1
|
Clemente SMDS, Santos SFD, Calaça PRDA, Soares MTCV, Silva WAD, Melo RPBD, Mota RA, Barros MR. Gene profile of virulence, antimicrobial resistance and action of enterocins in Campylobacter species isolated from broiler carcasses. Braz J Microbiol 2024:10.1007/s42770-024-01559-9. [PMID: 39541060 DOI: 10.1007/s42770-024-01559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Campylobacteriosis is among the most reported zoonoses in the world, caused by species of Campylobacter, this disease is characterized by gastroenteritis in humans. The main species involved is Campylobacter jejuni, followed by Campylobacter coli. Contaminated chicken meat is often identified as an important source of infection related to human cases and Brazil is the largest exporter of chicken meat in the world, which makes the characterization of brazilian isolates crucial for the establishment of control measures. The objective was to evaluate the contamination of chilled and frozen carcasses sold in the Northeast of Brazil, by Campylobacter species, identify virulence genes, evaluate bacterial resistance to antibiotics and verify the antimicrobial action of the Crude Extract Containing Enterocins (CECE) produced by a probiotic strain of Enterococcus faecium. In this study, 12 chilled carcasses and 12 frozen carcasses were collected, sold retail in supermarkets. The following regions of the carcass were sampled: breast skin, wing skin, belly skin, neck skin, gizzard and liver. Samples of chicken carcasses were analyzed following ISO 10272-2 guidelines for the isolation of Campylobacter spp. The isolates were tested by PCR to identify genus, species C. jejuni, C. coli and C. lari and genes cdtA, cdtB, cdtC, sodB, dnaJ, cmeA, cmeB, cmeC. The assessment of susceptibility to antibiotics was carried out using the standard disk diffusion method and the antimicrobial activity of CECE was determined using the Minimum Inhibitory Concentration (MIC), the methodologies followed the recommendations and cutoff points according to EUCAST and CLSI. A total of 376 isolates of Campylobacter spp. were obtained, among these, 26 (7.0%) were positive for C. jejuni and no isolates were detected for C. coli and C. lari. The highest frequency of C. jejuni was obtained in chilled carcasses with 23 isolates (88.5%, p < 0.0001), in frozen carcasses three isolates were obtained (11.5%). The most frequency site of C. jejuni was the chest skin (7/27.0%), followed by skin of the wing (6/23.0%), skin of the cloaca (5/19.0%), gizzard (4/15.0%), skin of the neck (2/8.0%) and liver (2/8.0%), no significant differences were found between the sites sampled. The gene frequency was determined in: cdtA (3/11.5%), cdtB (3/11.5%), cdtC (5/19.0%), sodB (9/34.5%), dnaJ (3/11.5%), cmeA (4/15.0%), cmeB (4/15.0%) and cmeC (4/15.0%). The three efflux pump genes were amplified in four isolates (15.3%) and all tested genes were amplified in three isolates (11.5%). All C. jejuni isolates (26/100.0%) were found to be multiresistant to three or more classes of antimicrobials. The index of multiple resistance to antimicrobial drugs (IRMA) ranged from 0.4 to 1.0 among isolates of C. jejuni. The antimicrobial activity of CECE was able to inhibit at least 98.5% of the growth of all C. jejuni isolates. Therefore, chilled chicken carcasses present a greater risk of contamination than frozen carcasses, for this reason it is necessary to adopt practices that avoid cross-contamination during the preparation of chicken meat, in order to prevent campylobacteriosis. Furthermore, the presence of multiresistant and potentially virulent isolates highlights the need for further investigations to better understand the use of enterocins as alternative methods in the control of Campylobacter.
Collapse
Affiliation(s)
- Saruanna Millena Dos Santos Clemente
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil.
