1
|
Gabriele F, Casieri C, Spreti N. Efficacy of Chitosan-Carboxylic Acid Hydrogels in Reducing and Chelating Iron for the Removal of Rust from Stone Surface. Gels 2024; 10:359. [PMID: 38920906 PMCID: PMC11202951 DOI: 10.3390/gels10060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
In the field of stone conservation, the removal of iron stains is one of the most challenging issues due to the stability and low solubility of the ferrous species. In the present paper, three different chitosan-based hydrogels added with acetic, oxalic or citric acids are applied on different lithotypes, i.e., granite, travertine and marble, widely diffused in monumental heritages, and artificially stained by deposition of a rust dispersion. The reducing power of carboxylic acids is combined with the good chelating properties of chitosan to effectively remove rust from stone surfaces. As evidenced by colorimetry on three samples of each lithotype and confirmed by 1H-NMR relaxometry and SEM/EDS analyses, the chitosan-oxalic acid hydrogel shows the best performance and a single application of 24 h is enough to get a good restoration of the stone original features. Lastly, the chitosan-oxalic acid hydrogel performs well when a rusted iron grid is placed directly on the lithic surfaces to simulate a more realistic pollution. Current work in progress is devoted to finding better formulations for marble, which is the most challenging to clean or, with a different approach, to developing protective agents to prevent rust deposition.
Collapse
Affiliation(s)
- Francesco Gabriele
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.C.); (N.S.)
| | | | | |
Collapse
|
2
|
Mastrangelo R, Chelazzi D, Baglioni P. New horizons on advanced nanoscale materials for Cultural Heritage conservation. NANOSCALE HORIZONS 2024; 9:566-579. [PMID: 38264785 DOI: 10.1039/d3nh00383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nanomaterials have permeated numerous scientific and technological fields, and have gained growing importance over the past decades also in the preservation of Cultural Heritage. After a critical overview of the main nanomaterials adopted in art preservation, we provide new insights into some highly relevant gels, which constitute valuable tools to selectively remove dirt or other unwanted layers from the surface of works of art. In particular, the recent "twin-chain" gels, obtained by phase separation of two different PVAs and freeze-thawing, were considered as the most performing gel systems for the cleaning of Cultural Heritage. Three factors are crucial in determining the final gel properties, i.e., pore size, pore connectivity, and surface roughness, which belong to the micro/nanodomain. The pore size is affected by the molecular weight of the phase-separating PVA polymer, while pore connectivity and tortuosity likely depend on interconnections formed during gelation. Tortuosity greatly impacts on cleaning capability, as the removal of matter at the gel-target interface increases with the uploaded fluid's residence time at the interface (higher tortuosity produces longer residence). The gels' surface roughness, adaptability and stickiness can also be controlled by modulating the porogen amount or adding different polymers to PVA. Finally, PVA can be partially replaced with different biopolymers yielding gels with enhanced sustainability and effective cleaning capability, where the selection of the biopolymer affects the gel porosity and effectiveness. These results shed new light on the effect of micro/nanoscale features on the cleaning performances of "twin-chain" and composite gels, opening new horizons for advanced and "green"/sustainable gel materials that can impact on fields even beyond art preservation, like drug-delivery, detergency, food industry, cosmetics and tissue engineering.
Collapse
Affiliation(s)
- Rosangela Mastrangelo
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| | - David Chelazzi
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| | - Piero Baglioni
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| |
Collapse
|
3
|
Chelazzi D, Baglioni P. From Nanoparticles to Gels: A Breakthrough in Art Conservation Science. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10744-10755. [PMID: 37487238 PMCID: PMC10413966 DOI: 10.1021/acs.langmuir.3c01324] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Cultural heritage is a crucial resource to increase our society's resilience. However, degradation processes, enhanced by environmental and anthropic risks, inevitably affect works of art, hindering their accessibility and socioeconomic value. In response, interfacial and colloidal chemistry has proposed valuable solutions over the past decades, overcoming the limitations of traditional restoration materials and granting cost- and time-effective remedial conservation of the endangered artifacts. Ranging from inorganic nanoparticles to hybrid composites and soft condensed matter (gels, microemulsions), a wide palette of colloidal systems has been made available to conservators worldwide, targeting the consolidation, cleaning, and protection of works of art. The effectiveness and versatility of the proposed solutions allow the safe and effective treatment of masterpieces belonging to different cultural and artistic productions, spanning from classic ages to the Renaissance and modern/contemporary art. Despite these advancements, the formulation of materials for the preservation of cultural heritage is still an open, exciting field, where recent requirements include coping with the imperatives of the Green Deal to foster the production of sustainable, low-toxicity, and environmentally friendly systems. This review gives a critical overview starting from pioneering works up to the latest advancements in colloidal systems for art conservation, a challenging topic where effective solutions can be transversal to multiple sectors even beyond cultural heritage preservation, from the pharmaceutical and food industry, to cosmetics, tissue engineering, and detergency.
