1
|
Xie C, Chen Y, Wang L, Liao K, Xue B, Han Y, Li L, Jiang Q. Recent research of peptide-based hydrogel in nervous regeneration. Bioact Mater 2024; 40:503-523. [PMID: 39040568 PMCID: PMC11261279 DOI: 10.1016/j.bioactmat.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Neurological disorders exert significantly affect the quality of life for patients, necessitating effective strategies for nerve regeneration. Both traditional autologous nerve transplantation and emerging therapeutic approaches encounter scientific challenges due to the complex nature of the nervous system and the unsuitability of the surrounding environment for cell transplantation. Tissue engineering techniques offer a promising path for neurotherapy. Successful neural tissue engineering relies on modulating cell differentiation behavior and tissue repair by developing biomaterials that mimic the natural extracellular matrix (ECM) and establish a three-dimensional microenvironment. Peptide-based hydrogels have emerged as a potent option among these biomaterials due to their ability to replicate the structure and complexity of the ECM. This review aims to explore the diverse range of peptide-based hydrogels used in nerve regeneration with a specific focus on dipeptide hydrogels, tripeptide hydrogels, oligopeptide hydrogels, multidomain peptides (MDPs), and amphiphilic peptide hydrogels (PAs). Peptide-based hydrogels offer numerous advantages, including biocompatibility, structural diversity, adjustable mechanical properties, and degradation without adverse effects. Notably, hydrogels formed from self-assembled polypeptide nanofibers, derived from amino acids, show promising potential in engineering neural tissues, outperforming conventional materials like alginate, poly(ε-caprolactone), and polyaniline. Additionally, the simple design and cost-effectiveness of dipeptide-based hydrogels have enabled the creation of various functional supramolecular structures, with significant implications for nervous system regeneration. These hydrogels are expected to play a crucial role in future neural tissue engineering research. This review aims to highlight the benefits and potential applications of peptide-based hydrogels, contributing to the advancement of neural tissue engineering.
Collapse
Affiliation(s)
- Chunmei Xie
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yueyang Chen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lang Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kin Liao
- Advanced Digital and Additive Manufacturing Center, Khalifa University of Science and Technology, Po Box 127788, Abu Dhabi, United Arab Emirates
| | - Bin Xue
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, China
| | - Yulong Han
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Huang S, Yao X, Cao B, Zhang N, Soladoye OP, Zhang Y, Fu Y. Encapsulation of zingerone by self-assembling peptides derived from fish viscera: Characterization, interaction and effects on colon epithelial cells. Food Chem X 2024; 22:101506. [PMID: 38855095 PMCID: PMC11157225 DOI: 10.1016/j.fochx.2024.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
The purpose of the present work was to encapsulate zingerone (a bioactive compound from ginger) by self-assembling peptides derived from fish viscera. The encapsulation conditions were investigated and the structure of fish peptides-zingerone complex was characterized. The interaction between zingerone and fish peptides was investigated using fluorescence spectroscopy. Further research was performed on the in vitro release of zingerone and fish peptide-zingerone as well as their antiproliferative effects on colon epithelial Caco-2 cells. The results demonstrated that zingerone can be successfully encapsulated by self-assembling peptides derived from fish viscera with high encapsulation efficiency and loading capacity. Furthermore, transmission electron microscope and confocal laser scanning microscope observations revealed the successful encapsulation of zingerone by fish viscera peptides. In addition, in vitro release and antiproliferative activity against Caco-2 cells can be significantly increased by encapsulating zingerone via peptide self-assembly. The current study advances knowledge of encapsulation of bioactive compounds through peptide self-assembly.
Collapse
Affiliation(s)
- Sirong Huang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Xintong Yao
- Department of Hematology, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Boya Cao
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Olugbenga P. Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
3
|
Rathee P, Moorkkannur SN, Prabhakar R. Structural studies of catalytic peptides using molecular dynamics simulations. Methods Enzymol 2024; 697:151-180. [PMID: 38816122 DOI: 10.1016/bs.mie.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Many self-assembling peptides can form amyloid like structures with different sizes and morphologies. Driven by non-covalent interactions, their aggregation can occur through distinct pathways. Additionally, they can bind metal ions to create enzyme like active sites that allow them to catalyze diverse reactions. Due to the non-crystalline nature of amyloids, it is quite challenging to elucidate their structures using experimental spectroscopic techniques. In this aspect, molecular dynamics (MD) simulations provide a useful tool to derive structures of these macromolecules in solution. They can be further validated by comparing with experimentally measured structural parameters. However, these simulations require a multi-step process starting from the selection of the initial structure to the analysis of MD trajectories. There are multiple force fields, parametrization protocols, equilibration processes, software and analysis tools available for this process. Therefore, it is complicated for non-experts to select the most relevant tools and perform these simulations effectively. In this chapter, a systematic methodology that covers all major aspects of modeling of catalytic peptides is provided in a user-friendly manner. It will be helpful for researchers in this critical area of research.
Collapse
Affiliation(s)
- Parth Rathee
- Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | | | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL, United States.
| |
Collapse
|
4
|
Hu X, Liao M, Ding K, Wang J, Xu H, Tao K, Zhou F, Lu JR. Neutron reflection and scattering in characterising peptide assemblies. Adv Colloid Interface Sci 2023; 322:103033. [PMID: 37931380 DOI: 10.1016/j.cis.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Self-assemblies of de novo designed short peptides at interface and in bulk solution provide potential platforms for developing applications in many medical and technological areas. However, characterising how bioinspired supramolecular nanostructures evolve with dynamic self-assembling processes and respond to different stimuli remains challenging. Neutron scattering technologies including small angle neutron scattering (SANS) and neutron reflection (NR) can be advantageous and complementary to other state-of-the-art techniques in tracing structural changes under different conditions. With more neutron sources now available, SANS and NR are becoming increasingly popular in studying self-assembling processes of diverse peptide and protein systems, but the difficulty in experimental manipulation and data analysis can deter beginners. This review will introduce the basic theory, general experimental setup and data analysis of SANS and NR, followed by provision of their applications in characterising interfacial and solution self-assemblies of representative peptides and proteins. SANS and NR are remarkably effective in determining the morphological features self-assembled short peptides, especially size and shape transitions as a result of either sequence changes or in response to environmental stimuli, demonstrating the unique capability of NR and SANS in unravelling the interactive processes. These examples highlight the potential of NR and SANS in supporting the development of novel short peptides and proteins as biopharmaceutical candidates in the fight against many diseases and infections that share common features of membrane interactive processes.
Collapse
Affiliation(s)
- Xuzhi Hu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.; Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Mingrui Liao
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ke Ding
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
| | - Feng Zhou
- Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK..
| |
Collapse
|
5
|
Schmid SY, Lachowski K, Chiang HT, Pozzo L, De Yoreo J, Zhang S. Mechanisms of Biomolecular Self-Assembly Investigated Through In Situ Observations of Structures and Dynamics. Angew Chem Int Ed Engl 2023; 62:e202309725. [PMID: 37702227 DOI: 10.1002/anie.202309725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Indexed: 09/14/2023]
Abstract
Biomolecular self-assembly of hierarchical materials is a precise and adaptable bottom-up approach to synthesizing across scales with considerable energy, health, environment, sustainability, and information technology applications. To achieve desired functions in biomaterials, it is essential to directly observe assembly dynamics and structural evolutions that reflect the underlying energy landscape and the assembly mechanism. This review will summarize the current understanding of biomolecular assembly mechanisms based on in situ characterization and discuss the broader significance and achievements of newly gained insights. In addition, we will also introduce how emerging deep learning/machine learning-based approaches, multiparametric characterization, and high-throughput methods can boost the development of biomolecular self-assembly. The objective of this review is to accelerate the development of in situ characterization approaches for biomolecular self-assembly and to inspire the next generation of biomimetic materials.
Collapse
Affiliation(s)
- Sakshi Yadav Schmid
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kacper Lachowski
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
| | - Huat Thart Chiang
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Lilo Pozzo
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Jim De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Shuai Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
6
|
Anwar S, Khawar MB, Afzal A, Ovais M, Xiang Z. Self-assembled and Zn(II)-coordinated dipeptide nanoparticles with membrane-rupturing action on bacteria. Appl Microbiol Biotechnol 2023; 107:5775-5787. [PMID: 37439833 DOI: 10.1007/s00253-023-12648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/07/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Metal ion-coordinated self-assembled short-chain amino acid peptide molecules with multi-photon excitation wavelengths and their photoluminescence properties are advantageous for fluorescence-based diagnostics and treatments of biological diseases based on their extra features of antibacterial agents. We have designed a novel strategy based on tryptophan molecule coordinated with Zn(II) ions in the form of biocompatible spherical nanoparticles of diameter 30-80 nm which have been used for antibacterial treatments against different kinds of pathogenic bacteria (Escherichia coli, Salmonella typhimurium, and Pseudomonas). Preferably, we have used tryptophan-phenylalanine (Trp-Phe), a dipeptide molecule having tryptophan as principal material against E. coli strains as antimicrobial agents for surface rupturing and killing purposes. Furthermore, based on single amino acid, tryptophan, self-assembled and Zn(II)-coordinated dipeptide nanoparticles (Zn-DPNPs) were studied against three types of multi-drug-resistant bacteria as an active antimicrobial agent. These antibacterial efficient nanoparticles may have best alternative of antibiotic drugs for clinical applications. The capability of self-assembled fluorescence behavior of Zn-coordinated dipeptide molecules and higher hydrophobicity against bacterial cell wall will perform as antimicrobial fluorescent agents. KEY POINTS: • Zn(II) and Cu(II) better coordinated into self-assembled NPs. • Fluorescence signals showed interaction of NPs with gram -ve cell wall. • Significant surface-damaging effects were observed in the case of Cu-DPNPs and Zn-DPNPs.
