1
|
Haessig C, Landman J, Scholten E, Jarray A. How bulk liquid viscosity shapes capillary suspensions. J Colloid Interface Sci 2025; 678:400-409. [PMID: 39255597 DOI: 10.1016/j.jcis.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
HYPOTHESIS Capillary suspensions offer a new approach to generate novel materials. They are ternary liquid-liquid-solid systems characterized by particles connected by liquid bridges of one fluid suspended in a second immiscible bulk fluid. The viscosity of the bulk liquid can be modulated to customize the structure and rheological properties of capillary suspensions. Experiments and simulations: Using experiments and numerical simulations, we investigated capillary suspensions in the pendular state, using silica particles and water as a bridging liquid. To modulate the viscosity of the bulk fluid, we use different ratios of either dodecane and diisononyl phthalate, or silicone oils with varying chain lengths as bulk liquids. The rheological behavior was characterized using the maximum storage and loss moduli and the yielding behavior. This was related to structural changes of the systems, which was visualized using confocal laser scanning microscopy. In addition, we used Molecular Dynamics (MD) simulations to gain more insights into the behavior of two particles connected by a liquid bridge for various bulk liquids. FINDINGS Experiments show that higher bulk liquid viscosity reduces strength, yield stress, and yield strain in capillary suspensions, which is partly attributed to a reduced inter-connectivity of the percolating network. This is caused by the breakup of liquid bridges occurring at shorter distances in the presence of highly viscous bulk liquids, as indicated by numerical simulations.
Collapse
Affiliation(s)
- Christoph Haessig
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Jasper Landman
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Elke Scholten
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Ahmed Jarray
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands; Multi Scale Mechanics (MSM), MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
2
|
Dyab AKF, Paunov VN. 3D structured capillary cell suspensions aided by aqueous two-phase systems. J Mater Chem B 2024; 12:10215-10220. [PMID: 39377243 DOI: 10.1039/d4tb01296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We report a facile technique for 3D structuring of living cells by forming capillary cell suspensions based on an aqueous two-phase system (ATPS) of polyethylene glycol (PEG) and dextran (DEX) solutions. We demonstrate the formation of water-in-water (DEX-in-PEG) capillary bridges using concentrated suspensions of yeast cells which show enhanced rheological properties and distinctive 3D patterns. Capillary structured cell suspensions can potentially find applications in novel ways of 3D cell culturing, instant tissue engineering and many biomedical investigations.
Collapse
Affiliation(s)
- Amro K F Dyab
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan.
- Colloids & Advanced Materials Group, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Vesselin N Paunov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan.
| |
Collapse
|
3
|
Liu L, Allard J, Koos E. Enhanced contact flexibility from nanoparticles in capillary suspensions. J Colloid Interface Sci 2024; 665:643-654. [PMID: 38552581 DOI: 10.1016/j.jcis.2024.03.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
HYPOTHESIS Sample-spanning particle networks are used to induce structure and a yield stress, necessary for 3D printing of porous ceramics and paints. In capillary suspensions, a small quantity of immiscible secondary fluid is incorporated into a suspension. By further adding nanoparticles with a range of hydrophobicities, the structure of the bridges and microparticle-microparticle contacts is expected to be modified, resulting in a tunable yield stress and shear moduli. Moreover, the compressibility of these samples, important in many processing and application steps, is expected to be sensitive to these changes. EXPERIMENT The nanoparticle hydrophobicity was altered and their position relative to the microparticles and the bridges was examined using confocal microscopy where the correlation between bridge size and network structure was observed. A step-wise uniaxial compression test on the confocal was conducted to monitor the microparticle movement and structural changes between capillary suspension networks with and without nanoparticles. FINDINGS Our observation suggests that nanoparticles induce the formation of thin liquid films on the surface of the microparticles, mitigating contact line pinning and promoting internal liquid exchange. Additionally, nanoparticles at microparticle contact regions further diminish Hertzian contact, enhancing the capacity for rearrangement. These effects enhance microparticle movement, narrowing the bridge size distribution.