Collapse
Affiliation(s)
- David Chelazzi
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Piero Baglioni
- CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Poggi G, Santan HD, Smets J, Chelazzi D, Noferini D, Petruzzellis ML, Pensabene Buemi L, Fratini E, Baglioni P. Nanostructured bio-based castor oil organogels for the cleaning of artworks. J Colloid Interface Sci 2023; 638:363-374. [PMID: 36746054 DOI: 10.1016/j.jcis.2023.01.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
HYPOTHESIS Organic solvents are often used for cleaning highly water-sensitive artifacts in modern/contemporary art. Due to the toxicity of most solvents, confining systems must be formulated to use these fluids in a safe and controlled way. We propose here castor oil (CO) organogels, obtained thorough cost-effective sustainable polyurethane crosslinking. This methodology is complementary to previously demonstrated hydrogels, when conservators opt for organic solvents over aqueous formulations. EXPERIMENTS The gels were characterized via Small-angle Neutron Scattering and rheology before and after swelling in two organic solvents commonly adopted in cleaning paintings. The removal of a photo-aged acrylic-ketonic varnish was evaluated under visible and ultraviolet light, and with FTIR 2D imaging. FINDINGS The new gels are dry systems that can be easily stored and loaded with solvents before use. Their nanoscale organization, viscoelasticity and cleaning action are controlled changing the amount of crosslinking, the polymeric backbone, and the loaded solvents. The fluids are confined in the nanosized polymeric mesh of the gels, which are highly retentive, granting controlled release over delicate paint layers, and transparent, allowing monitoring of the cleaning process. These features, along with their sustainable synthesis, candidate the CO organogels as feasible solutions for cultural heritage preservation, expanding the palette of advanced tools for conservators over traditional thickeners.
Collapse
Affiliation(s)
- Giovanna Poggi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy
| | - Harshal D Santan
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy
| | - Johan Smets
- The Procter & Gamble Company, 1853 Strombeek-Bever, Brussels, Belgium
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy
| | - Daria Noferini
- European Spallation Source ERIC, 224 84 Lund, Skåne County, Sweden; Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching, Garching
| | | | | | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy.
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy.
| |
Collapse
|
5
|
Montes-de-Oca LM, Medina-Esquivel R, Zambrano-Arjona M, Martínez-Torres P. Thermal detection of second critical micelle concentration in SDS and CTAB aqueous solutions using a modified Lewis-Nielsen effective thermal model. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Yue J, Chen Y, Wang X, Xu B, Xu Z, Liu X, Chen Z, Zhang K, Jiang W. Artificial phosphatase upon premicellar nanoarchitectonics of lanthanum complexes with long-chained imidazole derivatives. J Colloid Interface Sci 2022; 627:459-468. [PMID: 35868041 DOI: 10.1016/j.jcis.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/17/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
Four novel long chain-containing tridentate imidazole derivatives (Ln, n = 1, 2, 3, 4) were synthesized for in situ formation of mononuclear lanthanum(III) complexes as artificial phosphodiesterases. These in-situ formed La(III) complexes (named LaLn) were used to catalyze the transesterification of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP), a classic RNA model. Critical aggregation concentrations (CAC) were determined for the as-prepared tridentate imidazole derivatives as ligands and corresponding mixtures of equivalent ligand and La3+ ion with a mole rate of 1:1. It denotes that the introduction of La3+ ion increases the CAC values of imidazole derivatives by about 2 to 3 folds. Foaming test shows that the foam height is positively correlated with the length of hydrophobic chain. Transesterification of HPNP mediated by LaLn nanoarchitectonics indicates that the introducing of hydrophobic chain benefits rate enhancement, showing excess three orders of magnitude acceleration under physiological conditions (pH 7.0, 25 °C). Moreover, catalytic reactivities of these La(III) complexes increased along with the increase in chain length: LaL1 < LaL2 < LaL3 < LaL4, suggesting a positive correlation to hydrophobic chain length.