Collapse
Affiliation(s)
- Shahzad Anwar
- National Institutes of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650, Islamabad, Pakistan.
- University of Chinese Academy of Sciences, PR, 100049, Beijing, China.
| | - Muhammad Babar Khawar
- University of Chinese Academy of Sciences, PR, 100049, Beijing, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Ovais
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology (NCNST), PR, 100190, Beijing, China
| | - Zhang Xiang
- University of Chinese Academy of Sciences, PR, 100049, Beijing, China
| |
Collapse
|
7
|
Michaelis M, Cupellini L, Mensch C, Perry CC, Delle Piane M, Colombi Ciacchi L. Tidying up the conformational ensemble of a disordered peptide by computational prediction of spectroscopic fingerprints. Chem Sci 2023; 14:8483-8496. [PMID: 37592980 PMCID: PMC10430726 DOI: 10.1039/d3sc02202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023] Open
Abstract
The most advanced structure prediction methods are powerless in exploring the conformational ensemble of disordered peptides and proteins and for this reason the "protein folding problem" remains unsolved. We present a novel methodology that enables the accurate prediction of spectroscopic fingerprints (circular dichroism, infrared, Raman, and Raman optical activity), and by this allows for "tidying up" the conformational ensembles of disordered peptides and disordered regions in proteins. This concept is elaborated for and applied to a dodecapeptide, whose spectroscopic fingerprint is measured and theoretically predicted by means of enhanced-sampling molecular dynamics coupled with quantum mechanical calculations. Following this approach, we demonstrate that peptides lacking a clear propensity for ordered secondary-structure motifs are not randomly, but only conditionally disordered. This means that their conformational landscape, or phase-space, can be well represented by a basis-set of conformers including about 10 to 100 structures. The implications of this finding have profound consequences both for the interpretation of experimental electronic and vibrational spectral features of peptides in solution and for the theoretical prediction of these features using accurate and computationally expensive techniques. The here-derived methods and conclusions are expected to fundamentally impact the rationalization of so-far elusive structure-spectra relationships for disordered peptides and proteins, towards improved and versatile structure prediction methods.
Collapse
Affiliation(s)
- Monika Michaelis
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via G. Moruzzi 13 Pisa I-56124 Italy
| | - Carl Mensch
- Molecular Spectroscopy Research Group, Department of Chemistry, University of Antwerp Groenenborgerlaan 171 Antwerp 2020 Belgium
| | - Carole C Perry
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Massimo Delle Piane
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24 Torino 10129 Italy
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
| |
Collapse
|
8
|
Rahi S, Lanjekar V, Ghormade V. Rationally designed peptide conjugated to gold nanoparticles for detection of aflatoxin B1 in point-of-care dot-blot assay. Food Chem 2023; 413:135651. [PMID: 36787667 DOI: 10.1016/j.foodchem.2023.135651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/15/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Aflatoxin B1 (AFB1) is a hepatotoxic and carcinogenic food contaminant. Although on-site paper-based detection is sensitive it depends on expensive antibodies which are difficult to raise against mycotoxins. Here, we rationally designed a high binding octapeptide, N-KSGKSKPR-C peptide for AFB1 detection, by molecular docking, as confirmed by indirect ELISA (Kd 323 nM). Further, conjugation of octapeptide with gold nanoparticles (26 nm) permitted its use as a visual detection agent in rapid, sensitive dot-blot assay (LOD 0.39 μg/kg). The assay displayed negligible cross-reactivity with co-contaminating mycotoxins. AFB1 recovery from spiked wheat sample was comparable by dot-blot (78-91 %) and HPLC (65-87 %). Evaluation of dot-blot using certified reference material and 146 food and feed samples showed high correlation R2 = 0.87 with HPLC. The assay displayed high accuracy (91 %), sensitivity (71 %) and specificity (96.5 %). Therefore, the developed dot-blot assay holds promise for monitoring AFB1 contamination in food and feed.
Collapse
Affiliation(s)
- Shraddha Rahi
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India
| | - Vikram Lanjekar
- Bioenergy Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India
| | - Vandana Ghormade
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India.
| |
Collapse
|
9
|
Zhang X, Ding H, Yang S, Yang H, Yang X, Li B, Xing X, Sun Y, Gu G, Chen X, Gao J, Pan M, Chi L, Guo Q. Kinetic Controlled Chirality Transfer and Induction in 2D Hydrogen-Bonding Assemblies of Glycylglycine on Au(111). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207111. [PMID: 36599616 DOI: 10.1002/smll.202207111] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Chirality transfer is of vital importance that dominates the structure and functionality of biological systems and living matters. External physical stimulations, e.g. polarized light and mechanical forces, can trigger the chirality symmetry breaking, leading to the appearance of the enantiomeric entities created from a chiral self-assembly of achiral molecule. Here, several 2D assemblies with different chirality, synthesized on Au(111) surface by using achiral building blocks - glycylglycine (digly), the simplest polypeptide are reported. By delicately tuning the kinetic factors, i.e., one-step slow/rapid deposition, or stepwise slow deposition with mild annealing, achiral square hydrogen-bond organic frameworks (HOF), homochiral rhombic HOF and racemic rectangular assembly are achieved, respectively. Chirality induction and related symmetry broken in assemblies are introduced by the handedness (H-bond configurations in principle) of the assembled motifs and then amplified to the entire assemblies via the interaction between motifs. The results show that the chirality transfer and induction of biological assemblies can be tuned by altering the kinetic factors instead of applying external forces, which may offer an in-depth understanding and practical approach to peptide chiral assembly on the surfaces and can further facilitate the design of desired complex biomolecular superstructures.
Collapse
Affiliation(s)
- Xin Zhang
- School of Physics, Northwest University, Xi'an, 710069, China
| | - Haoxuan Ding
- Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Shu Yang
- School of Information Science and Engineering, Fudan University, Shanghai, 200433, China
- Zhuhai Fudan Innovation Institute, Zhuhai, 519000, China
| | - Hualin Yang
- Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xiaoqing Yang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Bosheng Li
- Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xueting Xing
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yaojie Sun
- School of Information Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Guangxin Gu
- Zhuhai Fudan Innovation Institute, Zhuhai, 519000, China
| | - Xiaorui Chen
- School of Mechanical and Material Engineering, Xi'an University, Xi'an, 710065, China
| | - Jianzhi Gao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Minghu Pan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Quanmin Guo
- Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
10
|
Ma L, Niu M, Ji Y, Liu L, Gu X, Luo J, Wei G, Yan M. Development of KLA-RGD integrated lipopeptide with the effect of penetrating membrane which target the α vβ 3 receptor and the application of combined antitumor. Colloids Surf B Biointerfaces 2023; 223:113186. [PMID: 36746066 DOI: 10.1016/j.colsurfb.2023.113186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Herein, an amphiphilic cationic anticancer lipopeptide P17 with α-helical structure was synthesized based on the integration of KLA and RGD peptide which could bind with the receptor of integrin αvβ3. P17 could self assemble into stable spherical aggregates in aqueous solution, and which could encapsulate the anticancer drugs (Such as Dox) to form P17 @ Anticancer drug nanomedicine (P17 @ Dox nanomedicine) which could play the combined therapy of P17 and anticancer drugs (Dox). The encapsulation efficiency of P17 aggregates to Dox was 80.4 ± 3.2 %, and the release behavior of P17 @ Dox nanomedicine in vitro had the characteristics of slow-release and pH responsiveness. The experiments in vitro showed that P17 lipopeptide had low cytotoxicity, high serum stability, low hemolysis and strong penetrating membrane ability. The release of Dox from P17 @ Dox in cells was time-dependment, and the P17 @ Dox nanomedicine had a good anticancer effect. The experiments in vivo showed that P17 and P17 @ Dox nanomedicine both had low hemolysis, and P17 @ Dox nanomedicine could effectively inhibit tumor growth and significantly reduce the toxic and side effects of Dox. Molecular docking experiments showed that P17 could effectively interact with the receptor of integrin αvβ3. In conclusion, P17 lipopeptide could be used as an excellent drug carrier and play the combined anticancer effect of P17 and anticancer drugs.
