1
|
Santos AFM, Gradišek A, Apih T, Sebastião PJ, Dionísio M, Branco LC, Figueirinhas JL, Godinho MH. Lyotropic Aqueous 2-Picolinium Ionic Liquid Crystals and Their Shear-Induced Foams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39153215 PMCID: PMC11448070 DOI: 10.1021/acs.langmuir.4c02059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
1-Dodecyl-2-methylpyridinium bromide ([C12-2-Pic][Br]) and 1-hexadecyl-2-methylpyridinium bromide ([C16-2-Pic][Br]) are two ionic liquid crystals presenting thermotropic smectic phases above 80 °C. Aiming to take advantage of the liquid crystalline properties at lower temperatures, lyotropic aqueous systems were prepared from these two organic salts. Both systems were characterized by polarized optical microscopy (POM), X-ray powder diffraction (XRD), and fast field cycling nuclear magnetic resonance (FFC-NMR) relaxometry to assess their texture, phase structure, and molecular dynamics, respectively. The mesomorphic behavior was induced at room temperature. Moreover, the lyotropic [C12-2-Pic][Br]aq revealed a smectic phase with higher separation between layers, different from the lamellar phases found in the thermotropic system (S1 and SA), which is thermally stable up to 50 °C. Furthermore, the surfactant nature of the ionic liquids diluted solutions investigated in this work allowed the formation of foams. It was found that the precursor solutions of the lyotropic dilutions with the longest alkyl chain ([C16-2-Pic][Br]aq) originated liquid foams with more stable structures than those of [C12-2-Pic][Br]aq.
Collapse
Affiliation(s)
- Andreia F M Santos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Anton Gradišek
- Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Tomaž Apih
- Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Pedro J Sebastião
- CeFEMA and Department of Physics, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Madalena Dionísio
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Luis C Branco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - João L Figueirinhas
- CeFEMA and Department of Physics, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Maria H Godinho
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Keshmiri A, Keshavarzi B, Eftekhari M, Heitkam S, Eckert K. The impact of an ultrasonic standing wave on the sorption behavior of proteins: Investigation of the role of acoustically induced non-spherical bubble oscillations. J Colloid Interface Sci 2024; 660:52-65. [PMID: 38241871 DOI: 10.1016/j.jcis.2023.12.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
HYPOTHESIS Protein molecules adsorb on the air/liquid interface due to possessing a hydrophobic side. A full surface coverage is important in many processes such as in protein harvesting by foam fractionation. The adsorption of proteins in low concentration solutions is preceded by a relatively long time lag known as the induction period. This has been attributed to the formation of an adsorbed monolayer, which relies on the reorientation of the protein molecules. The reduction of the induction period can significantly facilitate the sorption process to reach full protein coverage. For this purpose acoustically induced non-spherical bubble oscillations can aid in the formation of the monolayer and enhance the sorption process. EXPERIMENT In this study, low frequency ultrasound was used to induce non-spherical oscillations on an air bubble attached to a capillary. Profile analysis tensiometry was deployed to examine the effect of these non-spherical oscillations on the sorption dynamics of different proteins. FINDINGS We observed that during the initial stages of adsorption, when the bubble surface is almost empty, non-spherical oscillations occur, which were found to significantly expedite the adsorption process. However, during later stages of the adsorption process, despite the continued presence of several sonication phenomena such as the primary radiation force and acoustic streaming, no change in adsorption behavior of the proteins could be noted. The occurrence, duration, and intensity of the non-spherical bubble oscillations appeared to be the sole contributing factors for the change of the sorption dynamics of proteins.
Collapse
Affiliation(s)
- Anahita Keshmiri
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstrasse 400, Dresden, 01328, Saxony, Germany; Technische Universität Dresden, Institute of Process Engineering and Environmental Technology, Dresden, 01069, Saxony, Germany.