Collapse
Affiliation(s)
- Jian Yue
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Yu Chen
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Xiuyang Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Bin Xu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China.
| | - Zhigang Xu
- School of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, Yongchuan 402160, PR China
| | - Xiaoqiang Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Zhongzhu Chen
- School of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, Yongchuan 402160, PR China
| | - Kaiming Zhang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Weidong Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China.
| |
Collapse
|
7
|
“Green” biocomposite Poly (vinyl alcohol)/starch cryogels as new advanced tools for the cleaning of artifacts. J Colloid Interface Sci 2022; 613:697-708. [DOI: 10.1016/j.jcis.2021.12.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
|
8
|
D'Amico S, Comite V, Paladini G, Ricca M, Colica E, Galone L, Guido S, Mantella G, Crupi V, Majolino D, Fermo P, La Russa MF, Randazzo L, Venuti V. Multitechnique diagnostic analysis and 3D surveying prior to the restoration of St. Michael defeating Evil painting by Mattia Preti. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29478-29497. [PMID: 34389953 DOI: 10.1007/s11356-021-15880-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
In this study, a multimethodological analysis involving optical and physical/chemical diagnostic techniques and 3D photogrammetric survey was successfully applied, for the first time, on the large oil on canvas St. Michael defeating Evil painting by Mattia Preti, located inside the Church of the Immaculate Conception of Sarria (Floriana) in Malta. Pigmenting agents, binder media, and raw materials were first characterized, both at elemental and molecular scales, through X-ray fluorescence spectroscopy (XRF), optical stereo microscopy (SM), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectroscopy (FT-IR), and gas chromatography coupled with mass spectrometry (GC-MS). The main goal was to properly identify the execution technique of this famous painter, the artist's palette, and possible nondocumented interventions. The 3D photogrammetric survey, on the other side, allowed us to noninvasively evaluate the extension of the areas that experienced restorations, and to properly map the domains of the different canvasses observed. The joints between canvasses suggested that the painting was folded and rolled up. In addition, the employment of a thermal camera gave evidence of the different consolidating material injection points used during the restoration to strengthen the painting. The obtained results offer useful information for the development of optimized restoration and conservation strategies to be applied and provide, at the same time, answers to open questions related to provenance and dating of the investigated artwork.
Collapse
Affiliation(s)
- Sebastiano D'Amico
- Department of Geosciences, University of Malta, Msida Campus, Msida, MSD2080, Malta
| | - Valeria Comite
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milan, Italy
| | - Giuseppe Paladini
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166, Messina, Italy.
| | - Michela Ricca
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende (CS), Italy.
| | - Emanuele Colica
- Department of Geosciences, University of Malta, Msida Campus, Msida, MSD2080, Malta
| | - Luciano Galone
- Department of Geosciences, University of Malta, Msida Campus, Msida, MSD2080, Malta
| | - Sante Guido
- Department of Literature and Philosophy, University of Trento, Via Tommaso Gar 14, I-38122, Trento, Italy
| | - Giuseppe Mantella
- Giuseppe Mantella Restauro Opere D'Arte, Circonvallazione Paparo 25, 88060, Isca sullo Ionio (CZ), Italy
| | - Vincenza Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166, Messina, Italy
| | - Domenico Majolino
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166, Messina, Italy
| | - Paola Fermo
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milan, Italy
| | - Mauro Francesco La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Luciana Randazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166, Messina, Italy
| |
Collapse
|
9
|
Cryogenics as an Advanced Method of Cleaning Cultural Heritage: Challenges and Solutions. SUSTAINABILITY 2022. [DOI: 10.3390/su14031052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The conservation and restoration of cultural heritage rely on technology and products designed for other sectors. The incorporation of new equipment requires exhaustive studies to ensure the viability of the new method linked to the safety of the technique, both for the operator and for the artwork. For this purpose, this research presents a preliminary approach to the study of dry ice blasting for its possible incorporation in the field of cultural heritage. This technique is characterized by being harmless for the operator and does not require washing times or subsequent evaporation as a result of solvent retention. It is an efficient and sustainable treatment, widely used in the technological, aerospace and industrial sectors. The article shows a theoretical analysis of the research results obtained by other specialists with the aim of introducing this technique in the eco-sustainable study of innovative technologies for the cleaning of culturally relevant surfaces. It describes the procedure of cryogenics, some cleaning equipment currently available and relevant case studies for both industrial and patrimonial contexts. Through the compilation and processing of documentary sources, we will be able to understand, define and analyze this new technique, specifying some basic aspects for its experimental evaluation. The attempt to incorporate cryogenics in the field of heritage is an improvement towards the reduction of the ecological management derived from the use of chemical waste. It is an innovative resource, full of benefits for the sector, in addition to contributing to five Sustainable Development Goals of the 2030 Agenda. This contribution allows progress towards a safer, greener and more sustainable restoration, reducing the dangers associated with the use of solvents and their irremediable ecological impact.