Collapse
Affiliation(s)
- Lingyue Liu
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200J, 3001 Leuven, Belgium.
| | - Jens Allard
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200J, 3001 Leuven, Belgium; Current address: Robert Bosch Produktie N.V., 3300 Tienen, Belgium
| | - Erin Koos
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200J, 3001 Leuven, Belgium.
| |
Collapse
|
4
|
Simoes S, Rousseau D. A hybrid approach to oil structuring - combining wax oleogels and capillary suspensions. SOFT MATTER 2024; 20:4329-4336. [PMID: 38742675 DOI: 10.1039/d3sm01619f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
There is continuing interest in finding new approaches to gel liquid oil for processed food applications. Here, we combined oleogels and capillary suspensions to generate model oil-continuous networks consisting of a wax oleogel and a water-bridged, glass particle network. The composition map tested comprised 30 vol% polar or non-polar glass beads dispersed in a 70 vol% non-particle phase consisting of water (≤9 vol%) as well as 2 wt% hexatriacontane as oleogelator in canola oil. While the hexatriacontane wax alone gelled the oil, presence of the glass beads (but no water) prevented oleogelation. Self-supporting capillary networks formed with polar particles and 1 vol% water or non-polar glass beads and 3 vol% water in canola oil. The capillary suspensions demonstrated significant differences in rheological behaviour as the polar particles yielded much higher elastic moduli than their non-polar particle counterparts. Polar hybrids were weakened by inclusion of the wax whereas the non-polar particle hybrid network displayed elastic moduli greater than the respective contributions of both capillary and wax gel networks. This hybrid method of oleogelation can be applied to virtually any food particles and uses minimal water and wax.
Collapse
Affiliation(s)
- Selvyn Simoes
- Food and Soft Materials Research Group, Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, Canada.
| | - Dérick Rousseau
- Food and Soft Materials Research Group, Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, Canada.
| |
Collapse
|
5
|
Rahat SA, Chaudhuri K, Pham JT. Capillary detachment of a microparticle from a liquid-liquid interface. SOFT MATTER 2023; 19:6247-6254. [PMID: 37555264 DOI: 10.1039/d3sm00470h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The attachment and detachment of microparticles at a liquid-liquid interface are common in many material systems, from Pickering emulsions and colloidal assemblies to capillary suspensions. Properties of these systems rely on how the particles interact with the liquid-liquid interface, including the detachment process. In this study, we simultaneously measure the capillary detachment force of a microparticle from a liquid-liquid interface and visualize the shape of the meniscus by combining colloidal probe microscopy and confocal microscopy. The capillary behavior is studied on both untreated (hydrophilic) and fluorinated (hydrophobic) glass microparticles. The measured force data show good agreement with theoretical calculations based on the extracted geometric parameters from confocal images of the capillary bridge. It is also evident that contact line pinning is an important aspect of detachment for both untreated and fluorinated particles.
Collapse
Affiliation(s)
- Sazzadul A Rahat
- Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Krishnaroop Chaudhuri
- Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jonathan T Pham
- Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
- Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
6
|
Cerdan K, Gandara-Loe J, Arnauts G, Vangramberen V, Ginzburg A, Ameloot R, Koos E, Van Puyvelde P. On the gelation of humins: from transient to covalent networks. SOFT MATTER 2023; 19:2801-2814. [PMID: 36995046 DOI: 10.1039/d2sm01506d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Humins are a by-product of many acid-catalyzed biorefinery processes converting polysaccharides into platform chemicals. The valorization of humin residue to increase the profit of biorefinery operations and reduce waste is a field that is growing interest as the production of humins continues to increase. This includes their valorization in materials science. For successful processing of humin-based materials, this study aims to understand the thermal polymerization mechanisms of humins from a rheological perspective. Thermal crosslinking of raw humins leads to an increase in their molecular weight, which in turn leads to the formation of a gel. Humin's gels structure combines physical (thermally reversible) and chemical (thermally irreversible) crosslinks, and temperature plays an essential role in the crosslink density and the gel properties. High temperatures delay the formation of a gel due to the scission of physicochemical interactions, drastically decreasing their viscosity, whereas upon cooling a stronger gel is formed combining the recovered physicochemical bonds and the newly created chemical crosslinks. Thus, a transition from a supramolecular network to a covalently crosslinked network is observed, and properties such as the elasticity or reprocessability of humin gels are influenced by the stage of polymerization.
Collapse
Affiliation(s)
- Kenneth Cerdan
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium.
| | - Jesus Gandara-Loe
- Department of Microbial and Molecular Systems, Centre for Membrane Separation, Adsorption, Catalysis and Spectroscopy, KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium
| | - Giel Arnauts
- Department of Microbial and Molecular Systems, Centre for Membrane Separation, Adsorption, Catalysis and Spectroscopy, KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium
| | - Vedran Vangramberen
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium.
| | - Anton Ginzburg
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SmaRT), Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Rob Ameloot
- Department of Microbial and Molecular Systems, Centre for Membrane Separation, Adsorption, Catalysis and Spectroscopy, KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium
| | - Erin Koos
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium.
| | - Peter Van Puyvelde
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium.
| |
Collapse
|
7
|
Structure and rheology of oil-continuous capillary suspensions containing water-swellable cellulose beads and fibres. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Editorial Overview: Memorial Volume for Peter Kralschevsky. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2023.101676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|