1
|
Liarte DB, Thornton SJ, Schwen E, Cohen I, Chowdhury D, Sethna JP. Universal scaling for disordered viscoelastic matter near the onset of rigidity. Phys Rev E 2022; 106:L052601. [PMID: 36559468 DOI: 10.1103/physreve.106.l052601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
The onset of rigidity in interacting liquids, as they undergo a transition to a disordered solid, is associated with a rearrangement of the low-frequency vibrational spectrum. In this Letter, we derive scaling forms for the singular dynamical response of disordered viscoelastic networks near both jamming and rigidity percolation. Using effective-medium theory, we extract critical exponents, invariant scaling combinations, and analytical formulas for universal scaling functions near these transitions. Our scaling forms describe the behavior in space and time near the various onsets of rigidity, for rigid and floppy phases and the crossover region, including diverging length scales and timescales at the transitions.
Collapse
Affiliation(s)
- Danilo B Liarte
- ICTP South American Institute for Fundamental Research, São Paulo, SP 01140-070, Brazil
- Institute of Theoretical Physics, São Paulo State University, São Paulo, SP 01140-070, Brazil
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | | | - Eric Schwen
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | | | - James P Sethna
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
2
|
Immink JN, Maris JJE, Capellmann RF, Egelhaaf SU, Schurtenberger P, Stenhammar J. ArGSLab: a tool for analyzing experimental or simulated particle networks. SOFT MATTER 2021; 17:8354-8362. [PMID: 34550148 PMCID: PMC8457054 DOI: 10.1039/d1sm00692d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Microscopy and particle-based simulations are both powerful techniques to study aggregated particulate matter such as colloidal gels. The data provided by these techniques often contains information on a wide array of length scales, but structural analysis methods typically focus on the local particle arrangement, even though the data also contains information about the particle network on the mesoscopic length scale. In this paper, we present a MATLAB software package for quantifying mesoscopic network structures in colloidal samples. ArGSLab (Arrested and Gelated Structures Laboratory) extracts a network backbone from the input data, which is in turn transformed into a set of nodes and links for graph theory-based analysis. The routines can process both image stacks from microscopy as well as explicit coordinate data, and thus allows quantitative comparison between simulations and experiments. ArGSLab furthermore enables the accurate analysis of microscopy data where, e.g., an extended point spread function prohibits the resolution of individual particles. We demonstrate the resulting output for example datasets from both microscopy and simulation of colloidal gels, in order to showcase the capability of ArGSLab to quantitatively analyze data from various sources. The freely available software package can be used either with a provided graphical user interface or directly as a MATLAB script.
Collapse
Affiliation(s)
- Jasper N Immink
- Condensed Matter Physics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Division of Physical Chemistry, Lund University, Lund, Sweden
| | - J J Erik Maris
- Inorganic Chemistry and Catalysis Group, Utrecht University, Utrecht, The Netherlands
| | - Ronja F Capellmann
- Condensed Matter Physics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Peter Schurtenberger
- Division of Physical Chemistry, Lund University, Lund, Sweden
- Lund Institute of advanced Neutron and X-ray Science (LINXS), Lund University, Lund, Sweden
| | | |
Collapse
|
3
|
van der Wee EB, Fokkema J, Kennedy CL, Del Pozo M, de Winter DAM, Speets PNA, Gerritsen HC, van Blaaderen A. 3D test sample for the calibration and quality control of stimulated emission depletion (STED) and confocal microscopes. Commun Biol 2021; 4:909. [PMID: 34302049 PMCID: PMC8302645 DOI: 10.1038/s42003-021-02432-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple samples are required to monitor and optimize the quality and reliability of quantitative measurements of stimulated emission depletion (STED) and confocal microscopes. Here, we present a single sample to calibrate these microscopes, align their laser beams and measure their point spread function (PSF) in 3D. The sample is composed of a refractive index matched colloidal crystal of silica beads with fluorescent and gold cores. The microscopes can be calibrated in three dimensions using the periodicity of the crystal; the alignment of the laser beams can be checked using the reflection of the gold cores; and the PSF can be measured at multiple positions and depths using the fluorescent cores. It is demonstrated how this sample can be used to visualize and improve the quality of STED and confocal microscopy images. The sample is adjustable to meet the requirements of different NA objectives and microscopy techniques and additionally can be used to evaluate refractive index mismatches as a function of depth quantitatively.