Collapse
Affiliation(s)
- Linhao Ma
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China
| | - Mingcong Niu
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China
| | - Yiping Ji
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China
| | - Lu Liu
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China
| | - XiuLian Gu
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China
| | - Junlin Luo
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China
| | - Guangcheng Wei
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China.
| | - Miaomiao Yan
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China.
| |
Collapse
|
11
|
Xu R, Tang J, Hadianamrei R, Liu S, Lv S, You R, Pan F, Zhang P, Wang N, Cai Z, Zhao X. Antifungal activity of designed α-helical antimicrobial peptides. Biomater Sci 2023; 11:2845-2859. [PMID: 36857655 DOI: 10.1039/d2bm01797k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Antimicrobial resistance (AMR) has become a major global health concern prompting the quest for new antibiotics with higher efficiency and less proneness to drug resistance. Antimicrobial peptides (AMPs) offer such properties and have therefore gained increasing attention as a new generation of antibiotics to overcome AMR. In an attempt to develop new highly selective and highly efficient antifungal peptides, a sequence (named At1) originating from the natural AMP Ponericin-W1 was used as a lead sequence for rational design of a series of short cationic antifungal peptides named At2-At12. The charge, hydrophobicity, and terminal amino acids of the peptides were modified in a systematic way to investigate the effect of such structural changes on the biological activity of the peptides. Among all the designed peptides, three peptides (coded as At3, At5 and At10) exhibited high antifungal activity without any significant hemolytic activity in human red blood cells. The higher selectivity of these peptides for fungal cells over human cells was further confirmed in cocultures of Candida albicans and human foreskin fibroblasts. These three peptides lacked any hydrophilic residues in their hydrophobic domain, contained lysine residues in their hydrophilic region and had an overall charge of 7+. They also had a higher helical content in microbial membrane mimicking DPPG SUVs than the rest of the peptides. The fungi did not develop any resistance to the designed antifungal peptides even after 25 generations indicating low AMR. At5 was also used in vivo for the treatment of wounds infected with Candida albicans in mice and showed superiority over fluconazole for treating infection and accelerating wound healing. There was an interplay between the hydrophobicity and positive charge density to determine the antifungal activity of the peptides. The results from this study suggest this class of antifungal peptides as promising candidates for antifungal drugs with high efficiency, high biocompatibility and low propensity for drug resistance.
Collapse
Affiliation(s)
- Ruicheng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Jing Tang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.,School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2UP, UK
| | - Suyu Liu
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Rongrong You
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Fang Pan
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Peng Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Nan Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China. .,Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
12
|
Ma Y, Wang A, Li J, Li Q, Han Q, Jing Y, Zheng X, Cao H, Yan X, Bai S. Surface Self-Assembly of Dipeptides on Porous CaCO 3 Particles Promoting Cell Internalization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2486-2497. [PMID: 36580635 DOI: 10.1021/acsami.2c21447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The self-assembling behavior of peptides and derivatives is crucial in the natural process to construct various architectures and achieve specific functions. However, the surface or interfacial self-assembly, in particular, on the surface of micro- or nanoparticles is even less systematically investigated. Here, uniform porous CaCO3 microparticles were prepared with different charged, hydrophobic and hydrophilic surfaces to assess the self-assembling behavior of dipeptides composed of various sequences. Experimental results indicate that dipeptides with a negative charge in an aqueous solution preferred to self-assemble on the hydrophobic and positively charged surface of CaCO3 particles, which can be ascribed to the electrostatic and hydrophobic interaction between dipeptides and CaCO3 particles. Meanwhile, the Log p (lipid-water partition coefficient) of dipeptides has a significant effect on the self-assembling behavior of dipeptides on the surface of porous CaCO3; dipeptides with high Log p preferred to self-assemble on the surface of CaCO3 particles, resulting in the improved cell internalization efficiency of particles with low cytotoxicity. After loading with a model drug (doxorubicin), the particles show obvious antitumor activity in animal experiments and can reduce Dox side effects effectively.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qingquan Han
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yafeng Jing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuefang Zheng
- College of Life Science and Biotechnology, Dalian University, Dalian 116622, China
| | - Hongyu Cao
- College of Life Science and Biotechnology, Dalian University, Dalian 116622, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
13
|
Luan X, Kong H, He P, Yang G, Zhu D, Guo L, Wei G. Self-Assembled Peptide-Based Nanodrugs: Molecular Design, Synthesis, Functionalization, and Targeted Tumor Bioimaging and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205787. [PMID: 36440657 DOI: 10.1002/smll.202205787] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Functional nanomaterials as nanodrugs based on the self-assembly of inorganics, polymers, and biomolecules have showed wide applications in biomedicine and tissue engineering. Ascribing to the unique biological, chemical, and physical properties of peptide molecules, peptide is used as an excellent precursor material for the synthesis of functional nanodrugs for highly effective cancer therapy. Herein, recent progress on the design, synthesis, functional regulation, and cancer bioimaging and biotherapy of peptide-based nanodrugs is summarized. For this aim, first molecular design and controllable synthesis of peptide nanodrugs with 0D to 3D structures are presented, and then the functional customization strategies for peptide nanodrugs are presented. Then, the applications of peptide-based nanodrugs in bioimaging, chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT) are demonstrated and discussed in detail. Furthermore, peptide-based drugs in preclinical, clinical trials, and approved are briefly described. Finally, the challenges and potential solutions are pointed out on addressing the questions of this promising research topic. This comprehensive review can guide the motif design and functional regulation of peptide nanomaterials for facile synthesis of nanodrugs, and further promote their practical applications for diagnostics and therapy of diseases.
Collapse
Affiliation(s)
- Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
14
|
Rahman M, Almalki WH, Afzal O, Alfawaz Altamimi AS, Najib Ullah SNM, Abul Barkat M, Beg S. Chiral-engineered supraparticles: Emerging tools for drug delivery. Drug Discov Today 2023; 28:103420. [PMID: 36309193 DOI: 10.1016/j.drudis.2022.103420] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2023]
Abstract
The handedness of chiral-engineered supraparticles (CE-SPs) influences their interactions with cells and proteins, as evidenced by the increased penetration of breast, cervical, and myeloma cell membranes by d-chirality-coordinated SPs. Quartz crystal dissipation and isothermal titration calorimetry have been used to investigate such chiral-specific interactions. d-SPs are more thermodynamically stable compared with l-SPs in terms of their adhesion. Proteases and other endogenous proteins can be shielded by the opposite chirality of d-SPs, resulting in longer half-lives. Incorporating nanosystems with d-chirality increases uptake by cancer cells and prolongs in vivo stability, demonstrating the importance of chirality in biomaterials. Thus, as we discuss here, chiral nanosystems could enhance drug delivery systems, tumor markers, and biosensors, among other biomaterial-based technologies, by allowing for better control over their features.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Science, SIHAS, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | | | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Saudi Arabia
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
15
|
El Hauadi K, Resina L, Zanuy D, Esteves T, Ferreira FC, Pérez-Madrigal MM, Alemán C. Dendritic Self-assembled Structures from Therapeutic Charged Pentapeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12905-12914. [PMID: 36229043 PMCID: PMC9988208 DOI: 10.1021/acs.langmuir.2c02010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/04/2022] [Indexed: 06/16/2023]
Abstract
CRENKA [Cys-Arg-(NMe)Glu-Lys-Ala, where (NMe)Glu refers to N-methyl-Glu], an anti-cancer pentapeptide that induces prostate tumor necrosis and significant reduction in tumor growth, was engineered to increase the resistance to endogenous proteases of its parent peptide, CREKA (Cys-Arg-Glu-Lys-Ala). Considering their high tendency to aggregate, the self-assembly of CRENKA and CREKA into well-defined and ordered structures has been examined as a function of peptide concentration and pH. Spectroscopic studies and atomistic molecular dynamics simulations reveal significant differences between the secondary structures of CREKA and CRENKA. Thus, the restrictions imposed by the (NMe)Glu residue reduce the conformational variability of CRENKA with respect to CREKA, which significantly affects the formation of well-defined and ordered self-assembly morphologies. Aggregates with poorly defined morphology are obtained from solutions with low and moderate CREKA concentrations at pH 4, whereas well-defined dendritic microstructures with fractal geometry are obtained from CRENKA solutions with similar peptide concentrations at pH 4 and 7. The formation of dendritic structures is proposed to follow a two-step mechanism: (1) pseudo-spherical particles are pre-nucleated through a diffusion-limited aggregation process, pre-defining the dendritic geometry, and (2) such pre-nucleated structures coalesce by incorporating conformationally restrained CRENKA molecules from the solution to their surfaces, forming a continuous dendritic structure. Instead, no regular assembly is obtained from solutions with high peptide concentrations, as their dynamics is dominated by strong repulsive peptide-peptide electrostatic interactions, and from solutions at pH 10, in which the total peptide charge is zero. Overall, results demonstrate that dendritic structures are only obtained when the molecular charge of CRENKA, which is controlled through the pH, favors kinetics over thermodynamics during the self-assembly process.