| | - Samuel Fernando Dos Santos
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil
| | - Priscilla Régia de Andrade Calaça
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil
| | - Maria Taciana Cavalcanti Vieira Soares
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil
| | - Webert Aurino da Silva
- Zootechnics Department, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil
| | - Renata Pimentel Bandeira de Melo
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil
| | - Rinaldo Aparecido Mota
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil
| | - Mércia Rodrigues Barros
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil
| |
Collapse
|
2
|
Ren X, Yang D, Yang Z, Li Y, Yang S, Li W, Qiao X, Xue C, Chen M, Zhang L, Yan L, Peng Z. Prevalence and Antimicrobial Susceptibility of Foodborne Pathogens from Raw Livestock Meat in China, 2021. Microorganisms 2024; 12:2157. [PMID: 39597545 PMCID: PMC11596567 DOI: 10.3390/microorganisms12112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
The rising prevalence of pathogenic bacteria in livestock meat poses a growing public health concern in China. The determination of antimicrobial resistance (AMR) is critical for the clinical management of foodborne infections stemming from livestock meat consumption. This study aimed to assess the prevalence of pathogenic bacteria in livestock meat (pork, beef, and mutton) sampled in China in 2021 and to identify the most common AMR patterns among the isolated pathogens. A total of 2515 raw livestock meat samples were collected across 15 provinces in China during 2021. Pathogen detection, including Listeria monocytogenes, Salmonella, and diarrheagenic Escherichia coli (DEC), followed China's national food safety standards. All Salmonella isolates underwent serotyping via slide agglutination. Antimicrobial susceptibility of Salmonella and DEC isolates was assessed using the broth dilution method. The detection rates for L. monocytogenes, Salmonella, and DEC in raw livestock meat were 9.06% (228/2, 515), 10.54% (265/2, 515), and 6.16% (155/2, 515), respectively. Pork showed the highest contamination rates for Salmonella and DEC, with prevalence rates of 17.60% (214/1, 216, χ2 = 124.62, p < 0.05) and 7.89% (96/1, 216, χ2 = 14.466, p < 0.05), respectively. L. monocytogenes contamination was notably higher in chilled (14.43%, 84/582) and frozen (12.39%, 55/444) meat than in fresh meat (χ2 = 43.510, p < 0.05). In contrast, Salmonella (12.09%, 180/1489, χ2 = 15.173, p < 0.05) and DEC (7.25%, 108/1489, χ2 = 12.275, p < 0.05) were more prevalent in fresh meat than in chilled or frozen samples. The predominant Salmonella serotypes identified were Salmonella enterica subsp. enterica serovar Typhimurium, followed by Salmonella enterica serovar Derby, Salmonella enterica serovar Rissen, Salmonella enterica serovar London, and Salmonella enterica serotype Enteritidis. Enteroaggregative E. coli was the most frequent pathotype among DEC (84.7%, 133/157), followed by enteropathogenic E. coli (8.3%, 13/157) and enterohemorrhagic E. coli (5.1%, 8/157). Among the 14 tested antimicrobial agents, Salmonella isolates demonstrated an overall resistance rate of 87.50%, while DEC exhibited a resistance rate of 84.70%. Ampicillin and tetracycline showed the highest resistance rates in both pathogens. Multi-drug resistance (MDR) was observed in 67.53% of Salmonella isolates (183 isolates) and 57.96% of DEC isolates (91 isolates). This study highlights the significant contamination of retail raw livestock meat in China by L. monocytogenes, Salmonella, and DEC. The high resistance of MDR in both pathogens poses serious public health risks. Chinese food safety and veterinary authorities should implement stricter measures to control pathogen contamination and regulate the use of antimicrobials in livestock to mitigate these risks.
Collapse
Affiliation(s)
- Xiang Ren
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.R.); (D.Y.); (Y.L.); (S.Y.); (W.L.)
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650000, China; (Z.Y.); (M.C.); (L.Z.)
| | - Dajin Yang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.R.); (D.Y.); (Y.L.); (S.Y.); (W.L.)
| | - Zushun Yang
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650000, China; (Z.Y.); (M.C.); (L.Z.)
| | - Ying Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.R.); (D.Y.); (Y.L.); (S.Y.); (W.L.)
| | - Shuran Yang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.R.); (D.Y.); (Y.L.); (S.Y.); (W.L.)
| | - Weiwei Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.R.); (D.Y.); (Y.L.); (S.Y.); (W.L.)
| | - Xin Qiao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China;
| | - Chengyu Xue
- Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China;
| | - Min Chen
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650000, China; (Z.Y.); (M.C.); (L.Z.)
| | - Limin Zhang
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650000, China; (Z.Y.); (M.C.); (L.Z.)
| | - Lin Yan
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.R.); (D.Y.); (Y.L.); (S.Y.); (W.L.)