Collapse
|
10
|
Baglioni P, Chelazzi D. How Science Can Contribute to the Remedial Conservation of Cultural Heritage. Chemistry 2021; 27:10798-10806. [PMID: 34014576 DOI: 10.1002/chem.202100675] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/18/2022]
Abstract
Colloid science is contributing solutions to counteract the degradation of artifacts, favoring their transfer to future generations. Advanced materials such as nanoparticles, coatings, gels and microemulsions have been assessed in conservation, spanning from archeological sites to modern and contemporary art. We give an overview of the fundamental milestones and latest innovations in conservation science, targeting solutions and tools for remedial conservation based on green nanomaterials and hybrid systems. Future perspectives and outstanding challenges in this exciting field are then outlined.
Collapse
Affiliation(s)
- Piero Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.,Department of Nuclear Science and Engineering, Massachussetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Chelazzi
- CSGI and Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Baglioni M, Poggi G, Chelazzi D, Baglioni P. Advanced Materials in Cultural Heritage Conservation. Molecules 2021; 26:molecules26133967. [PMID: 34209620 PMCID: PMC8271397 DOI: 10.3390/molecules26133967] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Cultural Heritage is a crucial socioeconomic resource; yet, recurring degradation processes endanger its preservation. Serendipitous approaches in restoration practice need to be replaced by systematically addressing conservation issues through the development of advanced materials for the preservation of the artifacts. In the last few decades, materials and colloid science have provided valid solutions to counteract degradation, and we report here the main highlights in the formulation and application of materials and methodologies for the cleaning, protection and consolidation of works of art. Several types of artifacts are addressed, from murals to canvas paintings, metal objects, and paper artworks, comprising both classic and modern/contemporary art. Systems, such as nanoparticles, gels, nanostructured cleaning fluids, composites, and other functional materials, are reviewed. Future perspectives are also commented, outlining open issues and trends in this challenging and exciting field.
Collapse
|
12
|
Tyagi G, Seddon D, Khodaparast S, Sharratt WN, Robles ES, Cabral JT. Tensiometry and FTIR study of the synergy in mixed SDS:DDAO surfactant solutions at varying pH. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Baglioni M, Poggi G, Giorgi R, Rivella P, Ogura T, Baglioni P. Selective removal of over-paintings from "Street Art" using an environmentally friendly nanostructured fluid loaded in highly retentive hydrogels. J Colloid Interface Sci 2021; 595:187-201. [PMID: 33827010 DOI: 10.1016/j.jcis.2021.03.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
HYPOTHESIS The removal of over-paintings or graffiti is a priority for conservators and restorers. This operation is complex, especially when over-paintings lay on painted surfaces that must be preserved, as in the case of vandalism on street art, where the layers are usually chemically similar. Traditional methodologies often do not provide satisfactory results and pose health and eco-compatibility concerns. An alternative methodological approach based on an environmentally friendly nanostructured fluid loaded in a retentive hydrogel is here proposed. EXPERIMENTS Six paints (based on vinyl, acrylic and alkyd polymers) were selected and studied by means of attenuated total reflection - Fourier transform infrared spectroscopy. The phase behavior of four alkyl carbonates (green, low-toxicity organic solvents) and a biodegradable nonionic surfactant in water was investigated with Small angle X-ray scattering (SAXS) in order to formulate a novel nanostructured cleaning system. The developed system, which also includes 2-butanol and an alkyl glycoside hydrotrope, was loaded in highly retentive hydrogels and tested in the selective removal of over-paintings from laboratory mockups and from real pieces of street art. FINDINGS The selective and controlled removal of modern paints from substrates with similar chemical composition has been achieved using a specifically tailored NSF embedded in a retentive hydrogel. The proposed methodology and cleaning system provided excellent cleaning results, representing a new tool for the conservation of contemporary and, in particular, street art.
