1
|
Hassan L, Reynoso M, Xu C, Al Zahabi K, Maldonado R, Nicholson RA, Boehm MW, Baier SK, Sharma V. The bubbly life and death of animal and plant milk foams. SOFT MATTER 2024; 20:8215-8229. [PMID: 39370983 DOI: 10.1039/d4sm00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Milk foams are fragile objects, readily prepared for frothy cappuccinos and lattes using bovine milk. However, evolving consumer preferences driven by health, climate change, veganism, and sustainability have created a substantial demand for creating frothy beverages using plant-based milk alternatives or plant milks. In this contribution, we characterize maximum foam volume and half-lifetime as metrics for foamability and foam stability and drainage kinetics of two animal milks (cow and goat) and compared them to those of the six most popular, commercially available plant milks: almond, oat, soy, pea, coconut, and rice. We used three set-ups: an electric frother with cold (10 °C) and hot (65 °C) settings to emulate the real-life application of creating foam for cappuccinos, a commercial device called a dynamic foam analyzer or DFA and fizzics-scope, a bespoke device we built. Fizzics-scope visualizes foam creation, evolution, and destruction using an extended prism-based imaging system facilitating the capture of spatiotemporal variation in foam microstructure over a broader range of heights and liquid fractions. Among the chosen eight milks, oat produces the longest-lasting foams, and rice has the lowest amount and stability of foam. Using the hot settings, animal milks produce more foam volume using an electric frother than the top three plant milks in terms of foamability (oat, pea, and soy). Using the cold settings, oat, soy, and almond outperform cow milk in terms of foam volume and lifetime for foams made with the frother and sparging. Most plant milks have higher viscosity due to added polysaccharide thickeners, and in some, lecithin and saponin can supplement globular proteins as emulsifiers. Our studies combining foam creation by frothing or sparging with imaging protocols to track global foam volume and local bubble size changes present opportunities for contrasting the physicochemical properties and functional attributes of animal and plant-based milk and ingredients for engineering better alternatives.
Collapse
Affiliation(s)
- Lena Hassan
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Monse Reynoso
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Chenxian Xu
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Karim Al Zahabi
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Ramiro Maldonado
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | | | | | - Stefan K Baier
- Motif FoodWorks Inc., Boston, MA 02210, USA
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| |
Collapse
|
2
|
Fameau AL, Cousin F, Dobryden I, Dutot C, Le Coeur C, Douliez JP, Prevost S, Binks BP, Saint-Jalmes A. 12-hydroxystearic acid-mediated in-situ surfactant generation: A novel approach for organohydrogel emulsions. J Colloid Interface Sci 2024; 672:133-141. [PMID: 38833733 DOI: 10.1016/j.jcis.2024.05.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
HYPOTHESIS Organohydrogel emulsions display unique rheological properties and contain hydrophilic and lipophilic domains highly desirable for the loading of active compounds. They find utility in various applications from food to pharmaceuticals and cosmetic products. The current systems have limited applications due to complex expensive formulation and/or processing difficulties in scale-up. To solve these issues, a simple emulsification process coupled with unique compounds are required. EXPERIMENTS Here, we report an organohydrogel emulsion based only on a low concentration of 12-hydroxystearic acid acting as a gelling agent for both oil and water phases but also as a surfactant. The emulsification process is based on in-situ surfactant transfer. We characterize the emulsification process occurring at the nanoscale by using tensiometry experiments. The emulsion structure was determined by coupling Small Angle X-ray and neutron scattering, and confocal Raman microscopy. FINDINGS We demonstrate that the stability and unique rheological properties of these emulsions come from the presence of self-assembled crystalline structures of 12-hydroxystearic acid in both liquid phases. The emulsion properties can be tuned by varying the emulsion composition over a wide range. These gelled emulsions are prepared using a low energy method offering easy scale-up at an industrial level.