| | - Behnam Keshavarzi
- Technische Universität Dresden, Institute of Process Engineering and Environmental Technology, Dresden, 01069, Saxony, Germany
| | - Milad Eftekhari
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstrasse 400, Dresden, 01328, Saxony, Germany
| | - Sascha Heitkam
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstrasse 400, Dresden, 01328, Saxony, Germany; Technische Universität Dresden, Institute of Process Engineering and Environmental Technology, Dresden, 01069, Saxony, Germany
| | - Kerstin Eckert
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstrasse 400, Dresden, 01328, Saxony, Germany; Technische Universität Dresden, Institute of Process Engineering and Environmental Technology, Dresden, 01069, Saxony, Germany
| |
Collapse
|
3
|
Falusi F, Berkó S, Budai-Szűcs M, Veréb Z, Kovács A. Foams Set a New Pace for the Release of Diclofenac Sodium. Pharmaceutics 2024; 16:287. [PMID: 38399341 PMCID: PMC10892945 DOI: 10.3390/pharmaceutics16020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Medicated foams have emerged as promising alternatives to traditional carrier systems in pharmaceutical research. Their rapid and convenient application allows for effective treatment of extensive or hirsute areas, as well as sensitive or inflamed skin surfaces. Foams possess excellent spreading capabilities on the skin, ensuring immediate drug absorption without the need for intense rubbing. Our research focuses on the comparison of physicochemical and biopharmaceutical properties of three drug delivery systems: foam, the foam bulk liquid, and a conventional hydrogel. During the development of the composition, widely used diclofenac sodium was employed. The safety of the formulae was confirmed through an in vitro cytotoxicity assay. Subsequently, the closed Franz diffusion cell was used to determine drug release and permeation in vitro. Ex vivo Raman spectroscopy was employed to investigate the presence of diclofenac sodium in various skin layers. The obtained results of the foam were compared to the bulk liquid and to a conventional hydrogel. In terms of drug release, the foam showed a rapid release, with 80% of diclofenac released within 30 min. In summary, the investigated foam holds promising potential as an alternative to traditional dermal carrier systems, offering faster drug release and permeation.
Collapse
Affiliation(s)
- Fanni Falusi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6 Eötvös St., 6720 Szeged, Hungary; (F.F.); (S.B.); (M.B.-S.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6 Eötvös St., 6720 Szeged, Hungary; (F.F.); (S.B.); (M.B.-S.)
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6 Eötvös St., 6720 Szeged, Hungary; (F.F.); (S.B.); (M.B.-S.)
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary;
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine-USz Skin Research Group, University of Szeged, 6720 Szeged, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6 Eötvös St., 6720 Szeged, Hungary; (F.F.); (S.B.); (M.B.-S.)
| |
Collapse
|
4
|
Berkey CA, Styke C, Yoshitake H, Sonoki Y, Uchiyama M, Dauskardt RH. Carbon dioxide foam bubbles enhance skin penetration through the stratum corneum layer with mechanical mechanism. Colloids Surf B Biointerfaces 2023; 231:113538. [PMID: 37738871 DOI: 10.1016/j.colsurfb.2023.113538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
Topical skin formulations often include penetration enhancers that interact with the outer stratum corneum (SC) layer to chemically enhance diffusion. Alternatively, penetration can be mechanically enhanced with simple rubbing in the presence of solid particles sometimes included to exfoliate the top layers of the SC. Our goal was to evaluate micron-sized carbon dioxide bubbles included in a foamed moisturizing formulation as a mechanical penetration enhancement strategy. We show that moisturizing foam bubbles cause an increase in SC formulation penetration using both mechanical and spectroscopic characterization. Our results suggest viscous liquid film drainage between coalescing gaseous bubbles creates local regions of increased hydrodynamic pressure in the foam liquid layer adjacent to the SC surface that enhances treatment penetration. An SC molecular diffusion model is used to rationalize the observed behavior. The findings indicate marked increased levels of treatment concentration in the SC at 2 h and that persists to 18 h after exposure, far exceeding non-foamed treatments. The study suggests an alternate strategy for increasing formulation penetration with a non-chemical mechanism.