Collapse
Affiliation(s)
- Karima El Hauadi
- Departament
d’Enginyeria Química and Barcelona Research Center for
Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Barcelona 08019, Spain
| | - Leonor Resina
- Departament
d’Enginyeria Química and Barcelona Research Center for
Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Barcelona 08019, Spain
- Department
of Bioengineering, iBB − Institute for Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Avenida Rovisco Pais 1, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy at Instituto
Superior Técnico, Universidade de
Lisboa, Avenida Rovisco Pais 1, Lisboa 1049-001, Portugal
| | - David Zanuy
- Departament
d’Enginyeria Química and Barcelona Research Center for
Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Barcelona 08019, Spain
| | - Teresa Esteves
- Department
of Bioengineering, iBB − Institute for Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Avenida Rovisco Pais 1, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy at Instituto
Superior Técnico, Universidade de
Lisboa, Avenida Rovisco Pais 1, Lisboa 1049-001, Portugal
| | - Frederico Castelo Ferreira
- Department
of Bioengineering, iBB − Institute for Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Avenida Rovisco Pais 1, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy at Instituto
Superior Técnico, Universidade de
Lisboa, Avenida Rovisco Pais 1, Lisboa 1049-001, Portugal
| | - Maria M. Pérez-Madrigal
- Departament
d’Enginyeria Química and Barcelona Research Center for
Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Barcelona 08019, Spain
| | - Carlos Alemán
- Departament
d’Enginyeria Química and Barcelona Research Center for
Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Barcelona 08019, Spain
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| |
Collapse
|
16
|
Abstract
The ability to detect and characterize multiple secondary structures or polymorphs within peptide and protein aggregates is crucial to treatment and prevention of amyloidogenic diseases, production of novel biomaterials, and many other applications. Here we report a label-free method to distinguish multiple β-sheet configurations within a single peptide aggregate using two-dimensional infrared spectroscopy. By calculating the transition dipole strength (TDS) spectrum from the ratio of linear and two-dimensional signals, we can extract maximum TDS values which provide higher sensitivity to vibrational coupling, and thus specifics of protein structure, than vibrational frequency alone. TDS spectra of AcKFE8 aggregates reveal two distinct β-sheet structures within fibers that appear homogeneous by other techniques. Furthermore, TDS spectra taken during early stages of aggregation show additional peaks that may indicate the presence of more weakly coupled β-sheet structures. These results demonstrate a unique and powerful spectroscopic method capable of distinguishing multiple oligomeric and polymorphic motifs throughout the aggregation using only native vibrational modes.
Collapse
Affiliation(s)
- William B Weeks
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Lauren E Buchanan
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
17
|
V D, P J S, Rajeev N, S AL, Chandran A, G B G, Sadanandan S. Recent Advances in Peptides-Based Stimuli-Responsive Materials for Biomedical and Therapeutic Applications: A Review. Mol Pharm 2022; 19:1999-2021. [PMID: 35730605 DOI: 10.1021/acs.molpharmaceut.1c00983] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Smart materials are engineered materials that have one or more properties that are introduced in a controlled fashion by surrounding stimuli. Engineering of biomacromolecules like proteins into a smart material call for meticulous artistry. Peptides have grabbed notable attention as a preferred source for smart materials in the medicinal field, promoted by their versatile chemical and biophysical attributes of biocompatibility, and biodegradability. Recent advances in the synthesis of multifunctional peptides have proliferated their application in diverse domains: agriculture, nanotechnology, medicines, biosensors, therapeutics, and soft robotics. Stimuli such as pH, temperature, light, metal ions, and enzymes have vitalized physicochemical properties of peptides by augmented sensitivity, stability, and selectivity. This review elucidates recent (2018-2021) advances in the design and synthesis of smart materials, from stimuli-responsive peptides followed by their biomedical and therapeutic applications.
Collapse
Affiliation(s)
- Devika V
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Sreelekshmi P J
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Niranjana Rajeev
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Aiswarya Lakshmi S
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Amrutha Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Gouthami G B
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Sandhya Sadanandan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
18
|
Sivagnanam S, Das K, Sivakadatcham V, Mahata T, Basak M, Pan I, Stewart A, Maity B, Das P. Generation of Self‐Assembled Structures Composed of Amphipathic, Charged Tripeptides for Intracellular Delivery of Pro‐Apoptotic Chemotherapeutics. Isr J Chem 2022. [DOI: 10.1002/ijch.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry SRM Institute of Science and Technology, SRM Nagar, Potheri University building, Room No 1210/8 Kattankulathur Tamil Nadu-603203 India
| | - Kiran Das
- Centre of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) campus, Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Vijay Sivakadatcham
- Department of Chemistry SRM Institute of Science and Technology, SRM Nagar, Potheri University building, Room No 1210/8 Kattankulathur Tamil Nadu-603203 India
| | - Tarun Mahata
- Centre of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) campus, Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Madhuri Basak
- Centre of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) campus, Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Ieshita Pan
- Department of Biotechnology Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Saveetha University Tamil Nadu 602105 India
| | - Adele Stewart
- Department of Biomedical Science Charles E. Schmidt College of Medicine Florida Atlantic University Jupiter FL 33458 USA
| | - Biswanath Maity
- Centre of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) campus, Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Priyadip Das
- Department of Chemistry SRM Institute of Science and Technology, SRM Nagar, Potheri University building, Room No 1210/8 Kattankulathur Tamil Nadu-603203 India
| |
Collapse
|
19
|
Wang XJ, Cheng J, Zhang LY, Zhang JG. Self-assembling peptides-based nano-cargos for targeted chemotherapy and immunotherapy of tumors: recent developments, challenges, and future perspectives. Drug Deliv 2022; 29:1184-1200. [PMID: 35403517 PMCID: PMC9004497 DOI: 10.1080/10717544.2022.2058647] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xue-Jun Wang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Jian Cheng
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Jun-Gang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
20
|
Chen H, Zhang T, Tian Y, You L, Huang Y, Wang S. Novel self-assembling peptide hydrogel with pH-tunable assembly microstructure, gel mechanics and the entrapment of curcumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107338] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Wei H, Lin S, Liu W, Li Y, Li B, Yang Y. Stereostructure Dependence Phenomenon on the Self-Assembly of Ala-Ala-Ala Lipotripeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2248-2256. [PMID: 35133849 DOI: 10.1021/acs.langmuir.1c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of lipotripeptide stereoisomers based on alanine were synthesized, and their self-assembling behaviors were studied by means of circular dichroism spectra, ATR-IR, temperature-dependent 1H NMR, and X-ray diffraction patterns. In the mixed solvent of hexafluoroisopropanol/H2O (1/9, v/v), eight lipotripeptides were able to self-assembled into nanoflakes or nanoribbons driven by the hydrophobic association of alkyl chains, intermolecular hydrogen bonding among carboxyl groups at C-terminal and amide groups of alanine moieties in the peptide segment. It was found that the stacking chirality of carbonyl groups was determined by the chirality of alanine residue at C-terminal (i.e., "C-terminal determination" rule). Moreover, our research also highlighted the intermolecular hydrogen bonding on amide groups of each alanine residue, terminal carboxyl as well as the molecular packing structures can be subtly manipulated by changing the stereochemical sequence of peptide segment.
Collapse
Affiliation(s)
- He Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shuwei Lin
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, School of Optoelectronics Science and Engineering, Soochow University, Suzhou 215123, China
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
22
|
Tuning the shell structure of peptide nanotubes with sodium tartrate: From monolayer to bilayer. J Colloid Interface Sci 2022; 608:1685-1695. [PMID: 34742083 DOI: 10.1016/j.jcis.2021.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023]
Abstract
Though the function of peptide based nanotubes are well correlated with its shape and size, controlling the dimensions of nanotubes still remains a great challenge in the field of peptide self-assembly. Here, we demonstrated that the shell structure of nanotubes formed by a bola peptide Ac-KI3VK-NH2 (KI3VK, in which K, I, and V are abbreviations of lysine, isoleucine, and valine) can be regulated by mixing it with the salt sodium tartrate (STA). The ratio of KI3VK and STA had a great impact on shell structure of the nanotubes. Bilayer nanotubes can be constructed when the molar ratio of KI3VK and STA was less than 1:2. Both the two hydroxyls and the negative charges carried by STA were proved to play important roles in the bilayer nanotubes formation. Observations of different intermediates provided obvious evidence for the varied pathway of the bilayer nanotubes formation. Based on these experimental results, the possible mechanism for bilayer nanotubes formation was proposed. Such a study provides a simple and effective way for regulating the shell structure of the nanotubes and may expand their applications in different fields.
