetic formulations. Adv Colloid Interface Sci 2020; 283:102234. [PMID: 32795669 DOI: 10.1016/j.cis.2020.102234] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
The cosmetic industry is one of the fastest growing industrial sectors that is constantly evolving by absorbing new technologies and incorporating innovative yet sustainable products. Cosmetic products are comprised of diverse formulations such as skin care, color cosmetics, hair care, makeup, body care products. Traditionally, cosmetic emulsions are stabilized using surfactants or polymers. Due to its adverse effects on environment, cytotoxicity effects, numerous health hazards, there is a strong drive to shift towards sustainable and surfactant free emulsions. With increasing consumer demand for a safer and more biodegradable products, formulating "surfactant- free" emulsions by replacing conventional stabilizers with particles has gained popularity. In this review, various important aspects and applications of particle stabilized emulsions in cosmetic formulations will be discussed. Importantly, novel ideas on surface modification of particles and use of Janus particles in cosmetic formulations will be discussed.
Collapse
|
37
|
Li Y, Zhao G, Hong B, Zhao S, Han X, Pera-Titus M. Unraveling Particle Size and Roughness Effects on the Interfacial Catalytic Properties of Pickering Emulsions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
38
|
Miao C, Atifi S, Hamad WY. Properties and stabilization mechanism of oil-in-water Pickering emulsions stabilized by cellulose filaments. Carbohydr Polym 2020; 248:116775. [PMID: 32919565 DOI: 10.1016/j.carbpol.2020.116775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/22/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
Cellulose filaments (CFs) are produced from wood-pulp fibres through solely mechanical treatment. They are inhomogeneous materials comprising both relatively large fibre fragments and fine fibrils. CFs can stabilize oil-in-water medium- and high-internal phase Pickering emulsions, where the presence of fibre fragments plays a critical role in emulsion stabilization by preventing CF fibrils from forming highly entangled structures. The emulsion properties are shown to be influenced by both the refining energy and CF concentration. CFs are distinct from cellulose nanofibrils (CNF) or microfibrillated cellulose (MFC), which flocculate and collapse owing to the entanglement of the homogeneous fibrous mass. Typically, other additives - surfactants or cellulose nanocrystals - are necessary to stabilize such emulsions. Further, lignin-containing CFs, produced from unbleached pulps, are particularly beneficial for emulsion stabilization at higher pH when the functional groups on lignin molecules are ionized. Our findings present CFs as potentially inexpensive, sustainable, and efficient emulsifiers for a wide variety of systems, from food to personal care products or engineering materials.
Collapse
Affiliation(s)
- Chuanwei Miao
- Transformation and Interfaces, Bioproducts Innovation Centre of Excellence, FPInnovations, 2665 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Siham Atifi
- Transformation and Interfaces, Bioproducts Innovation Centre of Excellence, FPInnovations, 2665 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Wadood Y Hamad
- Transformation and Interfaces, Bioproducts Innovation Centre of Excellence, FPInnovations, 2665 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
39
|
AfzaliTabar M, Rashidi A, Alaei M, Koolivand H, Pourhashem S, Askari S. Hybrid of quantum dots for interfacial tension reduction and reservoir alteration wettability for enhanced oil recovery (EOR). J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112984] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Vasantha VA, Hua NQ, Rusli W, Hadia NJ, Stubbs LP. Unique Oil-in-Brine Pickering Emulsion Using Responsive Antipolyelectrolyte Functionalized Latex: A Versatile Emulsion Stabilizer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23443-23452. [PMID: 32348674 DOI: 10.1021/acsami.0c03743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A simple and straightforward approach to synthesize oil-in-water (O/W) emulsions under high salinity and temperature using zwitterion-functionalized latexes are presented in this work. First, well-defined functionalized latexes were synthesized by emulsifier-free emulsion copolymerization in the presence of precursor sulfobetaine comonomer using brine as a continuous phase. The surface-functionalized latex particles were then characterized by DLS, SEM, TEM, XPS, and TGA. The functionalized latex exhibited antipolyelectrolyte behavior in high salinity brine and at high temperatures. The effects of salinity, temperature, and pH on the long-term stability of the particles were investigated. Further, to evaluate the potential in high salinity brine and high temperature, the saltphilic functionalized latexes were utilized to stabilize the oil/brine (O/W) interface without any other additives. The latex enabled the formation of a stable Pickering emulsion system with low solid content (<0.02% w/w) in the presence of 50% v/v n-decane. The functionalized latexes were self-assembled at the O/W interface as a spherical colloidosome in high salinity brine through hydrophobic interactions and irreversible adsorption. The supraparticles were imaged with SEM, providing an insight that the exterior of the emulsion droplets is stabilized by the saltphilic latex particles, forming a protective layer at the oil-water interface through electrostatic repulsion. The antipolyelectrolyte latex can be utilized as a novel emulsion stabilizer, which can provide a versatile alternative for applications in a complex environment such as high salinity, temperature, and low or high pH.
