1
|
Omondi AS, Kovács D, Radnóczi GZ, Horváth ZE, Tolnai I, Deák A, Zámbó D. Symmetry breaking enhances the catalytic and electrocatalytic performance of core/shell tetrametallic porous nanoparticles. NANOSCALE 2024; 17:261-275. [PMID: 39559946 DOI: 10.1039/d4nr03589e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The performance of functional nanocatalysts can be extended by integrating multiple types of metals into well-designed nanoparticles. A porous multimetallic shell grown around high-quality monometallic seeds significantly enhances the availability of active sites. Here, tetrametallic core/shell nanoparticles (Au@mPdPtIr) featuring micro- and mesoporous shells are synthesized with strict control over the overall particle morphology. To reveal the impact of the core nanoparticle morphology on the optical, structural and electrocatalytic properties, tetrametallic particles are prepared using gold cores with different shapes but identical volumes and surface chemistry. Our general synthetic approach ensures the successful and reliable synthesis of porous trimetallic shells around the cores, keeping the final atomic composition of the different multimetallic particles identical. The results clearly highlight the significance of the core morphology in the catalytic performance and the superior activity of symmetry-broken core/shell particles in heterogeneous as well as electrocatalytic oxidation reactions. These can be attributed to the fine structural details of the deposited trimetallic shells and their influence on the charge carrier transport between the multimetallic particles and the organic test molecules. While all nanocatalysts show excellent morphological robustness, the optimal morphology also depends on the reaction type and conditions of the specific reaction.
Collapse
Affiliation(s)
- Apoko S Omondi
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Dávid Kovács
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - György Z Radnóczi
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
| | - Zsolt E Horváth
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
| | - István Tolnai
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
| | - András Deák
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
| | - Dániel Zámbó
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
| |
Collapse
|
2
|
Mathiesen JK, Ashberry HM, Pokratath R, Gamler JTL, Wang B, Kirsch A, Kjær ETS, Banerjee S, Jensen KMØ, Skrabalak SE. Why Colloidal Syntheses of Bimetallic Nanoparticles Cannot be Generalized. ACS NANO 2024; 18:26937-26947. [PMID: 39297869 DOI: 10.1021/acsnano.4c08835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Introducing one general synthesis to form bimetallic nanoparticles (NPs) could accelerate the discovery of NPs for promising energy applications. Although colloidal syntheses can provide precise structural and morphological control of bimetallic NPs, the complex chemical nature of multicomponent syntheses challenges the realization of such synthetic simplicity. Common synthetic issues are frequently ascribed to the variation in metal ion precursor reactivities and complex chemical interactions between the different metal surfaces and capping agents employed. However, no systematic studies have shown how these factors compete to ultimately assign the factor limiting the mixing and formation of bimetallic NPs. Here, we provide a parametric investigation of how the intrinsic standard reduction potentials (E0red) of the metal ions and cocapping agents influence the formation of bimetallic AuCu, AuPd, and PdCu NPs. Using a combination of in situ X-ray total scattering along with transmission electron microscopy and nuclear magnetic resonance spectroscopy, we illustrate the multifunctional role of the cocapping agents through interactions with both the metal ion precursors and NP surfaces to stabilize metastable structures. Additionally, we demonstrate how system-specific side reactions and the local metal ion coordination environment can be used to selectively tune the formation kinetics, structure, and morphology of bimetallic NPs. Ultimately, these insights show that the chemical interactions rather than the intrinsic E0red are responsible for the formation of bimetallic NPs. Broadly, these insights should aid the synthetic design of tailored multimetallic NPs.