Collapse
Affiliation(s)
- Anne-Laure Fameau
- University of Lille, CNRS, INRAE, Centrale institut, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, 59000, France.
| | | | - Illia Dobryden
- RISE Research Institutes of Sweden, Drottning Kristinas väg 61, 114 28 Stockholm, Sweden
| | - Clémence Dutot
- Université de Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, Rennes, France
| | - Clémence Le Coeur
- Laboratoire Léon Brillouin, CEA, Saclay, France; CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, Université Paris Est Creteil, 94320 Thiais, France
| | - Jean-Paul Douliez
- Biologie du Fruit et Pathologie, UMR 1332, Institut National de Recherche Agronomique (INRAE), Université de Bordeaux, Villenave d'Ornon F-33140, France
| | - Sylvain Prevost
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, Cedex 9, 38042 Grenoble, France
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Arnaud Saint-Jalmes
- Université de Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, Rennes, France.
| |
Collapse
|
3
|
Requier A, Guidolin C, Rio E, Galvani N, Cohen-Addad S, Pitois O, Salonen A. Foam coarsening in a yield stress fluid. SOFT MATTER 2024. [PMID: 39028020 DOI: 10.1039/d4sm00296b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Foams coarsen because of pressure differences between bubbles of different sizes. We study the coarsening of quasi-2D foams made from model yield stress fluids: concentrated oil-in-water emulsions. We show that increasing the yield stress of the foamed emulsion continuous phase leads to both slower coarsening and irreversible structural change. The impact of the continuous phase rheology is stronger when the foamed emulsion is wetter or more confined. The bubble growth and organisation both become highly heterogeneous with an excess of small bubbles. We present a model that rationalises the impact of these three parameters by taking into account a resisting pressure required to displace the yield stress fluid around the bubbles.
Collapse
Affiliation(s)
- Alice Requier
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.
| | - Chiara Guidolin
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.
| | - Emmanuelle Rio
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.
| | - Nicolò Galvani
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 Place Jussieu, 75005 Paris, France
- Université Gustave Eiffel, ENPC, CNRS, Laboratoire Navier, 5 Bd Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée Cedex 2, France
| | - Sylvie Cohen-Addad
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 Place Jussieu, 75005 Paris, France
- Université Gustave Eiffel, 5 Bd Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée Cedex 2, France
| | - Olivier Pitois
- Université Gustave Eiffel, ENPC, CNRS, Laboratoire Navier, 5 Bd Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée Cedex 2, France
| | - Anniina Salonen
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.
| |
Collapse
|
4
|
Sabeghi Y, Varidi M, Nooshkam M. Bioactive foamulsion gels: a unique structure prepared with gellan gum and Acanthophyllum glandulosum extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3853-3864. [PMID: 38243763 DOI: 10.1002/jsfa.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Foamulsions have become increasingly popular in the food industry due to their ability to enhance the textural, sensory and health-promoting properties of food products. This study was therefore aimed to design and prepare a novel gelled structure, foamulsion gel containing 0-600 g L-1 oil, with gellan gum (GG; 7, 10 and 13 g L-1) and saponin-rich antioxidant Acanthophyllum glandulosum extract (AGE; 2, 6 and 10 g L-1). RESULTS The interaction between components was confirmed by infrared spectroscopy. The overrun and porosity of the foamulsion gels increased with antioxidant AGE (1.30 times) and reduced with oil (up to ca 70% and 30%, respectively) and GG levels. The systems were highly stable, and no water or oil was released during the physical stability experiments. Microscopic images showed that the size of air cells was significantly larger than that of oil droplets. The foamulsion gels based on 13 g L-1 GG and 10 g L-1 AGE had markedly higher elastic (G') and viscous (G'') moduli than other samples, and exhibited an elastic and solid-like behavior (G' > G''). The highest gel firmness was found in oil-free sample, and the presence of oil resulted in a lower firmness induced by the larger size and lubrication effect of oil droplets. CONCLUSION As a result, the interactions between AGE, GG and oil could lead to the creation of new aerated structures known as bioactive foamulsion gels. These gels exhibit excellent foamability, stability and viscoelasticity and may find applications in the development of novel, healthy and low-calorie aerated foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yeganeh Sabeghi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
5
|
Si Y, Laidlaw FHJ, Li T, Clegg PS. Using cryo-SEM and EDS to investigate the stabilisation of oil-water interfaces in mixed aqueous-and-oil foams. SOFT MATTER 2024; 20:2212-2217. [PMID: 38379398 DOI: 10.1039/d3sm01699d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
For multi-phase soft matter systems, optical microscopy is frequently employed to distinguish the different phases. Unfortunately, optical microscopy does not succeed in all cases. Consequently, researchers sometimes require more advanced imaging techniques with superior resolution or sample penetration capabilities. One such complex system is a mixed aqueous-and-oil foam stabilised by colloidal particles, which is composed of two immiscible foams organised as the dispersed and continuous phases of an emulsion. While its morphology has been extensively studied using fluorescence confocal microscopy, not all questions have been answered. While the aqueous phase bubble interfaces are stabilised by silica particles and the oil phase bubble interfaces are stabilised by fluorinated particles, it remains to be seen how the aqueous-oil interfaces are stabilised. Hence, to gain insights into the role of the different particles at the interfaces, we employ cryogenic scanning electron microscopy (Cryo-SEM) and energy-dispersive X-ray spectroscopy (EDS). We find that the hydrophobic silica particles reside at both the aqueous-air and aqueous-oil interfaces. In contrast, the fluorinated particles, which exhibit hydrophobic and oleophobic properties simultaneously, are exclusively found at the oil-air interfaces.