Collapse
Affiliation(s)
- Vivek Arjunan Vasantha
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Ng Qi Hua
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Wendy Rusli
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Nanji J Hadia
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Ludger Paul Stubbs
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| |
Collapse
|
41
|
Chen A, Wang F, Zhou Y, Xu JH. In Situ Measurements of Interactions between Switchable Surface-Active Colloid Particles Using Optical Tweezers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4664-4670. [PMID: 32279500 DOI: 10.1021/acs.langmuir.0c00398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Switchable surface-active colloid particles are critical to the preparation of switchable Pickering emulsions, which are widely involved in multitudinous fundamental and practical fields, such as biomedical, food products, and spinning cosmetics. The stability of switchable surface-active particles relies on the full understanding of interaction forces between individual colloid particles quantitatively. In this work, a dual-laser optical tweezers instrument was applied to measure the interaction forces between silica particles coated with a common cationic surfactant (cetyltrimethylammonium bromide, CTAB) in water, and all of the measured forces can be well fitted with the theoretical model derived from the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. It was revealed that the minimum surface distance to engender the interaction forces between silica particles was closer progressively with the increase of CTAB concentrations, suggesting that the introduction of CTAB molecules in the solution thinned the electric double layer. In addition, the minimum surface distance between surface-inactive silica particles further decreased compared to surface-active states, although the ζ-potential has returned to the initial value of bare silica in pure water when the molecular ratio of 1:1 anionic surfactant (sodium dodecyl sulfate, SDS) was added into the solution to switch the surface-active silica particles to surface-inactive states. Our results provide a considerate methodology for quantifying the interaction forces and investigating the switchable behaviors of CTAB molecules from the adsorption to desorption at the particle-water interfaces, which provide vital foresights into the stabilization mechanism of switchable surface-active colloid particles and the further development of switchable Pickering emulsions.
Collapse
Affiliation(s)
- An Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fajun Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yiwei Zhou
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jian-Hong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
|
43
|
Tripodi E, Norton I, Spyropoulos F. Formation of Pickering and mixed emulsifier systems stabilised O/W emulsions via Confined Impinging Jets processing. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2019.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Gossard A, Fabrègue N, Hertz A, Grandjean A. High Internal Phase Emulsions Stabilized by a Zeolite-Surfactant Combination in a Composition-Dependent Manner. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:17114-17121. [PMID: 31818101 DOI: 10.1021/acs.langmuir.9b03053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a step toward synthesizing zeolite-based porous materials, this study demonstrates for the first time the feasibility of stabilizing oil-in-water (O/W) high internal phase emulsions (HIPEs) using a cationic surfactant (tetradecyltrimethylammonium bromide, TTAB) and "homemade" submicronic Linde type A zeolite particles. The zeolite particles are hydrophilic and therefore do not attach to dodecane-water interfaces, but surface tension measurements and electrochemical data show that their surface can be activated by the electrostatic and subsequent hydrophobic adsorption of TTAB. Comparing the adsorption isotherm of TTAB and zeta potential of the particles with the droplet sizes and rheological properties of the emulsion shows that the stabilization mechanism depends on the TTAB/zeolite weight ratio. At low TTAB/zeolite weight ratios (≤0.2 wt %), gel-like O/W Pickering HIPEs form, but at intermediate TTAB concentrations, the zeolite particles become more hydrophobic, leading to phase inversion and the stabilization of W/O emulsions. At high TTAB/zeolite weight ratios (>1.25 wt %), a second phase inversion occurs and creamy O/W HIPEs form through a different stabilization mechanism. In this case indeed, the zeolite particles are fully covered by a bilayer of TTAB and remain dispersed in the aqueous phase with no adsorption to the dodecane-water interface. The emulsion is stabilized by electrostatic repulsion between the highly positively charged zeolite particles and the cationic surfactant adsorbed at the dodecane-water interface.