Collapse
Affiliation(s)
- Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Cassandra Styke
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | | | | | | | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Kotwiski FO, Albuquerque ECDMC, Lucchese AM. Topical foam as a promising carrier system for active pharmaceutical ingredients: review of clinical studies. Pharm Dev Technol 2023; 28:768-784. [PMID: 37632372 DOI: 10.1080/10837450.2023.2251556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Skin disorders are preferentially treated by topical administration of medicines or cosmetics because of the possibility of local action. However, a great concern is the delivery of topical actives with effective penetration through the stratum corneum to ensure the desired effect. Considering the search for a carrier system that allows the penetration/permeation of active pharmaceutical ingredients through this structure, searching for effective topical pharmaceutical forms is needed. Foams have been widely studied over the years due to their high capacity to favor the active to overcome the cutaneous barrier and because this form of presentation has ease of application and high acceptability by users. The objective of this review was to analyze the potential of foam as a topical pharmaceutical form for treating skin disorders, upon clinical cases reported in the literature. Foam presents technical advantages when compared to other conventional topical pharmaceutical forms due to its fast action, high tolerance, and safety, with reduction or total remission of adverse events. Regarding the patient, foam increased the rate of adherence to the treatment. Therefore, it is concluded that foam is an effective, secure, and stable topical presentation form for carrying active pharmaceutical ingredients and widely accepted by patients.
Collapse
Affiliation(s)
- Fabiana O Kotwiski
- Biotechnology Graduate Program, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | | | - Angélica M Lucchese
- Biotechnology Graduate Program, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| |
Collapse
|
6
|
Siafaka PI, Özcan Bülbül E, Okur ME, Karantas ID, Üstündağ Okur N. The Application of Nanogels as Efficient Drug Delivery Platforms for Dermal/Transdermal Delivery. Gels 2023; 9:753. [PMID: 37754434 PMCID: PMC10529964 DOI: 10.3390/gels9090753] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
The delivery of active molecules via the skin seems to be an efficient technology, given the various disadvantages of oral drug administration. Skin, which is the largest human organ of the body, has the important role of acting as a barrier for pathogens and other molecules including drugs; in fact, it serves as a primary defense system blocking any particle from entering the body. Therefore, to overcome the skin barriers and poor skin permeability, researchers implement novel carriers which can effectively carry out transdermal delivery of the molecules. Another significant issue which medical society tries to solve is the effective dermal delivery of molecules especially for topical wound delivery. The application of nanogels is only one of the available approaches offering promising results for both dermal and transdermal administration routes. Nanogels are polymer-based networks in nanoscale dimensions which have been explored as potent carriers of poorly soluble drugs, genes and vaccines. The nanogels present unique physicochemical properties, i.e., high surface area, biocompatibility, etc., and, importantly, can improve solubility. In this review, authors aimed to summarize the available applications of nanogels as possible vehicles for dermal and transdermal delivery of active pharmaceutical ingredients and discuss their future in the pharmaceutical manufacturing field.
Collapse
Affiliation(s)
- Panoraia I. Siafaka
- Department of Life Sciences, School of Sciences, Faculty of Pharmacy, European University Cyprus, 2404 Nicosia, Cyprus
| | - Ece Özcan Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, 34010 Istanbul, Turkey;
| | - Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, 34116 Istanbul, Turkey;
| | | | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, 34668 Istanbul, Turkey;
| |
Collapse
|
7
|
Lombardi L, Roig-Sanchez S, Bapat A, Frostad JM. Nonaqueous foam stabilization mechanisms in the presence of volatile solvents. J Colloid Interface Sci 2023; 648:46-55. [PMID: 37295369 DOI: 10.1016/j.jcis.2023.05.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Hypothesis Nonaqueous foams are found in a variety of applications, many of which contain volatile components that need to be removed during processing. Sparging air bubbles into the liquid can be used to aid in their removal, but the resulting foam can be stabilized or destabilized by several different mechanisms, the relative importance of which are not yet fully understood. Investigating the dynamics of thin film drainage, four competing mechanisms can be observed, such as solvent evaporation, film viscosification, and thermal and solutocapillary Marangoni flows. Experiments Experimental studies with isolated bubbles and/or bulk foams are needed to strengthen the fundamental knowledge of these systems. This paper presents interferometric measurements of the dynamic evolution of a film formed by a bubble rising to an air-liquid interface to shed light on this situation. Two different solvents with different degrees of volatility were investigated to reveal both qualitative and quantitative details on thin film drainage mechanisms in polymer-volatile mixtures. Findings Using interferometry, we found evidence that solvent evaporation and film viscosification both strongly influence the stability of interface. These findings were corroborated by comparison with bulk foam measurements, revealing a strong correlation between these two systems.