Collapse
Affiliation(s)
- Jette K Mathiesen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Hannah M Ashberry
- Department of Chemistry, Indiana University-Bloomington, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Rohan Pokratath
- Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, Basel 4058, Switzerland
| | - Jocelyn T L Gamler
- Department of Chemistry, Indiana University-Bloomington, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Baiyu Wang
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Andrea Kirsch
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Emil T S Kjær
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Soham Banerjee
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg 22607, Germany
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University-Bloomington, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Petriev I, Pushankina P, Andreev G, Ivanin S, Dzhimak S. High-Performance Hydrogen-Selective Pd-Ag Membranes Modified with Pd-Pt Nanoparticles for Use in Steam Reforming Membrane Reactors. Int J Mol Sci 2023; 24:17403. [PMID: 38139232 PMCID: PMC10744327 DOI: 10.3390/ijms242417403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
A unique method for synthesizing a surface modifier for metallic hydrogen permeable membranes based on non-classic bimetallic pentagonally structured Pd-Pt nanoparticles was developed. It was found that nanoparticles had unique hollow structures. This significantly reduced the cost of their production due to the economical use of metal. According to the results of electrochemical studies, a synthesized bimetallic Pd-Pt/Pd-Ag modifier showed excellent catalytic activity (up to 60.72 mA cm-2), long-term stability, and resistance to COads poisoning in the alkaline oxidation reaction of methanol. The membrane with the pentagonally structured Pd-Pt/Pd-Ag modifier showed the highest hydrogen permeation flux density, up to 27.3 mmol s-1 m-2. The obtained hydrogen flux density was two times higher than that for membranes with a classic Pdblack/Pd-Ag modifier and an order of magnitude higher than that for an unmodified membrane. Since the rate of transcrystalline hydrogen transfer through a membrane increased, while the speed of transfer through defects remained unchanged, a one and a half times rise in selectivity of the developed Pd-Pt/Pd-Ag membranes was recorded, and it amounted to 3514. The achieved results were due to both the synergistic effect of the combination of Pd and Pt metals in the modifier composition and the large number of available catalytically active centers, which were present as a result of non-classic morphology with high-index facets. The specific faceting, defect structure, and unusual properties provide great opportunities for the application of nanoparticles in the areas of membrane reactors, electrocatalysis, and the petrochemical and hydrogen industries.
Collapse
Affiliation(s)
- Iliya Petriev
- Department of Physics, Kuban State University, Krasnodar 350040, Russia (S.I.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| | - Polina Pushankina
- Department of Physics, Kuban State University, Krasnodar 350040, Russia (S.I.)
| | - Georgy Andreev
- Department of Physics, Kuban State University, Krasnodar 350040, Russia (S.I.)
| | - Sergei Ivanin
- Department of Physics, Kuban State University, Krasnodar 350040, Russia (S.I.)
| | - Stepan Dzhimak
- Department of Physics, Kuban State University, Krasnodar 350040, Russia (S.I.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| |
Collapse
|
4
|
Halford GC, Personick ML. Bridging Colloidal and Electrochemical Nanoparticle Growth with In Situ Electrochemical Measurements. Acc Chem Res 2023; 56:1228-1238. [PMID: 37140656 DOI: 10.1021/acs.accounts.3c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ConspectusProspective applications involving the electrification of industrial chemical processes and electrical energy to chemical fuels interconversion as part of the energy transition to renewable energy sources have led to an increasing need for highly tailored nanostructures immobilized on electrode surfaces. Control of surface facet structure across material compositions is of particular importance for ensuring performance in such applications. Colloidal methods for producing shaped nanoparticles in solution are abundant, particularly for noble metals. However, significant technical challenges remain with respect to rationally designing syntheses for the novel compositions and morphologies required to sustainably enable the above technological advances as well as in developing methods for uniformly and reproducibly dispersing colloidally synthesized nanostructures on electrode surfaces. The direct synthesis of nanoparticles on electrodes using chemical reduction approaches remains challenging, though recent advances have been made for certain materials and structures. Electrochemical nanoparticle synthesis─where an applied current or potential instead of a chemical reducing agent drives the redox chemistry of nanoparticle growth─is poised to play an important role in advancing the fabrication of nanostructured electrodes. Specifically, this Account focuses on the colloidal-inspired design of electrochemical syntheses and the interplay between colloidal and electrochemical approaches in terms of understanding the fundamental chemical reaction mechanisms of nanoparticle growth. An initial discussion of the development of electrochemical particle syntheses that incorporate colloidal synthetic tools highlights the promising emergent capabilities that result from blending these two approaches. Furthermore, it demonstrates how existing colloidal syntheses can be directly translated to electrochemical growth on a conductive surface using real-time electrochemical measurements of the chemistry of the growth solution. Measuring the open circuit potential of a colloidal synthesis over time and then replicating that measured potential during electrochemical deposition leads to the formation of the same nanoparticle shape. These in situ open circuit and chronopotentiometric measurements also give fundamental insight about the changing chemical environment during particle growth. We highlight how these time-resolved electrochemical measurements, as well as correlated spectroelectrochemical monitoring of particle formation kinetics, enable the extraction of information regarding mechanisms of particle formation that is difficult to obtain using other approaches. This information can be translated back into colloidal synthesis design via a directed, intentional approach to synthetic development. We additionally explore the added flexibility of synthetic design for methods involving electrochemically driven reduction as compared to the use of chemical reducing agents. The Account concludes with a brief perspective on potential future directions in both fundamental studies and synthetic development enabled by this emerging integrated electrochemical approach.