Collapse
|
23
|
Abbas M, Susapto HH, Hauser CAE. Synthesis and Organization of Gold-Peptide Nanoparticles for Catalytic Activities. ACS OMEGA 2022; 7:2082-2090. [PMID: 35071896 PMCID: PMC8771977 DOI: 10.1021/acsomega.1c05546] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/14/2021] [Indexed: 05/08/2023]
Abstract
A significant development in the synthesis strategies of metal-peptide composites and their applications in biomedical and bio-catalysis has been reported. However, the random aggregation of gold nanoparticles provides the opportunity to find alternative fabrication strategies of gold-peptide composite nanomaterials. In this study, we used a facile strategy to synthesize the gold nanoparticles via a green and simple approach where they show self-alignment on the assembled nanofibers of ultrashort oligopeptides as a composite material. A photochemical reduction method is used, which does not require any external chemical reagents for the reduction of gold ions, and resultantly makes the gold nanoparticles of size ca. 5 nm under mild UV light exposure. The specific arrangement of gold nanoparticles on the peptide nanofibers may indicate the electrostatic interactions of two components and the interactions with the amino group of the peptide building block. Furthermore, the gold-peptide nanoparticle composites show the ability as a catalyst to degradation of environmental pollutant p-nitrophenol to p-aminophenol, and the reaction rate constant for catalysis is calculated as 0.057 min-1 at a 50-fold dilute sample of 2 mg/mL and 0.72 mM gold concentration in the composites. This colloidal strategy would help researchers to fabricate the metalized bioorganic composites for various biomedical and bio-catalysis applications.
Collapse
Affiliation(s)
- Manzar Abbas
- Laboratory
for Nanomedicine, Division of Biological & Environmental Science
& Engineering (BESE), King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hepi Hari Susapto
- Laboratory
for Nanomedicine, Division of Biological & Environmental Science
& Engineering (BESE), King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory
for Nanomedicine, Division of Biological & Environmental Science
& Engineering (BESE), King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), KAUST, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
24
|
Xie X, Liu X, Ma Z, Zhao H, Li W. Cationic peptides template the assembly of polyoxometalates into ultrathin nanosheet with in-plane ordered arrangement. Dalton Trans 2022; 51:3839-3844. [DOI: 10.1039/d1dt04292k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrathin polyoxometalates nanosheets with in-plane alignment have been constructed in aqueous solution with the assistance of cationic peptides. Different POMs varying in topology, size, and charges could be templated into...
Collapse
|
25
|
Shen Y, Wang Y, Hamley IW, Qi W, Su R, He Z. Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Jo Y, Yoon J, Shin S. Computational Insights into the Aggregation Pathway of Self-Assembled Nanotubules. J Phys Chem B 2021; 125:12082-12094. [PMID: 34699214 DOI: 10.1021/acs.jpcb.1c06452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We performed molecular dynamics simulations of self-assembled supramolecular nanotubules constructed from amphiphiles with bent-shaped rods. By systematically examining the structure from dimeric aggregates to the fully developed nanotubule, we identified the basic building block of the nanotubule and the optimal dimensions of its stable structure which are consistent with experimental findings. Moreover, we demonstrate that the cooperative interplay of different interactions drives aggregation by selecting and stabilizing the optimal self-assembled structures for various intermediates through a complex pathway. Additionally, contraction of the nanotubule, which accompanies the dehydration process, was observed upon heating. It is suggested that the optimal stability of the self-assembled aggregates is achieved by balancing entropic and enthalpic contributions, of which the ratio is a critical factor that drives the aggregation pathway.
Collapse
Affiliation(s)
- Youngbeom Jo
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jeseong Yoon
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seokmin Shin
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
27
|
Jiang Q, Liu X, Liang G, Sun X. Self-assembly of peptide nanofibers for imaging applications. NANOSCALE 2021; 13:15142-15150. [PMID: 34494635 DOI: 10.1039/d1nr04992e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pathological stimuli-responsive self-assembly of peptide nanofibers enables selective accumulation of imaging agent cargos in the stimuli-rich regions of interest. It provides enhanced imaging signals, biocompatibility, and tumor/disease accessibility and retention, thereby promoting smart, precise, and sensitive tumor/disease imaging both in vitro and in vivo. Considering the remarkable significance and recent encouraging breakthroughs of self-assembled peptide nanofibers in tumor/disease diagnosis, this reivew is herein proposed. We emphasize the recent advances particularly in the past three years, and provide an outlook in this field.
Collapse
Affiliation(s)
- Qiaochu Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Xianbao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| |
Collapse
|
28
|
Ford EM, Kloxin AM. Rapid Production of Multifunctional Self-Assembling Peptides for Incorporation and Visualization within Hydrogel Biomaterials. ACS Biomater Sci Eng 2021; 7:4175-4195. [PMID: 34283566 DOI: 10.1021/acsbiomaterials.1c00589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides are of continued interest for therapeutic applications, from soluble and immobilized ligands that promote desired binding or uptake to self-assembled supramolecular structures that serve as scaffolds in vitro and in vivo. These applications require efficient and scalable synthetic approaches because of the large amounts of material that often are needed for studies of bulk material properties and their translation. In this work, we establish new methods for the synthesis, purification, and visualization of assembling peptides, with a focus on multifunctional collagen mimetic peptides (mfCMPs) relevant for formation and integration within hydrogel-based biomaterials. First, a methodical approach useful for the microwave-assisted synthesis of assembling peptide sequences prone to deletions was established, beginning with the identification of the deleted residues and their locations and followed by targeted use of dual chemistry couplings for those specific residues. Second, purification techniques that integrate the principles of heating and ion displacement with traditional chromatography and dialysis were implemented to improve separation and isolation of the desired multifunctional peptide product, which contained blocks for thermoresponsiveness and ionic interactions. Third, an approach for fluorescent labeling of these mfCMPs, which is orthogonal to their assembly and their covalent incorporation into a bulk hydrogel material, was established, allowing visualization of the resulting hierarchical fibrillar structures in three dimensions within hydrogels using confocal microscopy. The methods presented in this work allow the production of multifunctional peptides in scalable quantities and with minimal deletions, enabling future studies for better understanding of composition-structure-property relationships and for translating these biomaterials into a range of applications. Although mfCMPs are the focus of this work, the methods demonstrated could prove useful for other assembling peptide systems and for the production of peptides more broadly for therapeutic applications.
Collapse
Affiliation(s)
- Eden M Ford
- Department of Chemical and Biomolecular Engineering University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.,Department of Material Science and Engineering University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| |
Collapse
|
29
|
Bhangu SK, Baral A, Zhu H, Ashokkumar M, Cavalieri F. Sound methods for the synthesis of nanoparticles from biological molecules. NANOSCALE ADVANCES 2021; 3:4907-4917. [PMID: 36132345 PMCID: PMC9417456 DOI: 10.1039/d1na00496d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 06/15/2023]
Abstract
The development of simple, green, reproducible, and scalable approaches for synthesizing nanoparticles from biomolecules is important to advance nanomaterials towards therapeutic applications. Microreactors generated by high frequency ultrasound provide a one pot-platform to alter the physiochemical properties and stability of various types of biomolecules to ultimately generate multifunctional nanoparticles with controlled size and morphology. Herein, recent advancements in the field of nanoparticles fabrication from amino acids, phenolics, peptides and proteins using both high and low frequency ultrasound are reviewed. In particular, the sound driven self-assembly of biomolecules into nanoparticles by using high frequency ultrasound, as an emerging and innovative approach, is discussed in detail.
Collapse
Affiliation(s)
| | - Anshul Baral
- School of Chemistry, University of Melbourne VIC 3010 Australia
| | - Haiyan Zhu
- School of Chemistry, University of Melbourne VIC 3010 Australia
| | | | - Francesca Cavalieri
- School of Science, RMIT University Melbourne VIC 3000 Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Universita' di Roma ''Tor Vergata'' Via della Ricerca Scientifica 1 00133 Rome Italy
| |
Collapse
|
30
|
Chen C, Chen J, Yu Q, Zhang J, Niu X, Hao L, Yang L, Zhao Y. Effects of salts on the self-assembly behavior and antibacterial activity of a surfactant-like peptide. SOFT MATTER 2020; 16:9758-9768. [PMID: 33000840 DOI: 10.1039/d0sm01519a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembling peptides have become one of the most promising antibacterial agents due to their superior properties, such as simple molecular composition, favorable assembly structures, and rich designability. For maximum application in vivo, their activities in the presence of salts are desirable, however, the potent correlation between peptide nanostructures, antibacterial activity, and salt resistance behavior remains poorly explored. Previously, we have demonstrated that the potent antibacterial activity of a designed surfactant-like peptide Ac-A9K-NH2 benefited from its high self-assembly ability and appropriate size of its self-assembled nanostructures. In this study, we investigated the effect of salts on its self-assembly behavior and antibacterial activity. The results indicated that the flexible and long nanofibrils formed by Ac-A9K-NH2 in the presence of CaCl2 were adverse to its membrane insertion, leading to the reduction of antibacterial activity. Comparatively, Ac-A9K-NH2 maintained its potent antibacterial activity in the presence of NaCl due to its suitable shape and size of nanostructures. The newly formed nanofibers and nanorods facilitated the penetration of peptides into the bacterial membrane, forming nanopores and eventually leading to the lysis of bacteria. The high antibacterial activity and NaCl tolerance of Ac-A9K-NH2 make it a promising antibacterial agent at elevated salt concentrations.