Collapse
Affiliation(s)
- Michele Baglioni
- Department of Chemistry, University of Florence, via della Lastruccia, 3, 50019, Sesto Fiorentino, FI, Italy
| | - Giovanna Poggi
- Department of Chemistry, University of Florence, via della Lastruccia, 3, 50019, Sesto Fiorentino, FI, Italy
| | - Rodorico Giorgi
- Department of Chemistry, University of Florence, via della Lastruccia, 3, 50019, Sesto Fiorentino, FI, Italy.
| | - Paola Rivella
- Department of Chemistry, University of Florence, via della Lastruccia, 3, 50019, Sesto Fiorentino, FI, Italy
| | - Taku Ogura
- NIKKOL GROUP Nikko Chemicals Co., Ltd., 1-4-8, Nihonbashi-Bakurocho, Chuo-ku, 103-0002, Tokyo, Japan; NIKKOL GROUP Cosmos Technical Center Co., Ltd., 3-24-3 Hasune, Itabashi-ku, 174-0046, Tokyo, Japan; Research Institute for Science & Technology, Tokyo University of Science, 2641, Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Piero Baglioni
- CSGI, Center for Colloids and Surface Science, University of Florence, via della Lastruccia, 3, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
14
|
Lisuzzo L, Hueckel T, Cavallaro G, Sacanna S, Lazzara G. Pickering Emulsions Based on Wax and Halloysite Nanotubes: An Ecofriendly Protocol for the Treatment of Archeological Woods. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1651-1661. [PMID: 33379868 PMCID: PMC8021222 DOI: 10.1021/acsami.0c20443] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
A novel green protocol for the consolidation and protection of waterlogged archeological woods with wax microparticles has been designed. First, we focused on the development of halloysite nanotubes (HNTs) based Pickering emulsions using wax as the inner phase of the oil-in-water droplets. The optimization of the preparation strategy was supported by both optical microscopy and scanning electron microscopy, which allowed us to show the morphological features of the prepared hybrid systems and their structural properties, i.e., the distribution of the clay at the interface. Also, the dependence of the overall dimensions of the prepared systems on the halloysite content was demonstrated. Microdifferential scanning calorimetry (μ-DSC) was conducted in order to assess whether the thermal properties of the wax are affected after its interaction with HNTs. Then, the Pickering emulsions were employed for the treatment of waterlogged wooden samples. Compared to the archeological woods treated with pure wax, the addition of nanotubes induced a remarkable improvement in the mechanical performance in terms of stiffness and flexural strength. The proposed protocol is environmentally friendly since water is the only solvent used throughout the entire procedure, even if wax is vehiculated into the pores at room temperature. As a consequence, the design of wax/halloysite Pickering emulsions represents a promising strategy for the preservation of wooden artworks, and it has a great potential to be scaled up, thus becoming also exploitable for the treatments of shipwrecks of large size.