Collapse
Affiliation(s)
- Lorenzo Lombardi
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples, 80125, Italy.
| | - Soledad Roig-Sanchez
- Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, V6T 1Z3, BC, Canada; Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, V6T 1Z1, BC, Canada
| | - Amar Bapat
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, 721302, West Bengal, India
| | - John M Frostad
- Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, V6T 1Z3, BC, Canada; Food Science, University of British Columbia, 2205 E Mall, Vancouver, V6T 1Z4, BC, Canada
| |
Collapse
|
8
|
Science of, and insights into, thermodynamic principles for dermal formulations. Drug Discov Today 2023; 28:103521. [PMID: 36754143 DOI: 10.1016/j.drudis.2023.103521] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Studies have demonstrated the significant role of the thermodynamic activity of drugs in skin drug delivery. This thermodynamic activity works as a driving force for increasing/improving the absorption of drugs by the skin. It can be changed according to the physicochemical parameters (e.g., solubility, partition coefficient, and water activity) of the drug in the vehicle. Thermodynamic principles have been used for the development of novel topical and transdermal delivery systems, demonstrating the importance of thermodynamic activity in enhancing drug permeation through the skin. In this review, we provide insights into thermodynamic principles and their roles in optimizing topical and transdermal drug delivery systems.
Collapse
|
9
|
Molecular Dynamics Simulation of the Synergistic Effect of Alkali/Surfactant/Polymer on the Formation and Stabilization of Water-Based Foam Systems. Polymers (Basel) 2023; 15:polym15030584. [PMID: 36771885 PMCID: PMC9920206 DOI: 10.3390/polym15030584] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/01/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The stable maintenance effect of a chemical oil displacement agent on a foam liquid film usually creates problems with the oilfields surface system. To achieve comprehensive insights into the influence mechanism of these chemical agent components on the foam liquid film, an "SDBS/HPAM/OH-" water-based foam simulation system and corresponding control systems were constructed by adjusting the categories and quantities of component molecules by molecular dynamics (MD) simulation. The simulated results indicated that the foam stability follows the order of "SDBS/HPAM/OH-" system > "SDBS/HPAM" system > "SDBS" system. The smaller the inclination angle of the SDBS molecular tail chain, the greater the tendency of the SDBS molecular configuration to be "upright" at the gas-liquid interface, which is not conducive to preventing the aggregation and penetration of gas molecules at the gas-liquid interface. Although the presence of HPAM molecules can significantly enhance the stability of the liquid film by restricting the liquid film's drainage and the diffusion of gas molecules, the addition of HPAM molecules would weaken the formation ability of the foam liquid film. Through decreasing the aggregation of cations around the co-adsorption layer, OH- not only enhances the interfacial activity of SDBS molecules, but also reduces the electrostatic repulsion between -COO- groups on the HPAM molecular chain, which makes the foam more stable. With an increase in the pH, SDBS concentration, and HPAM concentration, the stability of foam liquid film was strengthened. These results are helpful in facilitating new insights into the formation and stabilization mechanism of water-based foams. In particular, they provide support for the development and application of new defoaming technologies.
Collapse
|
10
|
Zhou Y, Tian Y, Peng X. Applications and Challenges of Supercritical Foaming Technology. Polymers (Basel) 2023; 15:polym15020402. [PMID: 36679284 PMCID: PMC9864728 DOI: 10.3390/polym15020402] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
With economic development, environmental problems are becoming more and more prominent, and achieving green chemistry is an urgent task nowadays, which creates an opportunity for the development of supercritical foaming technology. The foaming agents used in supercritical foaming technology are usually supercritical carbon dioxide (ScCO2) and supercritical nitrogen (ScN2), both of which are used without environmental burden. This technology can reduce the environmental impact of polymer foam production. Although supercritical foaming technology is already in production in some fields, it has not been applied on a large scale. Here, we present a detailed analysis of the types of foaming agents currently used in supercritical foaming technology and their applications in various fields, summarizing the technological improvements that have been made to the technology. However, we have found that today's supercritical technologies still need to address some additional challenges to achieve large-scale production.