Collapse
Affiliation(s)
- Cuixia Chen
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao 266555, China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kaur H, Sharma P, Patel N, Pal VK, Roy S. Accessing Highly Tunable Nanostructured Hydrogels in a Short Ionic Complementary Peptide Sequence via pH Trigger. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12107-12120. [PMID: 32988205 DOI: 10.1021/acs.langmuir.0c01472] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Creating diverse nanostructures from a single gelator through modulating the self-assembly pathway has been gaining much attention in recent years. To this direction, we are exploring the effect of modulation of pH as a potential self-assembly pathway in governing the physicochemical properties of the final gel phase material. In this context, we used a classical nongelator with the ionic complementary sequence FEFK, which was rationally conjugated to an aromatic group naphthoxyacetic acid (Nap) at the N-terminal end to tune its gelation behavior. Interestingly, the presence of oppositely charged amino acids in the peptide amphiphile resulted in pH-responsive behavior, leading to the formation of hydrogels over a wide pH range (2.0-12.0); however, their structures differ significantly at the nanoscale. Thus, by simply manipulating the overall charge over the exposed surface of the peptide amphiphiles as a function of pH, we were able to access diverse self-assembled nanostructures within a single gelator domain. The charged state of the gelator at the extreme pH (2.0, 12.0) led to a thinner fiber formation, in contrast to the thicker fibers observed near the physiological pH owing to charge neutralization, thus promoting the lateral association. Such variation in molecular packing was found to be further reflected in the variable mechanical strengths of the peptide hydrogels obtained at different pH values. Moreover, the gelation of the peptide at physiological pH offers an additional advantage to explore this hydrogel as a cell culture scaffold. We anticipate that our study on controlling the self-assembly pathway of the ionic complementary peptide amphiphile can be an elegant approach to access diverse self-assembled materials, which can expand the zone of its applicability as a stimuli-responsive biomaterial.
Collapse
Affiliation(s)
- Harsimran Kaur
- Habitat Centre, Institute of Nano Science and Technology, Sector 64, Phase 10, Mohali, Punjab 160062, India
| | - Pooja Sharma
- Habitat Centre, Institute of Nano Science and Technology, Sector 64, Phase 10, Mohali, Punjab 160062, India
| | - Nidhi Patel
- Habitat Centre, Institute of Nano Science and Technology, Sector 64, Phase 10, Mohali, Punjab 160062, India
| | - Vijay Kumar Pal
- Habitat Centre, Institute of Nano Science and Technology, Sector 64, Phase 10, Mohali, Punjab 160062, India
| | - Sangita Roy
- Habitat Centre, Institute of Nano Science and Technology, Sector 64, Phase 10, Mohali, Punjab 160062, India
| |
Collapse
|
32
|
Zhang J, Liu S, Li H, Tian X, Li X. Tryptophan-Based Self-Assembling Peptides with Bacterial Flocculation and Antimicrobial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11316-11323. [PMID: 32907333 DOI: 10.1021/acs.langmuir.0c01957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tryptophan as an aromatic amino acid with a hydrophobic indole group plays important roles in stabilizing protein structures and enhancing molecular bindings in nature, but was rarely used in the molecular design of self-assembling peptides or gelators. Therefore, we prepared a series of short peptides from Trp amino acids and examined the potential roles of Trp residues for regulating peptide self-assembly and gelation. The introduced Trp amino acids not only diversify the molecular structures of peptide gelators, but also promote aromatic and hydrogen-bonding interactions for supramolecular self-assembling and gelation, which generates self-assembled nanostructures with twisted helical morphologies and supramolecular hydrogels with low minimal gelation concentrations. More importantly, the self-assembling peptides with Trp residues displayed strong preference for interacting with the lipidic membranes of bacteria, which resulted in bacterial flocculation and the death of E. coli and S. aureus.
Collapse
Affiliation(s)
- Jikun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shengnan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hang Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xin Tian
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
33
|
Baral A, Bhangu SK, Cimino R, Pelin JNBD, Alves WA, Chattopadhyay S, Ashokkumar M, Cavalieri F. Sono-Assembly of the [Arg-Phe] 4 Octapeptide into Biofunctional Nanoparticles. NANOMATERIALS 2020; 10:nano10091772. [PMID: 32911613 PMCID: PMC7558974 DOI: 10.3390/nano10091772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022]
Abstract
High-frequency ultrasound treatment is found to be a one-pot green technique to produce peptide-based nanostructures by ultrasound assisted self-assembly of oligopeptides. [Arg-Phe]4 octapeptides, consisting of alternating arginine (Arg/R) and phenylalanine (Phe/F) sequences, were subjected to 430 kHz ultrasound in aqueous solution in the absence of any external agents, to form [RF]4 nanoparticles ([RF]4-NPs), ~220 nm in diameter. A comprehensive analysis of the obtained nanoparticles demonstrated that the aromatic moieties of the oligopeptides can undergo oxidative coupling to form multiple oligomeric species, which then self-assemble into well-defined fluorescent nanoparticles. [RF]4-NPs were functionalized with polyethylene glycol (PEGylated) to improve their colloidal stability. Unlike the parent peptide, the PEGylated [RF]4-NPs showed limited cytotoxicity towards MDA-MB-231 cells. Furthermore, the intracellular trafficking of PEGylated [RF]4-NPs was investigated after incubation with MDA-MB-231 cells to demonstrate their efficient endo-lysosomal escape. This work highlights that the combined use of ultrasonic technologies and peptides enables easy fabrication of nanoparticles, with potential application in drug delivery.
Collapse
Affiliation(s)
- Anshul Baral
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia;
| | | | - Rita Cimino
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Juliane N. B. D. Pelin
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo Andre 09210-580, Brazil; (J.N.B.D.P.); (W.A.A.)
| | - Wendel A. Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo Andre 09210-580, Brazil; (J.N.B.D.P.); (W.A.A.)
| | | | - Muthupandian Ashokkumar
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia;
- Correspondence: (M.A.); (F.C.)
| | - Francesca Cavalieri
- School of Science, RMIT University, Melbourne, VIC 3000, Australia;
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Correspondence: (M.A.); (F.C.)
| |
Collapse
|
34
|
Das R, Gayakvad B, Shinde SD, Rani J, Jain A, Sahu B. Ultrashort Peptides—A Glimpse into the Structural Modifications and Their Applications as Biomaterials. ACS APPLIED BIO MATERIALS 2020; 3:5474-5499. [DOI: 10.1021/acsabm.0c00544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bhavinkumar Gayakvad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Suchita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Jyoti Rani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| |
Collapse
|
35
|
Rüter A, Kuczera S, Stenhammar J, Zinn T, Narayanan T, Olsson U. Tube to ribbon transition in a self-assembling model peptide system. Phys Chem Chem Phys 2020; 22:18320-18327. [PMID: 32785353 DOI: 10.1039/d0cp03204b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptides that self-assemble into β-sheet rich aggregates are known to form a large variety of supramolecular shapes, such as ribbons, tubes or sheets. However, the underlying thermodynamic driving forces for such different structures are still not fully understood, limiting their potential applications. In the AnK peptide system (A = alanine, K = lysine), a structural transition from tubes to ribbons has been shown to occur upon an increase of the peptide length, n, from 6 to 8. In this work we analyze this transition by means of a simple thermodynamic model. We consider three energy contributions to the total free energy: an interfacial tension, a penalty for deviating from the optimal β-sheet twist angle, and a hydrogen bond deformation when the β-sheets adopt a specific self-assembled structure. Whilst the first two contributions merely provide similar constant energy offsets, the hydrogen bond deformations differ depending on the studied structure. Consequently, the tube structure is thermodynamically favored for shorter AnK peptides, with a crossover at n≈ 13. This qualitative agreement of the model with the experimental observations shows, that we have achieved a good understanding of the underlying thermodynamic features within the self-assembling AnK system.