Collapse
Affiliation(s)
- Ernest B van der Wee
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Jantina Fokkema
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Chris L Kennedy
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Marc Del Pozo
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - D A Matthijs de Winter
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
- Environmental Hydrogeology, Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
| | - Peter N A Speets
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Hans C Gerritsen
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Alfons van Blaaderen
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
|
5
|
Tsurusawa H, Leocmach M, Russo J, Tanaka H. Direct link between mechanical stability in gels and percolation of isostatic particles. SCIENCE ADVANCES 2019; 5:eaav6090. [PMID: 31172025 PMCID: PMC6544450 DOI: 10.1126/sciadv.aav6090] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/23/2019] [Indexed: 05/28/2023]
Abstract
Colloidal gels have unique mechanical and transport properties that stem from their bicontinuous nature, in which a colloidal network is intertwined with a viscous solvent, and have found numerous applications in foods, cosmetics, and construction materials and for medical applications, such as cartilage replacements. So far, our understanding of the process of colloidal gelation is limited to long-time dynamical effects, where gelation is viewed as a phase separation process interrupted by the glass transition. However, this purely out-of-equilibrium thermodynamic picture does not address the emergence of mechanical stability. With confocal microscopy experiments, we reveal that mechanical metastability is reached only after isotropic percolation of locally isostatic environments, establishing a direct link between the load-bearing ability of gels and the isostaticity condition. Our work suggests an operative description of gels based on mechanical equilibrium and isostaticity, providing the physical basis for the stability and rheology of these materials.
Collapse
Affiliation(s)
- Hideyo Tsurusawa
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Mathieu Leocmach
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - John Russo
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- School of Mathematics, University of Bristol, Bristol BS8 1TW, UK
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
6
|
van der Hoeven JES, van der Wee EB, de Winter DAM, Hermes M, Liu Y, Fokkema J, Bransen M, van Huis MA, Gerritsen HC, de Jongh PE, van Blaaderen A. Bridging the gap: 3D real-space characterization of colloidal assemblies via FIB-SEM tomography. NANOSCALE 2019; 11:5304-5316. [PMID: 30843546 DOI: 10.1039/c8nr09753d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insight in the structure of nanoparticle assemblies up to a single particle level is key to understand the collective properties of these assemblies, which critically depend on the individual particle positions and orientations. However, the characterization of large, micron sized assemblies containing small, 10-500 nanometer, sized colloids is highly challenging and cannot easily be done with the conventional light, electron or X-ray microscopy techniques. Here, we demonstrate that focused ion beam-scanning electron microscopy (FIB-SEM) tomography in combination with image processing enables quantitative real-space studies of ordered and disordered particle assemblies too large for conventional transmission electron tomography, containing particles too small for confocal microscopy. First, we demonstrate the high resolution structural analysis of spherical nanoparticle assemblies, containing small anisotropic gold nanoparticles. Herein, FIB-SEM tomography allows the characterization of assembly dimensions which are inaccessible to conventional transmission electron microscopy. Next, we show that FIB-SEM tomography is capable of characterizing much larger ordered and disordered assemblies containing silica colloids with a diameter close to the resolution limit of confocal microscopes. We determined both the position and the orientation of each individual (nano)particle in the assemblies by using recently developed particle tracking routines. Such high precision structural information is essential in the understanding and design of the collective properties of new nanoparticle based materials and processes.
Collapse
Affiliation(s)
- Jessi E S van der Hoeven
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cristofolini L, Orsi D, Isa L. Characterization of the dynamics of interfaces and of interface-dominated systems via spectroscopy and microscopy techniques. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|