Collapse
Affiliation(s)
- Gabriel C Halford
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Michelle L Personick
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
5
|
Abstract
A significant challenge in the development of functional materials is understanding the growth and transformations of anisotropic colloidal metal nanocrystals. Theory and simulations can aid in the development and understanding of anisotropic nanocrystal syntheses. The focus of this review is on how results from first-principles calculations and classical techniques, such as Monte Carlo and molecular dynamics simulations, have been integrated into multiscale theoretical predictions useful in understanding shape-selective nanocrystal syntheses. Also, examples are discussed in which machine learning has been useful in this field. There are many areas at the frontier in condensed matter theory and simulation that are or could be beneficial in this area and these prospects for future progress are discussed.
Collapse
Affiliation(s)
- Kristen A Fichthorn
- Department of Chemical Engineering and Department of Physics The Pennsylvania State University University Park, Pennsylvania 16803 United States
| |
Collapse
|
6
|
Wei R, Tang N, Jiang L, Yang J, Guo J, Yuan X, Liang J, Zhu Y, Wu Z, Li H. Bimetallic nanoparticles meet polymeric carbon nitride: Fabrications, catalytic applications and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Zhang G, Ma Y, Fu X, Zhao W, Liu F, Liu M, Zheng Y. Enriching the branching of Au@PdAu core–shell nanocrystals using a syringe pump: kinetics control meets lattice mismatch. CrystEngComm 2021. [DOI: 10.1039/d1ce00107h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gold@palladium–gold nanocrystals with a tunable branched shape are prepared via seeded growth, where the use of a syringe pump allows the manipulation over reaction kinetics as coupled by surface diffusion and strain caused by lattice mismatch.
Collapse
Affiliation(s)
- Gongguo Zhang
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- P. R. China
| | - Xiaowei Fu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Wenjun Zhao
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Feng Liu
- International Research Center for Renewable Energy
- National Key Laboratory of Multiphase Flow in Power Engineering
- Xi'an Jiaotong University
- Xi'an
- China
| | - Maochang Liu
- International Research Center for Renewable Energy
- National Key Laboratory of Multiphase Flow in Power Engineering
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yiqun Zheng
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| |
Collapse
|
8
|
McDarby SP, Wang CJ, King ME, Personick ML. An Integrated Electrochemistry Approach to the Design and Synthesis of Polyhedral Noble Metal Nanoparticles. J Am Chem Soc 2020; 142:21322-21335. [PMID: 33237754 DOI: 10.1021/jacs.0c07987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The synthesis of shaped metal nanoparticles to meet the precise needs of emerging applications requires intentional synthetic design directed by fundamental chemical principles. We report an integrated electrochemistry approach to nanoparticle synthetic design that couples current-driven growth of metal nanoparticles on an electrode surface-in close analogy to standard colloidal synthesis-with electrochemical measurements of both electrochemical and colloidal nanoparticle growth. A simple chronopotentiometry method was used to translate an existing colloidal synthesis for corrugated palladium (Pd) nanoparticles to electrochemical growth on a glassy carbon electrode, with minimal modification to the growth solution. The electrochemical synthesis method was then utilized to produce large Pd icosahedra, a shape whose synthesis is challenging in a colloidal growth environment. This electrochemical synthesis for Pd icosahedra was used to develop a corresponding colloidal growth solution by tailoring a weak reducing agent to the measured potential profile of the electrochemical synthesis. Finally, measurements of colloidal syntheses were employed as guides for the directed design of electrochemical syntheses for Pd cubes and octahedra. Together, this work provides a cyclical approach to shaped nanoparticle design that allows for the optimization of nanoparticles grown via a colloidal approach with a chemical reducing agent or synthesized with an applied current on an electrode surface as well as subsequent bidirectional translation between the two methods. The enhanced chemical flexibility and direct tunability of this electrochemical method relative to combinatorial design of colloidal syntheses have the potential to accelerate the synthetic design process for noble metal nanoparticles with targeted morphologies.