Collapse
Affiliation(s)
- Axel Rüter
- Division of Physical Chemistry, Lund University, SE-22100 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
36
|
Mannem R, Yousuf M, Sreerama L. Nanostructures Formed by Custom-Made Peptides Based on Amyloid Peptide Sequences and Their Inhibition by 2-Hydroxynaphthoquinone. Front Chem 2020; 8:684. [PMID: 32850681 PMCID: PMC7424059 DOI: 10.3389/fchem.2020.00684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/30/2020] [Indexed: 01/30/2023] Open
Abstract
Extensive research on amyloid fibril formations shows that certain core sequences within Aβ peptide play an important role in their formation. It is impossible to track these events in vivo. Many proteins and peptides with such core sequences form amyloid fibrils and such Aβ sheet mimics have become excellent tools to study amyloid fibril formation and develop therapeutic strategies. A group of peptides based on amyloid peptide sequences obtained from PDB searches, where glycine residues are substituted with alanine and isoleucine, are tested for aggregation by SEM and ThT binding assay. SEM of different peptide sequences showed morphologically different structures such as nanorods, crystalline needles and nanofibrils. The peptides were co-incubated with HNQ (a quinone) to study its effect on the process of aggregation and/or fibrillation. In conclusion, this group of peptides seem to be Aβ sheet mimics and can be very useful in understanding the different morphologies of amyloid fibrils arising from different peptide sequences and the effective strategies to inhibit or anneal them.
Collapse
Affiliation(s)
- Radhika Mannem
- Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
| | - Mohammed Yousuf
- Central Laboratory Unit (CLU), Qatar University, Doha, Qatar
| | | |
Collapse
|
37
|
Han H, Zeng W, Zhang G, Zhou J. Active tyrosine phenol-lyase aggregates induced by terminally attached functional peptides in Escherichia coli. J Ind Microbiol Biotechnol 2020; 47:563-571. [PMID: 32737623 PMCID: PMC7508748 DOI: 10.1007/s10295-020-02294-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
The formation of inclusion bodies (IBs) without enzyme activity in bacterial research is generally undesirable. Researchers have attempted to recovery the enzyme activities of IBs, which are commonly known as active IBs. Tyrosine phenol-lyase (TPL) is an important enzyme that can convert pyruvate and phenol into 3,4-dihydroxyphenyl-L-alanine (L-DOPA) and IBs of TPL can commonly occur. To induce the correct folding and recover the enzyme activity of the IBs, peptides, such as ELK16, DKL6, L6KD, ELP10, ELP20, L6K2, EAK16, 18A, and GFIL16, were fused to the carboxyl terminus of TPL. The results showed that aggregate particles of TPL-DKL6, TPL-ELP10, TPL-EAK16, TPL-18A, and TPL-GFIL16 improved the enzyme activity by 40.9%, 50.7%, 48.9%, 86.6%, and 97.9%, respectively. The peptides TPL-DKL6, TPL-EAK16, TPL-18A, and TPL-GFIL16 displayed significantly improved thermostability compared with TPL. L-DOPA titer of TPL-ELP10, TPL-EAK16, TPL-18A, and TPL-GFIL16, with cells reaching 37.8 g/L, 53.8 g/L, 37.5 g/L, and 29.1 g/L, had an improvement of 111%, 201%, 109%, and 63%, respectively. A higher activity and L-DOPA titer of the TPL-EAK16 could be valuable for its industrial application to biosynthesize L-DOPA.
Collapse
Affiliation(s)
- Hongmei Han
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Guoqiang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
38
|
Del Giudice A, Rüter A, Pavel NV, Galantini L, Olsson U. Self-Assembly of Model Amphiphilic Peptides in Nonaqueous Solvents: Changing the Driving Force for Aggregation Does Not Change the Fibril Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8451-8460. [PMID: 32597180 PMCID: PMC8009514 DOI: 10.1021/acs.langmuir.0c00876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Within the homologous series of amphiphilic peptides AnK, both A8K and A10K self-assemble in water to form twisted ribbon fibrils with lengths around 100 nm. The structure of the fibrils can be described in terms of twisted β-sheets extending in the direction of the fibrils, laminated to give a constant cross section of 4 nm by 8 nm. The finite width of the twisted ribbons can be reasonably explained within a simple thermodynamic model, considering a free energy penalty for the stretching of hydrogen bonds along the twisted β-sheets and an interfacial free energy gain for the lamination of the hydrophobic β-sheets. In this study, we characterize the self-assembly behavior of these peptides in nonaqueous solutions as a route to probe the role of hydrophobic interaction in fibril stabilization. Both peptides, in methanol and N,N-dimethylformamide, were found to form fibrillar aggregates with the same β-sheet structure as in water but with slightly smaller cross-sectional sizes. However, the gel-like texture, the slow relaxation in dynamic light scattering experiments, and a correlation peak in the small-angle X-ray scattering pattern highlighted enhanced interfibril interactions in the nonaqueous solvents in the same concentration range. This could be ascribed to a higher effective volume of the aggregates because of enhanced fibril growth and length, as suggested by light scattering and cryogenic transmission electron microscopy analyses. These effects can be discussed considering how the solvent properties affect the different energetic contributions (hydrophobic, electrostatic, and hydrogen bonding) to fibril formation. In the analyzed case, the decreased hydrogen bonding propensity of the nonaqueous solvents makes the hydrogen bond formation along the fibril a key driving force for peptide assembly, whereas it represents a nonrelevant contribution in water.
Collapse
Affiliation(s)
- Alessandra Del Giudice
- Department
of Chemistry, Sapienza University of Rome, P. le A. Moro 5, Rome 00185, Italy
| | - Axel Rüter
- Division
of Physical Chemistry, Lund University, Lund SE-22100, Sweden
| | - Nicolae Viorel Pavel
- Department
of Chemistry, Sapienza University of Rome, P. le A. Moro 5, Rome 00185, Italy
| | - Luciano Galantini
- Department
of Chemistry, Sapienza University of Rome, P. le A. Moro 5, Rome 00185, Italy
| | - Ulf Olsson
- Division
of Physical Chemistry, Lund University, Lund SE-22100, Sweden
| |
Collapse
|
39
|
Wang PY, Ji QT, Xiang HM, Zhang TH, Zeng D, Zhou X, Chang F, Liu LW, Li Z, Yang S. Assembling Anthracene-Tailored Amphiphiles: Charge-Transfer Interactions Directed Hierarchical Nanofibers with Ameliorative Antibacterial Activity toward Plant Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5579-5585. [PMID: 32348138 DOI: 10.1021/acs.jafc.0c01991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effective prevention of plant bacterial infections has been complicated and challenged by unceasing bacterial resistance. The application of traditional bactericides has achieved certain effects to alleviate this situation. However, these chemicals also have limitations, such as short half-life in reality, limited bioavailability, and pollutant emission from their formulations. These disadvantages drive the demand for promoting antibacterial therapeutics. Self-assembled nanostructures based on amphiphiles have inherently versatile characteristics, including high durability, good bioavailability, sustained release, and regenerability. As such, they have garnered wide interest because of these advantages that may serve as a feasible platform for the management of pathogenic infections. Flexible tuning of the shapes of these nanostructures by manipulating noncovalent driving forces consequently results in different levels of antibacterial activity. Herein, an antibacterial amphiphile, 1-[11-(9-anthracenylmethoxy)-11-oxoundecyl]pyridinium bromide (AP), was assembled into microfilms in screening medium. Hierarchical nanofibers were constructed by introducing an electron-deficient trinitrofluorenone (TNF) molecule into the assembling system directed by charge-transfer (CT) interactions to further investigate the contribution of aggregate shape to bioactivity. Biological evaluation revealed that antibacterial efficacy improved after CT complex formation. This study provides an innovative platform for developing versatile assembled structures for restraining the propagation of plant pathogens and an improved understanding of the actual interplay between the self-assembly and antibacterial ability of bactericides at the supramolecular level.