Collapse
Affiliation(s)
- Lorenzo Lisuzzo
- Molecular
Design Institute, Department of Chemistry, New York University, 29 Washington Place, New York, New York 10003, United
States
- Department
of Physics and Chemistry, University of
Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| | - Theodore Hueckel
- Molecular
Design Institute, Department of Chemistry, New York University, 29 Washington Place, New York, New York 10003, United
States
| | - Giuseppe Cavallaro
- Department
of Physics and Chemistry, University of
Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| | - Stefano Sacanna
- Molecular
Design Institute, Department of Chemistry, New York University, 29 Washington Place, New York, New York 10003, United
States
| | - Giuseppe Lazzara
- Department
of Physics and Chemistry, University of
Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| |
Collapse
|
15
|
Baglioni M, Guaragnone T, Mastrangelo R, Sekine FH, Ogura T, Baglioni P. Nonionic Surfactants for the Cleaning of Works of Art: Insights on Acrylic Polymer Films Dewetting and Artificial Soil Removal. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26704-26716. [PMID: 32394706 PMCID: PMC8007071 DOI: 10.1021/acsami.0c06425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
The use of nanostructured fluids (NSFs), that is, micellar solutions and microemulsions, in art conservation is often associated with cleaning purposes as the removal of polymeric coatings and/or soil from artistic surfaces. In both cases, the use of NSFs grants significant improvements over the use of traditional cleaning techniques that employ neat unconfined organic solvents, water, or aqueous solutions. The study of the nature and properties of surfactants present in NSF formulations is important to boost the effectiveness of these systems in applicative contexts and in the search of innovative and highly performing amphiphiles. This work reports on the methoxy-pentadeca(oxyethylene) dodecanoate (MPD) surfactant in two different NSFs, whose utilization in conservation of cultural heritage is new. Its effectiveness is compared to the conventional nonionic amphiphiles used in conservation practice, as pentadeca(oxyethylene) dodecyl ether, for the cleaning of poly(ethyl methacrylate/methyl acrylate) 70:30, p(EMA/MA), and artificially soiled surfaces. The mechanism, through which NSFs interact with polymeric coatings or soiled surfaces, was investigated by confocal laser scanning microscopy, fluorescence correlation spectroscopy, photographic observation, contact angle, surface tension measurements, and small-angle X-ray scattering. The results highlighted the superior MPD's performance, both in inducing polymer removal and in detaching the soil from coated surfaces. At the microscale, the cleaning involves dewetting-like processes, where the polymer or the soil oily phase is detached from the surface and coalesce into separated droplets. This can be accounted by considering the different surface tensions and the different adsorption mechanisms of MPD with respect to ordinary nonionic surfactants (likely due to the methyl capping of the polar head chain and to the presence of the ester group between the hydrophilic and hydrophobic parts of the MPD surfactant molecule), showing how a tiny change in the surfactant architecture can lead to important differences in the cleaning capacity. Overall, this paper provides a detailed description of the mechanism and the kinetics involved in the NSFs cleaning process, opening new perspectives on simple formulations that are able to target at a specific substance to be removed. This is of utmost importance in the conservation of irreplaceable works of art.
Collapse
Affiliation(s)
- Michele Baglioni
- Department
of Chemistry and CSGI, University of Florence, via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Teresa Guaragnone
- Department
of Chemistry and CSGI, University of Florence, via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Rosangela Mastrangelo
- Department
of Chemistry and CSGI, University of Florence, via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Felipe Hidetomo Sekine
- NIKKOL
GROUP Nikko Chemicals Co., Ltd., 1-4-8, Nihonbashi-Bakurocho, Chuo-ku, 103-0002 Tokyo, Japan
| | - Taku Ogura
- NIKKOL
GROUP Nikko Chemicals Co., Ltd., 1-4-8, Nihonbashi-Bakurocho, Chuo-ku, 103-0002 Tokyo, Japan
- NIKKOL
GROUP Cosmos Technical Center Co., Ltd., 3-24-3 Hasune, Itabashi-ku, 174-0046 Tokyo, Japan
- Research
Institute for Science & Technology, Tokyo University of Science, 2641, Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Piero Baglioni
- Department
of Chemistry and CSGI, University of Florence, via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
16
|
Cavallaro G, Milioto S, Lazzara G. Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3677-3689. [PMID: 32202430 PMCID: PMC7997573 DOI: 10.1021/acs.langmuir.0c00573] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Indexed: 05/27/2023]
Abstract
The peculiar surfaces of halloysite nanotubes and their biocompatibility are attracting the interest of researchers based on the wide range of attainable applications. The large aspect ratio of this nanotubular material ensures promising properties as a reinforcing agent in polymeric matrixes, such as cellulose and its derivatives, that entail strengthening due to, for instance, aging-induced degradation. The halloysite cavity has a suitable size for hosting a large variety of active species such as deacidifying (calcium hydroxide) and flame retardant agents (fluorinated surfactants) for a controlled and sustained release relevant to the conservation of cultural heritage. Additionally, anionic surfactants can be selectively adsorbed at the inner surface generating inorganic micelles able to solubilize hydrophobic species in a controlled cleaning protocol. We briefly discuss how the natural halloysite nanotubes can be supportive in various conservation processes of cultural heritage and present an outlook for future perspectives.
Collapse
|