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.R.); (D.Y.); (Y.L.); (S.Y.); (W.L.)
| |
Collapse
|
3
|
Merino N, Pagán E, Berdejo D, Worby CJ, Young M, Manson AL, Pagán R, Earl AM, García-Gonzalo D. Dynamics of microbiome and resistome in a poultry burger processing line. Food Res Int 2024; 193:114842. [PMID: 39160043 DOI: 10.1016/j.foodres.2024.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024]
Abstract
Traditionally, surveillance programs for food products and food processing environments have focused on targeted pathogens and resistance genes. Recent advances in high throughput sequencing allow for more comprehensive and untargeted monitoring. This study assessed the microbiome and resistome in a poultry burger processing line using culturing techniques and whole metagenomic sequencing (WMS). Samples included meat, burgers, and expired burgers, and different work surfaces. Microbiome analysis revealed spoilage microorganisms as the main microbiota, with substantial shifts observed during the shelf-life period. Core microbiota of meat and burgers included Pseudomonas spp., Psychrobacter spp., Shewanella spp. and Brochothrix spp., while expired burgers were dominated by Latilactobacillus spp. and Leuconostoc spp. Cleaning and disinfection (C&D) procedures altered the microbial composition of work surfaces, which still harbored Hafnia spp. and Acinetobacter spp. after C&D. Resistome analysis showed a low overall abundance of resistance genes, suggesting that effective interventions during processing may mitigate their transmission. However, biocide resistance genes were frequently found, indicating potential biofilm formation or inefficient C&D protocols. This study demonstrates the utility of combining culturing techniques and WMS for comprehensive of the microbiome and resistome characterization in food processing lines.
Collapse
Affiliation(s)
- Natalia Merino
- Departamento de Producción Animal Y Ciencia de Los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elisa Pagán
- Departamento de Producción Animal Y Ciencia de Los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Daniel Berdejo
- Departamento de Producción Animal Y Ciencia de Los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Colin J Worby
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Young
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rafael Pagán
- Departamento de Producción Animal Y Ciencia de Los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Diego García-Gonzalo
- Departamento de Producción Animal Y Ciencia de Los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain.
| |
Collapse
|
4
|
Aneck-Hahn NH, Van Zijl MC, Quinn L, Swiegelaar C, Nhlapo N, de Bruin W, Korsten L. The use of in vitro bioassays and chemical screening to assess the impact of a minimally processed vegetable facility on wastewater quality. FRONTIERS IN TOXICOLOGY 2024; 6:1439126. [PMID: 39350794 PMCID: PMC11439871 DOI: 10.3389/ftox.2024.1439126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Fruit- and vegetable-processing facilities may contaminate wastewater via contaminants found in the produce and disinfecting chemicals used. These contaminants may include agrochemicals, pesticides, and disinfectants such as chlorine and quaternary ammonium compounds (QACs). Some compounds may exhibit harmful endocrine-disrupting activity. This study investigated the impact of a minimally processed vegetable facility on wastewater quality via in vitro bioassays and chemical screening. Estrogen activity was assessed via a yeast estrogen screen (YES), and (anti-)androgenic and glucocorticoid activities were evaluated via an MDA-kb2 reporter gene assay. The samples were screened via gas and liquid chromatography-tandem mass spectrometry (GC-MS/MS and LC-MS/MS) to identify target compounds, and GC coupled with time-of-flight mass spectrometry (GC-TOFMS) was used for non-targeted screening. Sample complexity and chemical profiles were assessed using GC-TOFMS. Estrogenic activity was detected in 16 samples (n = 24) with an upper limit of 595 ± 37 ng/L estradiol equivalents (EEqs). The final wastewater before discharge had an EEq of 0.23 ng/L, which is within the ecological effect-based trigger value range for the estrogenic activity of wastewater (0.2-0.4 ng/L EEq). Androgenic activity was detected in one sample with a dihydrotestosterone equivalent (DHTEq) value of 10 ± 2.7 ng/L. No antiandrogenic activity was detected. The GC-MS/MS and LC-MS/MS results indicated the presence of multiple pesticides, nonylphenols, triclocarban, and triclosan. Many of these compounds exhibit estrogenic activity, which may explain the positive YES assay findings. These findings showed that wastewater from the facility contained detergents, disinfectants, and pesticides and displayed hormonal activity. Food-processing facilities release large volumes of wastewater, which may affect the quality of the water eventually being discharged into the environment. We recommend expanding conventional water quality monitoring efforts to include additional factors like endocrine activity and disinfectant byproducts.