Collapse
Affiliation(s)
- Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qing-Tian Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong-Mei Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Dan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Fei Chang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhong Li
- College of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- College of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
40
|
Yang J, Zhao S, Zhao D, Huang Y, Liu X, Hu W, Liu B. A capillary electrophoresis strategy to sensitively detect dynamic properties of coiled coil polypeptides. J Sep Sci 2020; 43:2201-2208. [DOI: 10.1002/jssc.202000137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Yang
- Innovation Institute for Biomedical Materials, College of Life Science and ChemistryWuhan Donghu University Wuhan P. R. China
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Sun‐Duo Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Dong‐Hui Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Yan Huang
- Innovation Institute for Biomedical Materials, College of Life Science and ChemistryWuhan Donghu University Wuhan P. R. China
| | - Xiao‐Xia Liu
- Innovation Institute for Biomedical Materials, College of Life Science and ChemistryWuhan Donghu University Wuhan P. R. China
| | - Wei Hu
- Innovation Institute for Biomedical Materials, College of Life Science and ChemistryWuhan Donghu University Wuhan P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| |
Collapse
|
41
|
Lotfallah AH, Isabel Burguete M, Alfonso I, Luis SV. Synthesis of second-generation self-assembling Gemini Amphiphilic Pseudopeptides. J Colloid Interface Sci 2020; 564:52-64. [DOI: 10.1016/j.jcis.2019.12.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/11/2023]
|
42
|
Tarvirdipour S, Schoenenberger CA, Benenson Y, Palivan CG. A self-assembling amphiphilic peptide nanoparticle for the efficient entrapment of DNA cargoes up to 100 nucleotides in length. SOFT MATTER 2020; 16:1678-1691. [PMID: 31967171 DOI: 10.1039/c9sm01990a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To overcome the low efficiency and cytotoxicity associated with most non-viral DNA delivery systems we developed a purely peptidic self-assembling system that is able to entrap single- and double-stranded DNA of up to 100 nucleotides in length. (HR)3gT peptide design consists of a hydrophilic domain prone to undergo electrostatic interactions with DNA cargo, and a hydrophobic domain at a ratio that promotes the self-assembly into multi-compartment micellar nanoparticles (MCM-NPs). Self-assembled (HR)3gT MCM-NPs range between 100 to 180 nm which is conducive to a rapid and efficient uptake by cells. (HR)3gT MCM-NPs had no adverse effects on HeLa cell viability. In addition, they exhibit long-term structural stability at 4 °C but at 37 °C, the multi-micellar organization disassembles overtime which demonstrates their thermo-responsiveness. The comparison of (HR)3gT to a shorter, less charged H3gT peptide indicates that the additional arginine residues result in the incorporation of longer DNA segments, an improved DNA entrapment efficiency and an increase cellular uptake. Our unique non-viral system for DNA delivery sets the stage for developing amphiphilic peptide nanoparticles as candidates for future systemic gene delivery.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | | | | | | |
Collapse
|
43
|
Recent advances in short peptide self-assembly: from rational design to novel applications. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Chen Y, Liu B, Guo L, Xiong Z, We G. Enzyme-instructed self-assembly of peptides: Process, dynamics, nanostructures, and biomedical applications. AIMS BIOPHYSICS 2020. [DOI: 10.3934/biophy.2020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Cyclic dipeptide nanoribbons formed by dye-mediated hydrophobic self-assembly for cancer chemotherapy. J Colloid Interface Sci 2019; 557:458-464. [DOI: 10.1016/j.jcis.2019.09.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/14/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
|
46
|
Zhang L, Lin S, Tong Q, Li Y, Wang Y, Li Y, Li B, Yang Y. Helicity of perfluoroalkyl chains controlled by the self-assembly of the Ala-Ala dipeptides. Chirality 2019; 31:992-1000. [PMID: 31468590 DOI: 10.1002/chir.23130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 01/04/2023]
Abstract
Four Ala-Ala dipeptides with a perfluoroalkyl chain at the N-terminal were synthesized. They were able to self-assemble into helical nanofibers and/or twisted nanobelts in a mixture of DMSO/H2 O. The handedness of nanofibers and nanobelts was controlled by the chirality of the alanine at the N-terminal. The stacking handedness of the phenylene groups and the helicity of the perfluoroalkyl chain were studied using circular dichroism spectroscopy and vibrational circular dichroism, respectively. The chirality of the alanine at N-terminal controlled the stacking handedness of the neighboring phenylene groups. Moreover, due to the low potential barrier between M- and P-helices of the perfluorocarbon chain, the handedness of the organic self-assemblies eventually controlled the helicity of the perfluorocarbon chain. X-ray diffraction indicated that a lamellar structure was formed by the dimers of the dipeptides.
Collapse
Affiliation(s)
- Lianglin Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Shuwei Lin
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, School of Optoelectronics Science and Engineering & Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Qiyun Tong
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Yong Wang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Baozong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| |
Collapse
|
47
|
Wang D, Hou X, Zhang X, Zhao Y, Sun Y, Wang J. One- and two-photon responsive injectable nano-bundle biomaterials from co-assembled lipopeptides for controlling molecular diffusion. SOFT MATTER 2019; 15:6476-6484. [PMID: 31365016 DOI: 10.1039/c9sm01184f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An injectable biomaterial has been prepared through co-assembly of lipopeptides C4-Bhc-Glu-Glu-NH2 and C14-Phe-Lys-Lys-NH2. This biomaterial contained a large number of nanofibre bundles (nano-bundles, NBs) of lipopeptide co-assemblies and performed like hydrogels. The morphologies of the NBs were observed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The rheological properties were investigated with a rheometer. Excitingly, the NB biomaterials exhibited shear thinning and self-healing properties, and could be used as injectable biomaterials. The coumarin group in the lipopeptides endowed the NB biomaterials with both ultraviolet (UV, a one photon process) and near-infrared (NIR) light (a two photon process) responsiveness. A small molecule (Doxorubicin, DOX) and a large molecule (bovine serum albumin, BSA) were used as model drugs, and both of them could be encapsulated in the NB biomaterials and could also be released sustainably or explosively under different conditions (with or without one- and two-photon irradiation). DOX and BSA have different release behaviors because of the NBs. Cell assays showed that the co-assembled NB biomaterials exhibited low cytotoxicity to normal cells. However, when DOX was loaded, the NB biomaterials could kill HeLa cells sustainably. Under UV and NIR irradiation, HeLa cells could be killed rapidly because of the burst release of DOX. The co-assembled supramolecular NB biomaterials with dual-responsiveness, tunable rheological properties and multi-drug encapsulating ability might have potential in biomedical engineering.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Xiaojun Hou
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Xuecheng Zhang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
48
|
Sun B, Tao K, Jia Y, Yan X, Zou Q, Gazit E, Li J. Photoactive properties of supramolecular assembled short peptides. Chem Soc Rev 2019; 48:4387-4400. [PMID: 31237282 PMCID: PMC6711403 DOI: 10.1039/c9cs00085b] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioinspired nanostructures can be the ideal functional smart materials to bridge the fundamental biology, biomedicine and nanobiotechnology fields. Among them, short peptides are among the most preferred building blocks as they can self-assemble to form versatile supramolecular architectures displaying unique physical and chemical properties, including intriguing optical features. Herein, we discuss the progress made over the past few decades in the design and characterization of optical short peptide nanomaterials, focusing on their intrinsic photoluminescent and waveguiding performances, along with the diverse modulation strategies. We review the complicated optical properties and the advanced applications of photoactive short peptide self-assemblies, including photocatalysis, as well as photothermal and photodynamic therapy. The diverse advantages of photoactive short peptide self-assemblies, such as eco-friendliness, morphological and functional flexibility, and ease of preparation and modification, endow them with the capability to potentially serve as next-generation, bio-organic optical materials, allowing the bridging of the optics world and the nanobiotechnology field.
Collapse
Affiliation(s)
- Bingbing Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Kai Tao
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Department of Biomolecular, Assembly and Biomaterials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Department of Biomolecular, Assembly and Biomaterials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel. and Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Cong C, Bian K, Zhang X, Luo L, Li L, He H, Li C, Zhao Q, Wang S, Hao Z, He Y, Gao D. Sensitive measurement of tumor markers somatostatin receptors using an octreotide-directed Pt nano-flakes driven electrochemical sensor. Talanta 2019; 208:120286. [PMID: 31816809 DOI: 10.1016/j.talanta.2019.120286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Tumor markers play an important role in the early diagnosis and therapeutic effect monitoring of tumors. An electrochemical biosensor was developed based on multi-branched gold nanoshells (BGSs) and octreotide (OCT) functionalized Pt nano-flakes (PtNFs) modified electrodes, which was used for detection of tumor-specific markers to evaluate tumor cells. Sandwich-type nano-hybrid materials were prepared by layer-by-layer modification. First, reduced graphene oxide (RGO) and BGSs were modified as electronic materials onto glassy carbon electrodes (GCE). This modified electrode has strong electron transfer capability and large electrode surface area. The OCT was then anchored to the surface of BGSs to sensitively detect Somatostatin receptors (SSTRs) on the surface of HeLa cells. In addition, PtNFs were synthesized using a dual-template method, and OCT template on the surface of PtNFs, as an adsorption bioprobe, was used to reduce the H2O2 and amplify the electrochemical signal of biosensor. The proposed biosensor can be applied to the quantitative broad linear range of HeLa cells covering from 10 to 1 × 106 cells mL-1 (R2 = 0.9998) and the limit of detection (LOD) was 2 cells mL-1. The experimental results also show that the sensor has good stability, biocompatibility and high selectivity, which has great potential for clinical application.
Collapse
Affiliation(s)
- Cong Cong
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, PR China
| | - Kexin Bian
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Xuwu Zhang
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, PR China
| | - Liyao Luo
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Lei Li
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Hongyu He
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Chunhui Li
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Qianqian Zhao
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Shuai Wang
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Zining Hao
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Yaqian He
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Dawei Gao
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Province Asparagus Industry Technology Research Institute, Qinhuangdao, PR China.
| |
Collapse
|
50
|
Fabrication of short peptide cages by interfacial self-assembly on CaCO3 templates. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|