Collapse
Affiliation(s)
- Yuchen Si
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Fraser H J Laidlaw
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Tao Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Paul S Clegg
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| |
Collapse
|
6
|
Si Y, Royer JR, Li T, Clegg PS. Mixed aqueous-and-oil foams in bulk. J Colloid Interface Sci 2023; 646:671-678. [PMID: 37224681 DOI: 10.1016/j.jcis.2023.05.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
HYPOTHESIS Because particle-stabilised foams are extremely stable and have a yield stress, a particle-stabilised aqueous foam and a particle-stabilised oil foam can be mixed together to give a stable composite foam which brings together two immiscible liquids. EXPERIMENTS We have developed a mixed foam system comprised of an olive oil foam with bubbles stabilised using partially fluorinated particles and an aqueous foam with bubbles stabilised using hydrophobic silica particles. The aqueous phase is a mixture of water and propylene glycol. We have studied this system using bulk observations, confocal microscopy and rheology as we vary the proportions of the two foams, the silica particles and the propylene glycol, and the sample age. FINDINGS The composite foam resembles an emulsion of one foam within another and is stable for a week or more. The structure and flow properties depend on the proportions of the two phases and the quantities of both silica particles and propylene glycol. Inversion between water-in-oil and oil-in-water is observed, where both phases are foams, driven both by silica wettability and by adding increasing quantities of the dispersed foam. Composites formed at the inversion point are the least stable, showing significant phase separation in less than one week.
Collapse
Affiliation(s)
- Yuchen Si
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - John R Royer
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Tao Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, PR China
| | - Paul S Clegg
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| |
Collapse
|
7
|
Kim DK, Ananth R. Spontaneous aqueous foaming with fluorosurfactants from a hydrocarbon liquid at ambient conditions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Chen X, Da C, Hatchell DC, Daigle H, Ordonez-Varela JR, Blondeau C, Johnston KP. Ultra-stable CO2-in-water foam by generating switchable Janus nanoparticles in-situ. J Colloid Interface Sci 2023; 630:828-843. [DOI: 10.1016/j.jcis.2022.10.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
|
9
|
Effect of Different Polymerization Degrees and Fatty Acids of Polyglycerol Esters on the Physical Properties and Whippability of Recombined Dairy Cream. Foods 2022; 12:foods12010022. [PMID: 36613238 PMCID: PMC9818443 DOI: 10.3390/foods12010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Polyglycerol esters (PGEs) are used as emulsifiers in recombined dairy cream (RDC) to improve product quality. In this study, the effects of four PGEs with different polymerization degrees and esterification on the particle size, viscosity, zeta potential, and microrheology of RDC emulsions were investigated, and the whipping time, overrun, serum loss, and firmness of the RDC emulsions were recorded. The results show that the addition of the PGEs reduced the particle size (from 2.75 μm to 1.48-1.73 μm) and increased the viscosity (from 41.92 cP to 73.50-100 cP) and stability (from 0.354 to 0.105-0.128), which were related to the change in interfacial properties and the weakening of Brownian motion, but there were differences in the effect on the whipping behavior of the RDCs. Although the addition of 0.9% triglyceride monolaurate gave the emulsion the best stability, the RDC had a longer whipping time (318 s) and a lower overrun (116.6%). Comparatively, the 0.7-0.9% concentrations of PGE55 and tripolycerol monostearate (TMS) provided RDC with good stability and aeration characteristics, allowing inflation within 100 s and expansion rates of up to 218.24% and 186.88%, respectively. In addition, the higher degree of polymerization of polyglyceryl-10 monstearate (PMS) did not work well at any concentration. These results contribute to understanding the mechanism of action of PGEs and improving the quality of RDC.