Collapse
Affiliation(s)
- N H Aneck-Hahn
- Environmental Chemical Pollution and Health Research Unit, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - M C Van Zijl
- Environmental Chemical Pollution and Health Research Unit, Department of Urology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - L Quinn
- Organic Analysis Laboratory, National Metrology Institute of South Africa, Pretoria, South Africa
| | - C Swiegelaar
- Organic Analysis Laboratory, National Metrology Institute of South Africa, Pretoria, South Africa
| | - N Nhlapo
- Organic Analysis Laboratory, National Metrology Institute of South Africa, Pretoria, South Africa
| | - W de Bruin
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - L Korsten
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Pagán E, López N, Sánchez A, Campillo R, Berdejo D, García-Gonzalo D, Pagán R. Growth fitness, virulence, and heat tolerance of Salmonella Typhimurium variants resistant to food preservation methods. Int J Food Microbiol 2024; 422:110810. [PMID: 38945050 DOI: 10.1016/j.ijfoodmicro.2024.110810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
To study potential ramifications of antimicrobial resistance, we carried out adaptive laboratory evolution assays (ALE) to isolate three resistant variants (RVs) of Salmonella enterica Typhimurium, employing three different types of food preservation methods: 1) an emergent technology, plasma-activated water (PAW), leading to variant RV-PAW; a traditional method, heat, leading to variant RV-HT, and a natural antimicrobial compound, carvacrol, leading to variant RV-CAR. The variant resistant to plasma-activated water, RV-PAW, had mutations in rpoA and rpoD; it showed increased tolerance to heat in orange juice but ultimately did not pose a significant threat, as it exhibited a fitness cost at refrigeration temperature (8 °C), whereas its virulence against Caenorhabditis elegans decreased. The variant resistant to heat, RV-HT, had mutations in flhC, dnaJ: it exhibited a fitness cost at high growth temperatures (43 °C) and induced morphofunctional alterations in C. elegans. The variant resistant to carvacrol, RV-CAR, had mutations in sseG, flhA, wbaV, lon; this variant not only exhibited significantly higher thermotolerance in both laboratory media and food models but also effectively increased its growth fitness at refrigeration temperatures while retaining its virulence, evidenced by the highest percentage of Smurf phenotype in C. elegans. To address these challenges, we applied a process combining thermal treatment with citral, with the aim of leveraging the sublethal damage caused in RVs by heat treatments in orange juice. This approach achieves enhanced microbial inactivation without having to escalate the intensity of the thermal treatment. The result was particularly encouraging in the case of RV-CAR, the most challenging strain, for which we improved lethality by up to 3 log10 inactivation cycles.
Collapse
Affiliation(s)
- Elisa Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Noelia López
- CNTA, Centro Nacional de Tecnología y Seguridad Alimentaria, San Adrián, Spain
| | - Ana Sánchez
- CNTA, Centro Nacional de Tecnología y Seguridad Alimentaria, San Adrián, Spain
| | - Raúl Campillo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| |
Collapse
|
6
|
Fernández‐Trapote E, Oliveira M, Cobo‐Díaz JF, Alvarez‐Ordóñez A. The resistome of the food chain: A One Health perspective. Microb Biotechnol 2024; 17:e14530. [PMID: 39017204 PMCID: PMC11253703 DOI: 10.1111/1751-7915.14530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
Antimicrobial resistance (AMR) represents a significant global health problem which challenges Sustainable Development Goal 3 of the United Nations, with growing concerns about the possibility of AMR transmission through the food chain. The indiscriminate use of antimicrobials for the treatment of food production animals and for agricultural crop improvement, in addition to the direct discharge of livestock farm residues to sewage and the use of animal manure in agriculture, are among the factors that can facilitate the selection and transmission of AMR throughout the food chain. The study of food microbiomes has been boosted by the advent of next-generation sequencing techniques, which have enabled gaining in-depth understanding of the diversity of antimicrobial resistance genes present in food and associated environments (the so-called resistome). The aim of this review is to provide an accurate and comprehensive overview of the knowledge currently available on the resistome of the most frequently consumed foods worldwide, from a One Health perspective. To this end, the different metagenomic studies which have been conducted to characterize the resistome of foods are compiled and critically discussed.