Collapse
Affiliation(s)
- Yujin Zhou
- College of Physical Education, Wuhan Sports University, Wuhan 430079, China
- College of Science, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yingrui Tian
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaowei Peng
- College of Physical Education, Wuhan Sports University, Wuhan 430079, China
- Correspondence:
| |
Collapse
|
11
|
Xing Y, Zhang L, Yu L, Song A, Hu J. pH-Responsive foams triggered by particles from amino acids with metal ions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Eita AS, Makky AM, Anter A, Khalil IA. Atorvastatin-loaded emulsomes foam as a topical antifungal formulation. Int J Pharm X 2022; 4:100140. [DOI: 10.1016/j.ijpx.2022.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
|
13
|
Kumar M, Thakur A, Mandal UK, Thakur A, Bhatia A. Foam-Based Drug Delivery: A Newer Approach for Pharmaceutical Dosage Form. AAPS PharmSciTech 2022; 23:244. [DOI: 10.1208/s12249-022-02390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
|
14
|
Application of Xanthan Gum and Hyaluronic Acid as Dermal Foam Stabilizers. Gels 2022; 8:gels8070413. [PMID: 35877498 PMCID: PMC9321585 DOI: 10.3390/gels8070413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Foams are increasingly popular in the field of dermatology due to their many advantages such as easy spreading, good skin sensation, and applicability in special skin conditions. One of the critical points of foam formulation is the choice of the appropriate stabilizing ingredients. One of the stability-increasing strategies is retarding the liquid drainage of liquid films from the foam structure. Therefore, our aim was the application of different hydrogel-forming polymers in order to retain the stabilizing liquid film. Dexpanthenol and niacinamide-containing foams were formulated, where xanthan gum and hyaluronic acid were used as foam-stabilizing polymers. Amplitude (LVE range) and frequency sweep (G’, G”, tanδ, and frequency dependency) were applied as structure- and stability-indicating rheological parameters. The rheological data were compared with the results of the cylinder method, microscopical images, and the spreadability measurements. The application of the gel-forming polymers increased the stability of the dermal foams (increased LVE range, G’ values, and decreased frequency dependency). These results were in correlation with the results of the cylinder and spreadability tests. It was concluded that in terms of both foam formation and stability, the combination of xanthan gum and dexpanthenol can be ideal.
Collapse
|
15
|
Hajjar B, Zuo J, Park C, Azarmi S, Silva DA, Bou-Chacra NA, Löbenberg R. In Vitro Evaluation of a Foamable Microemulsion Towards an Improved Topical Delivery of Diclofenac Sodium. AAPS PharmSciTech 2022; 23:102. [PMID: 35378669 DOI: 10.1208/s12249-022-02258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/20/2022] [Indexed: 11/30/2022] Open
Abstract
Topical microemulsion (ME) might provide a novel and advanced transdermal delivery system due to the enhances of drug solubility and permeability across the stratum corneum. Foams are topical delivery systems that have excellent patient compliance, acceptability, and preference. Therefore, this study aimed to investigate a foamable microemulsion as an alternative topical and transdermal dosage form for diclofenac sodium (DS). The physicochemical properties (optical clarity, percentage transmittance, homogeneity, consistency of formulation, particle size, zeta potential, conductivity, viscosity, and morphology, etc.) of the DS-loaded ME were investigated. The foam stability of both drug-free ME and DS-loaded ME was measured. The foam quality was evaluated, and the chemical stability over 90 days was determined. Franz diffusion cells were employed to assess the in vitro drug release of a foamed DS-loaded ME and compared with a commercial topical product. A foamable and stable DS-loaded ME that maintained small particle sizes and constant zeta potential and was transparent and translucent in appearance after 90 days was successfully produced. The foam of the DS-loaded ME was physically more stable compared to the drug-free foam. The foam had an increased drug release rate compared to the commercial product. The foamable DS-loaded ME has a great potential to enhance the transdermal delivery of DS after topical administration. Foamed DS-loaded ME is a promising alternative to the current topical formulation of DS.