Collapse
Affiliation(s)
- Alban Gossard
- DE2D, SEAD, Laboratoire des Procédés Supercritiques et de Décontamination , CEA, DEN, Univ Montpellier , Marcoule, F-30207 Bagnols-sur-Cèze , France
| | - Nicolas Fabrègue
- DE2D, SEAD, Laboratoire des Procédés Supercritiques et de Décontamination , CEA, DEN, Univ Montpellier , Marcoule, F-30207 Bagnols-sur-Cèze , France
| | - Audrey Hertz
- DE2D, SEAD, Laboratoire des Procédés Supercritiques et de Décontamination , CEA, DEN, Univ Montpellier , Marcoule, F-30207 Bagnols-sur-Cèze , France
| | - Agnès Grandjean
- DE2D, SEAD, Laboratoire des Procédés Supercritiques et de Décontamination , CEA, DEN, Univ Montpellier , Marcoule, F-30207 Bagnols-sur-Cèze , France
| |
Collapse
|
45
|
Du Z, Li Q, Li J, Su E, Liu X, Wan Z, Yang X. Self-Assembled Egg Yolk Peptide Micellar Nanoparticles as a Versatile Emulsifier for Food-Grade Oil-in-Water Pickering Nanoemulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11728-11740. [PMID: 31525998 DOI: 10.1021/acs.jafc.9b04595] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pickering emulsions stabilized by food-grade particles have garnered increasing interest in recent years due to their promising applications in biorelated fields such as foods, cosmetics, and drug delivery. However, it remains a big challenge to formulate nanoscale Pickering emulsions from these edible particles. Herein we show that a new Pickering nanoemulsion that is stable, monodisperse, and controllable can be produced by employing the spherical micellar nanoparticles (EYPNs), self-assembled from the food-derived, amphiphilic egg yolk peptides, as an edible particulate emulsifier. As natural peptide-based nanoparticles, the EYPNs have a small particle size, intermediate wettability, high surface activity, and deformability at the interface, which enable the formation of stable Pickering nanodroplets with a mean dynamic light scattering diameter below 200 nm and a polydispersity index below 0.2. This nanoparticle system is versatile for different oil phases with various polarities and demonstrates the easy control of nanodroplet size through tuning the microfluidization conditions or the ratio of EYPNs to oil phase. These food-grade Pickering nanoemulsions, obtained when the internal phase is an edible vegetable oil, have superior stability during long-term storage and spray-drying based on the irreversible and compact adsorption of intact EYPNs at the nanodroplet surface. This is the first finding of a natural edible nano-Pickering emulsifier that can be used solely to make stable food Pickering nanoemulsions with the qualities of simplicity, versatility, low cost, and the possibility of controllable and mass production, which make them viable for many sustainable applications.
Collapse
Affiliation(s)
- Zhenya Du
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Junguang Li
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control , Zhengzhou University of Light Industry , Zhengzhou 450002 , People's Republic of China
| | - Enyi Su
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Xiao Liu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , People's Republic of China
- Laboratory of Physics and Physical Chemistry of Foods , Wageningen University , Bornse Weilanden 9 , 6708WG Wageningen , The Netherlands
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , People's Republic of China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou 510640 , People's Republic of China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , People's Republic of China
| |
Collapse
|
46
|
|
47
|
Albert C, Beladjine M, Tsapis N, Fattal E, Agnely F, Huang N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. J Control Release 2019; 309:302-332. [DOI: 10.1016/j.jconrel.2019.07.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/18/2022]
|
48
|
Ghosh SK, Böker A. Self‐Assembly of Nanoparticles in 2D and 3D: Recent Advances and Future Trends. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Alexander Böker
- Fraunhofer‐Institut für Angewandte Polymerforschung Geiselbergstraβe 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
49
|
Mi X, Wang X, Xu C, Zhang Y, Tan X, Gao J, Liu Y. Alginate microspheres prepared by ionic crosslinking of pickering alginate emulsions. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1083-1096. [DOI: 10.1080/09205063.2019.1622185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xue Mi
- Department of Biomaterial, School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xingrui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Chen Xu
- Beijing 302 Hospital, Beijing, China
| | - Yuying Zhang
- Department of Biomaterial, School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaoyue Tan
- Department of Biomaterial, School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Jianping Gao
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Yu Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| |
Collapse
|
50
|
Arkoumanis PG, Norton IT, Spyropoulos F. Pickering particle and emulsifier co-stabilised emulsions produced via rotating membrane emulsification. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|