Collapse
Affiliation(s)
| | - Marcia Oliveira
- Department of Food Hygiene and TechnologyUniversidad de LeónLeónSpain
| | - José F. Cobo‐Díaz
- Department of Food Hygiene and TechnologyUniversidad de LeónLeónSpain
| | - Avelino Alvarez‐Ordóñez
- Department of Food Hygiene and TechnologyUniversidad de LeónLeónSpain
- Institute of Food Science and TechnologyUniversidad de LeónLeónSpain
| |
Collapse
|
7
|
Dunbar A, Drigo B, Djordjevic SP, Donner E, Hoye BJ. Impacts of coprophagic foraging behaviour on the avian gut microbiome. Biol Rev Camb Philos Soc 2024; 99:582-597. [PMID: 38062990 DOI: 10.1111/brv.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Avian gut microbial communities are complex and play a fundamental role in regulating biological functions within an individual. Although it is well established that diet can influence the structure and composition of the gut microbiota, foraging behaviour may also play a critical, yet unexplored role in shaping the composition, dynamics, and adaptive potential of avian gut microbiota. In this review, we examine the potential influence of coprophagic foraging behaviour on the establishment and adaptability of wild avian gut microbiomes. Coprophagy involves the ingestion of faeces, sourced from either self (autocoprophagy), conspecific animals (allocoprophagy), or heterospecific animals. Much like faecal transplant therapy, coprophagy may (i) support the establishment of the gut microbiota of young precocial species, (ii) directly and indirectly provide nutritional and energetic requirements, and (iii) represent a mechanism by which birds can rapidly adapt the microbiota to changing environments and diets. However, in certain contexts, coprophagy may also pose risks to wild birds, and their microbiomes, through increased exposure to chemical pollutants, pathogenic microbes, and antibiotic-resistant microbes, with deleterious effects on host health and performance. Given the potentially far-reaching consequences of coprophagy for avian microbiomes, and the dearth of literature directly investigating these links, we have developed a predictive framework for directing future research to understand better when and why wild birds engage in distinct types of coprophagy, and the consequences of this foraging behaviour. There is a need for comprehensive investigation into the influence of coprophagy on avian gut microbiotas and its effects on host health and performance throughout ontogeny and across a range of environmental perturbations. Future behavioural studies combined with metagenomic approaches are needed to provide insights into the function of this poorly understood behaviour.
Collapse
Affiliation(s)
- Alice Dunbar
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- UniSA STEM, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5001, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
| | - Erica Donner
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), University of South Australia, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
8
|
Cooper AL, Wong A, Tamber S, Blais BW, Carrillo CD. Analysis of Antimicrobial Resistance in Bacterial Pathogens Recovered from Food and Human Sources: Insights from 639,087 Bacterial Whole-Genome Sequences in the NCBI Pathogen Detection Database. Microorganisms 2024; 12:709. [PMID: 38674654 PMCID: PMC11051753 DOI: 10.3390/microorganisms12040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Understanding the role of foods in the emergence and spread of antimicrobial resistance necessitates the initial documentation of antibiotic resistance genes within bacterial species found in foods. Here, the NCBI Pathogen Detection database was used to query antimicrobial resistance gene prevalence in foodborne and human clinical bacterial isolates. Of the 1,843,630 sequence entries, 639,087 (34.7%) were assigned to foodborne or human clinical sources with 147,788 (23.14%) from food and 427,614 (76.88%) from humans. The majority of foodborne isolates were either Salmonella (47.88%), Campylobacter (23.03%), Escherichia (11.79%), or Listeria (11.3%), and the remaining 6% belonged to 20 other genera. Most foodborne isolates were from meat/poultry (95,251 or 64.45%), followed by multi-product mixed food sources (29,892 or 20.23%) and fish/seafood (6503 or 4.4%); however, the most prominent isolation source varied depending on the genus/species. Resistance gene carriage also varied depending on isolation source and genus/species. Of note, Klebsiella pneumoniae and Enterobacter spp. carried larger proportions of the quinolone resistance gene qnrS and some clinically relevant beta-lactam resistance genes in comparison to Salmonella and Escherichia coli. The prevalence of mec in S. aureus did not significantly differ between meat/poultry and multi-product sources relative to clinical sources, whereas this resistance was rare in isolates from dairy sources. The proportion of biocide resistance in Bacillus and Escherichia was significantly higher in clinical isolates compared to many foodborne sources but significantly lower in clinical Listeria compared to foodborne Listeria. This work exposes the gaps in current publicly available sequence data repositories, which are largely composed of clinical isolates and are biased towards specific highly abundant pathogenic species. We also highlight the importance of requiring and curating metadata on sequence submission to not only ensure correct information and data interpretation but also foster efficient analysis, sharing, and collaboration. To effectively monitor resistance carriage in food production, additional work on sequencing and characterizing AMR carriage in common commensal foodborne bacteria is critical.