Collapse
|
16
|
Falusi F, Budai-Szűcs M, Csányi E, Berkó S, Spaits T, Csóka I, Kovács A. Investigation of the effect of polymers on dermal foam properties using the QbD approach. Eur J Pharm Sci 2022; 173:106160. [DOI: 10.1016/j.ejps.2022.106160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 12/17/2022]
|
17
|
Metilli L, Storm M, Marathe S, Lazidis A, Marty-Terrade S, Simone E. Application of X-ray Microcomputed Tomography for the Static and Dynamic Characterization of the Microstructure of Oleofoams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1638-1650. [PMID: 35050635 PMCID: PMC8812118 DOI: 10.1021/acs.langmuir.1c03318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Oleofoams are a novel, versatile, and biocompatible soft material that finds application in drug, cosmetic or nutraceuticals delivery. However, due to their temperature-sensitive and opaque nature, the characterization of oleofoams' microstructure is challenging. Here, synchrotron X-ray microcomputed tomography and radiography are applied to study the microstructure of a triglyceride-based oleofoam. These techniques enable non-destructive, quantitative, 3D measurements of native samples to determine the thermodynamic and kinetic behavior of oleofoams at different stages of their life cycle. During processing, a constant bubble size distribution is reached after few minutes of shearing, while the number of bubbles incorporated keeps increasing until saturation of the continuous phase. Low amounts of solid triglycerides in oleofoams allow faster aeration and a more homogeneous microstructure but lower thermodynamic stability, with bubble disproportionation and shape relaxation over time. Radiography shows that heating causes Ostwald ripening and coalescence of bubbles, with an increase of their diameter and sphericity.
Collapse
Affiliation(s)
- Lorenzo Metilli
- School
of Food Science and Nutrition, Food Colloids and Bioprocessing group, University of Leeds, Woodhouse Lane, Leeds LS29JT, U.K.
| | - Malte Storm
- Diamond
Light Source Ltd., Harwell Science and Innovation
Campus, Didcot OX110DE, U.K.
- Helmholtz-Zentrum
hereon, Max-Planck-Str 1, 21502 Geesthacht, Germany
| | - Shashidhara Marathe
- Diamond
Light Source Ltd., Harwell Science and Innovation
Campus, Didcot OX110DE, U.K.
| | - Aris Lazidis
- Nestlé
Product Technology Centre Confectionery, Haxby Road, York YO31 8TA, U.K.
| | | | - Elena Simone
- School
of Food Science and Nutrition, Food Colloids and Bioprocessing group, University of Leeds, Woodhouse Lane, Leeds LS29JT, U.K.
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| |
Collapse
|
18
|
Dinache A, Pascu ML, Smarandache A. Spectral Properties of Foams and Emulsions. Molecules 2021; 26:7704. [PMID: 34946785 PMCID: PMC8707813 DOI: 10.3390/molecules26247704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
The optical and spectral properties of foams and emulsions provide information about their micro-/nanostructures, chemical and time stability and molecular data of their components. Foams and emulsions are collections of different kinds of bubbles or drops with particular properties. A summary of various surfactant and emulsifier types is performed here, as well as an overview of methods for producing foams and emulsions. Absorption, reflectance, and vibrational spectroscopy (Fourier Transform Infrared spectroscopy-FTIR, Raman spectroscopy) studies are detailed in connection with the spectral characterization techniques of colloidal systems. Diffusing Wave Spectroscopy (DWS) data for foams and emulsions are likewise introduced. The utility of spectroscopic approaches has grown as processing power and analysis capabilities have improved. In addition, lasers offer advantages due to the specific properties of the emitted beams which allow focusing on very small volumes and enable accurate, fast, and high spatial resolution sample characterization. Emulsions and foams provide exceptional sensitive bases for measuring low concentrations of molecules down to the level of traces using spectroscopy techniques, thus opening new horizons in microfluidics.
Collapse
Affiliation(s)
- Andra Dinache
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania; (A.D.); (M.-L.P.)
| | - Mihail-Lucian Pascu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania; (A.D.); (M.-L.P.)