Collapse
|
10
|
Zheng R, Hu X, Su C, Jiang J, Cui Z, Binks BP. Edible Oil-Water Foamulsions Stabilized by Vesicle Network of Sucrose Ester. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Oleofoams and emulsion foams stabilized by sodium stearoyl lactylate: Insights into their relations based on microstructure, rheology and tribology. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Zheng R, Chen Y, Wang Y, Rogers MA, Cao Y, Lan Y. Microstructure and physical properties of novel bigel-based foamed emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Guidolin C, Jiang N, Langevin D, Salonen A. One-step generation and characterisation of aerated emulsions using laser diffraction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Si Y, Li T, Clegg PS. Mixed Aqueous-and-Oil Foams via the Spinning Together of Separate Particle-Stabilized Aqueous and Oil Foams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4243-4249. [PMID: 35352955 PMCID: PMC9009175 DOI: 10.1021/acs.langmuir.1c03348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/16/2022] [Indexed: 05/31/2023]
Abstract
We describe an experimental technique for the production of foams comprised of bubbles in a continuous phase of balanced quantities of aqueous and oil phases. Initially, two highly stable foams are fabricated: one typically made from olive oil with bubbles stabilized using partially fluorinated particles and the other made from a mixture of water and propylene glycol with bubbles stabilized using partially hydrophobic particles. After a rough mixture is prepared, the final mixed foam is fabricated via spinning the components together; the spinning leads to the final foam being well-mixed and dry. Here the final mixed foams are presented in thin-film form. We show the locations and roles of the various components.
Collapse
Affiliation(s)
- Yuchen Si
- School
of Physics and Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
- Wenzhou
Institute, University of Chinese Academy
of Sciences, Wenzhou, Zhejiang 325001, P. R. China
| | - Tao Li
- Wenzhou
Institute, University of Chinese Academy
of Sciences, Wenzhou, Zhejiang 325001, P. R. China
| | - Paul S. Clegg
- School
of Physics and Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
| |
Collapse
|
15
|
Motion of small bubbles and drops in viscoelastic fluids. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2021.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
|
17
|
Liu C, Zheng Z, Liu Y. Effects of natural waxes on the interfacial behavior, structural properties and foam stabilization of aerated emulsions. Food Funct 2022; 13:8860-8870. [DOI: 10.1039/d2fo01670b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aerated emulsions have widespread applications in food industry. However, the poor stability of aerated emulsions remains a major challenge due to their inherent thermodynamic instability. Herein, a novel strategy to...
Collapse
|
18
|
Li Q, Xu M, Yang Y, Guo J, Wan Z, Yang X. Tailoring structure and properties of long-lived emulsion foams stabilized by a natural saponin glycyrrhizic acid: Role of oil phase. Food Res Int 2021; 150:110733. [PMID: 34865752 DOI: 10.1016/j.foodres.2021.110733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
Novel supramolecular nanofibrils assembled from food-grade saponin glycyrrhizic acid (GA) are effective building blocks to make complex multiphase systems, e.g., emulsion foams. In this work, the effects of different oil phases (castor oil, sunflower oil, dodecane, and limonene) on the formation, stability and structural properties of long-lived emulsion foams prepared by GA nanofibrils (GNs) were investigated. The obtained results showed that soft-solid emulsion foams (4 wt% GNs) can be fabricated, independently of oil phase, and their structural properties, viscoelasticity, and tribological properties can be well tuned by oil phase polarity. Compared to the GNs aqueous foams, the presence of jammed emulsion droplets in the liquid channels and at the surfaces of bubbles can provide a higher bubble stability for emulsion foams. For more polar oil phase (castor oil), GNs showed a higher affinity to the oil-water interface with a lower interfacial tension, thus forming smaller oil droplets and bubbles, which leads to the higher mechanical strength, denser network microstructures, and lower friction coefficients of emulsion foams. However, the limonene foam exhibited weak storage stability and rheological properties, as well as the relatively low lubrication, which may be related to the formation of oil droplet aggregates and clusters induced by the volatility of limonene. GN-based emulsion foams are thermoresponsive, independently of oils, and the temperature-switchable process for the destabilization and regeneration of foams can be controlled and repeated. These emulsion foams based on natural saponin nanofibrils with tunable properties have potential sustainable applications in foods, pharmaceuticals, and personal care products.
Collapse
Affiliation(s)
- Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jian Guo
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China.
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|