Collapse
Affiliation(s)
- Sean P McDarby
- Department of Chemistry, Wesleyan University, 52 Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Claire J Wang
- Department of Chemistry, Wesleyan University, 52 Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Melissa E King
- Department of Chemistry, Wesleyan University, 52 Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Michelle L Personick
- Department of Chemistry, Wesleyan University, 52 Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
9
|
Structure-activity relationship of diameter controlled Ag@Cu nanoparticles in broad-spectrum antibacterial mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111501. [PMID: 33321601 DOI: 10.1016/j.msec.2020.111501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 01/27/2023]
Abstract
Current outbreaks associated with drug-resistant clinical strains are demanding for the development of broad-spectrum antibacterial agents. The bactericidal materials should be eco-friendly, economical and effective to suppress bacterial growth. Thus, in this work, diameter controlled spherical Cucore-Agshell nanoparticles (Ag@CuNPs) with diameter ranging from 70 to 100 nm by one-step co-reduction approach were designed and synthesized. The Ag@CuNPs were homogenous, stable, and positively charged. The 70 nm Ag@CuNPs showed a consistent and regular Ag shielding. We observed the 100 nm Ag@CuNPs achieved symmetrical doped Ag clusters on the Cu core surface. We used Gram-positive and Gram-negative models strains to test the wide-spectrum antibacterial activity. The Ag@CuNPs showed detrimental microbial viability in a dose-dependent manner; however, 70 nm Ag@CuNPs were superior to those of 100 nm Ag@CuNPs. Initially, Ag@CuNPs attached and translocated the membrane surface resulting in bacterial eradication. Our analyses exhibited that antibacterial mechanism was not governed by the bacterial genre, nonetheless, by cell type, morphology, growing ability and the NPs uptake capability. The Ag@CuNPs were highly tolerated by human fibroblasts, mainly by the use of starch as glucosidic capper and stabilizer, suggesting optimal biocompatibility and activity. The Ag@CuNPs open up a novel platform to study the potential action of bimetallic nanoparticles and their molecular role for biomedical, clinical, hospital and industrial-chemical applications.
Collapse
|
10
|
Zhang S, Rong H, Yang T, Bai B, Zhang J. Ultrafine PtRu Dilute Alloy Nanodendrites for Enhanced Electrocatalytic Methanol Oxidation. Chemistry 2019; 26:4025-4031. [DOI: 10.1002/chem.201904229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Shuping Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Tianyi Yang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Bing Bai
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
11
|
King ME, Kent IA, Personick ML. Halide-assisted metal ion reduction: emergent effects of dilute chloride, bromide, and iodide in nanoparticle synthesis. NANOSCALE 2019; 11:15612-15621. [PMID: 31406971 DOI: 10.1039/c9nr04647j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the competing effects of growth-directing additives, such as halide ions, on particle formation in solution phase metal nanoparticle syntheses is an ongoing challenge. Further, trace halide impurities are known to have a drastic impact on particle morphology as well as reproducibility. Herein, we employ a "halide-free" platform as an analogue to commonly used halide-containing surfactants and metal precursors to isolate and study the effects of micromolar concentrations of halide ions (chloride, bromide, and iodide) on the rate of metal ion reduction. In the absence of competing halides from precursors and surfactants, we observe a catalytic effect of low concentrations of halide ions on the rate of metal ion reduction, an influence which is fundamentally different from the previously reported role of halides in metal nanoparticle growth. We propose that this halide-assisted metal ion reduction proceeds via the formation of a halide bridge which facilitates the adsorption of the metal precursor to a growing nanoparticle and, subsequently, electron transfer from the particle surface. We then demonstrate that this process is operative not only in the well-controlled "halide-free" platform, but also in syntheses involving high concentrations of halide-containing surfactants as well as metal precursors with halide ligands. Importantly, this study shows that halide-assisted metal ion reduction can be extended to bimetallic systems and provides a handle for the directed differential control of metal ion reduction in one-pot co-reduction syntheses.
Collapse
Affiliation(s)
- Melissa E King
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA.
| | - Isabella A Kent
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA.
| | - Michelle L Personick
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA.
| |
Collapse
|
12
|
Editorial overview: Particle system shape change and response. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|