- Faculty of Physics, University of Bucharest, 077125 Magurele, Ilfov, Romania
| | - Adriana Smarandache
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania; (A.D.); (M.-L.P.)
| |
Collapse
|
19
|
Li Q, Xu M, Yang Y, Guo J, Wan Z, Yang X. Tailoring structure and properties of long-lived emulsion foams stabilized by a natural saponin glycyrrhizic acid: Role of oil phase. Food Res Int 2021; 150:110733. [PMID: 34865752 DOI: 10.1016/j.foodres.2021.110733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
Novel supramolecular nanofibrils assembled from food-grade saponin glycyrrhizic acid (GA) are effective building blocks to make complex multiphase systems, e.g., emulsion foams. In this work, the effects of different oil phases (castor oil, sunflower oil, dodecane, and limonene) on the formation, stability and structural properties of long-lived emulsion foams prepared by GA nanofibrils (GNs) were investigated. The obtained results showed that soft-solid emulsion foams (4 wt% GNs) can be fabricated, independently of oil phase, and their structural properties, viscoelasticity, and tribological properties can be well tuned by oil phase polarity. Compared to the GNs aqueous foams, the presence of jammed emulsion droplets in the liquid channels and at the surfaces of bubbles can provide a higher bubble stability for emulsion foams. For more polar oil phase (castor oil), GNs showed a higher affinity to the oil-water interface with a lower interfacial tension, thus forming smaller oil droplets and bubbles, which leads to the higher mechanical strength, denser network microstructures, and lower friction coefficients of emulsion foams. However, the limonene foam exhibited weak storage stability and rheological properties, as well as the relatively low lubrication, which may be related to the formation of oil droplet aggregates and clusters induced by the volatility of limonene. GN-based emulsion foams are thermoresponsive, independently of oils, and the temperature-switchable process for the destabilization and regeneration of foams can be controlled and repeated. These emulsion foams based on natural saponin nanofibrils with tunable properties have potential sustainable applications in foods, pharmaceuticals, and personal care products.
Collapse
Affiliation(s)
- Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jian Guo
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China.
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
20
|
Tramis O, Fujioka A, Imanaka H, Ishida N, Imamura K. Foaming characteristics of sugar- and polyvinylpyrrolidone-alcohol solutions during vacuum foam drying: A rheological approach. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Ning B, Wang Y, Zhang M, Bai Y, Wang W, Wang G. Surface adsorption and foam performance of sodium perfluoroalkyl polyoxyethylene ether sulfate in ethanol-water mixed system. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Brozio S, O'Shaughnessy EM, Woods S, Hall-Barrientos I, Martin PE, Kennedy MW, Lamprou DA, Hoskisson PA. Frog nest foams exhibit pharmaceutical foam-like properties. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210048. [PMID: 34527266 PMCID: PMC8424294 DOI: 10.1098/rsos.210048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Foams have frequently been used as systems for the delivery of cosmetic and therapeutic molecules; however, there is high variability in the foamability and long-term stability of synthetic foams. The development of pharmaceutical foams that exhibit desirable foaming properties, delivering appropriate amounts of the active pharmaceutical ingredient (API) and that have excellent biocompatibility is of great interest. The production of stable foams is rare in the natural world; however, certain species of frogs have adopted foam production as a means of providing a protective environment for their eggs and larvae from predators and parasites, to prevent desiccation, to control gaseous exchange, to buffer temperature extremes, and to reduce UV damage. These foams show great stability (up to 10 days in tropical environments) and are highly biocompatible due to the sensitive nature of amphibian skin. This work demonstrates for the first time that nests of the túngara frog (Engystomops pustulosus) are stable ex situ with useful physiochemical and biocompatible properties and are capable of encapsulating a range of compounds, including antibiotics. These protein foam mixtures share some properties with pharmaceutical foams and may find utility in a range of pharmaceutical applications such as topical drug delivery systems.
Collapse
Affiliation(s)
- Sarah Brozio
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Erin M. O'Shaughnessy
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, G4 OBA, UK
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Ivan Hall-Barrientos
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Patricia E. Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, G4 OBA, UK
| | - Malcolm W. Kennedy
- Institute of Biodiversity Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Dimitrios A. Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
23
|
Al-Rajabi MM, Teow YH. Green Synthesis of Thermo-Responsive Hydrogel from Oil Palm Empty Fruit Bunches Cellulose for Sustained Drug Delivery. Polymers (Basel) 2021; 13:2153. [PMID: 34210003 PMCID: PMC8271751 DOI: 10.3390/polym13132153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
Drug delivery is a difficult task in the field of dermal therapeutics, particularly in the treatment of burns, wounds, and skin diseases. Conventional drug delivery mediums have some limitations, including poor retention on skin/wound, inconvenience in administration, and uncontrolled drug release profile. Hydrogels able to absorb large amount of water and give a spontaneous response to stimuli imposed on them are an attractive solution to overcome the limitations of conventional drug delivery media. The objective of this study is to explore a green synthesis method for the development of thermo-responsive cellulose hydrogel using cellulose extracted from oil palm empty fruit bunches (OPEFB). A cold method was employed to prepare thermo-responsive cellulose hydrogels by incorporating OPEFB-extracted cellulose and Pluronic F127 (PF127) polymer. The performance of the synthesized thermo-responsive cellulose hydrogels were evaluated in terms of their swelling ratio, percentage of degradation, and in-vitro silver sulfadiazine (SSD) drug release. H8 thermo-responsive cellulose hydrogel with 20 w/v% PF127 and 3 w/v% OPEFB extracted cellulose content was the best formulation, given its high storage modulus and complex viscosity (81 kPa and 9.6 kPa.s, respectively), high swelling ratio (4.22 ± 0.70), and low degradation rate (31.3 ± 5.9%), in addition to high t50% value of 24 h in SSD in-vitro drug release to accomplish sustained drug release. The exploration of thermo-responsive cellulose hydrogel from OPEFB would promote cost-effective and sustainable drug delivery system with using abundantly available agricultural biomass.
Collapse
Affiliation(s)
- Maha Mohammad Al-Rajabi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia;
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia;
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
24
|
Foam Quality of Foams Formed on Capillaries and Porous Media Systems. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Foams are of great importance as a result of their expansive presence in everyday life—they are used in the food, cosmetic, and process industries, and in detergency, oil recovery, and firefighting. There is a little understanding of foam formation using soft porous media in terms of the quality of foam and foam formation. Interaction of foams with porous media has recently been investigated in a study by Arjmandi-Tash et al., where three different regimes of foam drainage in contact with porous media were observed. In this study, the amount of foam generated using porous media with surfactant solutions is investigated. The aim is to understand the quality of foam produced using porous media. The effect of capillary sizes and arrangement of porous in porous media has on the quality of foam is investigated. This is then followed by the use of soft porous media for foam formation to understand how the foam is generated on the surface of the porous media and the effect that different conditions (such as concentration) have on the quality of the foam. The quality of foam is a blanket term for bubble size, liquid volume fraction, and stability of the foam. The liquid volume fraction is calculated using a homemade dynamic foam analyser, which is used to obtain the distribution of liquid volume fraction along with the foam height. Soft porous media does not influence substantially the rate of decay of foam produced, however, it decreases the average diameter of the bubbles, whilst increasing the range of bubble sizes due to the wide range of pore sizes present in the soft porous media. The foam analyser showed the expected behaviour that, as the foam decays and becomes drier, the liquid volume fraction of the foam falls, and therefore the conductivity of foam also decreases, indicating the usefulness of the home-made device for future investigations.
Collapse
|
25
|
Yang YD, Liu GX, Wei YC, Liao S, Luo MC. Natural rubber latex/MXene foam with robust and multifunctional properties. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Low strength has always been one of the main factors limiting the application of foams. We acquire a natural rubber latex/MXene foam composite with high strength and versatility by adding MXene to the natural rubber latex. It is shown that natural rubber latex foam (NRF) with 2 and 3 phr of MXene shows obviously enhanced tensile strength by 171% and 157% separately as compared to that of neat NRF. Furthermore, the composite also has better electrical conductivity and electromagnetic shielding than NRF, which can be used in the automotive industry, aviation industry, and many other aspects.
Collapse
Affiliation(s)
- Ya-Dong Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, School of Materials Science and Engineering, Hainan University , Haikou , 570228 , China
| | - Gui-Xiang Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, School of Materials Science and Engineering, Hainan University , Haikou , 570228 , China
| | - Yan-Chan Wei
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, School of Materials Science and Engineering, Hainan University , Haikou , 570228 , China
| | - Shuangquan Liao
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, School of Materials Science and Engineering, Hainan University , Haikou , 570228 , China
| | - Ming-Chao Luo
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, School of Materials Science and Engineering, Hainan University , Haikou , 570228 , China
| |
Collapse
|
26
|
|