Collapse
Affiliation(s)
- Ashley L. Cooper
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada;
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Sandeep Tamber
- Microbiology Research Division, Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A0K9, Canada;
| | - Burton W. Blais
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Catherine D. Carrillo
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
9
|
Imai K, Niwa R, Fujioka M, Ito K. Understanding the quality and safety of food production through the lens of The Microbiome of The Built Environment. Biosci Biotechnol Biochem 2024; 88:254-259. [PMID: 37994666 DOI: 10.1093/bbb/zbad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
The Microbiome of the Built Environment (MoBE) is profoundly implicated in various sectors, including food science. The balance between beneficial and pathogenic microbes in these facilities directly influences product quality and public health. Maintaining a careful check on MoBE and external microbes is vital to the food industry to ensure quality control. There is also a risk of contamination in the meat processing facility as well. However, over-sanitization can increase drug-resistant microbes, highlighting the importance of balanced microbial management. Additionally, facility design, influenced by understanding MoBE, can optimize the growth of beneficial microbes and inhibit pathogenic microbes. Microbial mapping, an emerging practice, offers insights into microbial hotspots within facilities, resulting in targeted interventions. As the food industry evolves, the intricate understanding and management of MoBE will be pivotal to ensuring optimal food quality, safety, and innovation.
Collapse
Affiliation(s)
- Kota Imai
- BIOTA Inc., Tokyo, Japan
- Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Ryo Niwa
- BIOTA Inc., Tokyo, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Fujioka
- BIOTA Inc., Tokyo, Japan
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | | |
Collapse
|
10
|
Mougin J, Midelet G, Leterme S, Best G, Ells T, Joyce A, Whiley H, Brauge T. Benzalkonium chloride disinfectant residues stimulate biofilm formation and increase survival of Vibrio bacterial pathogens. Front Microbiol 2024; 14:1309032. [PMID: 38414711 PMCID: PMC10897976 DOI: 10.3389/fmicb.2023.1309032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 02/29/2024] Open
Abstract
Vibrio spp. are opportunistic human and animal pathogens found ubiquitously in marine environments. Globally, there is a predicted rise in the prevalence of Vibrio spp. due to increasing ocean temperatures, which carries significant implications for public health and the seafood industry. Consequently, there is an urgent need for enhanced strategies to control Vibrio spp. and prevent contamination, particularly in aquaculture and seafood processing facilities. Presently, these industries employ various disinfectants, including benzalkonium chloride (BAC), as part of their management strategies. While higher concentrations of BAC may be effective against these pathogens, inadequate rinsing post-disinfection could result in residual concentrations of BAC in the surrounding environment. This study aimed to investigate the adaptation and survival of Vibrio spp. exposed to varying concentrations of BAC residues. Results revealed that Vibrio bacteria, when exposed, exhibited a phenotypic adaptation characterized by an increase in biofilm biomass. Importantly, this effect was found to be strain-specific rather than species-specific. Exposure to BAC residues induced physiological changes in Vibrio biofilms, leading to an increase in the number of injured and alive cells within the biofilm. The exact nature of the "injured" bacteria remains unclear, but it is postulated that BAC might heighten the risk of viable but non-culturable (VBNC) bacteria development. These VBNC bacteria pose a significant threat, especially since they cannot be detected using the standard culture-based methods commonly employed for microbiological risk assessment in aquaculture and seafood industries. The undetected presence of VBNC bacteria could result in recurrent contamination events and subsequent disease outbreaks. This study provides evidence regarding the role of c-di-GMP signaling pathways in Vibrio adaptation mechanisms and suggests that c-di-GMP mediated repression is a potential avenue for further research. The findings underscore that the misuse and overuse of BAC may increase the risk of biofilm development and bacterial survival within the seafood processing chain.
Collapse
Affiliation(s)
- Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Graziella Midelet
- Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Laboratory for Food Safety, ANSES, Boulogne-sur-Mer, France
| | - Sophie Leterme
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- ARC Training Centre for Biofilm Research and Innovation, Flinders University, Adelaide, SA, Australia
- Flinders Institute for NanoScale Science and Technology, Flinders University, Adelaide, SA, Australia
| | - Giles Best
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Timothy Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS, Canada
| | - Alyssa Joyce
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Harriet Whiley
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- ARC Training Centre for Biofilm Research and Innovation, Flinders University, Adelaide, SA, Australia
| | - Thomas Brauge
- Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Laboratory for Food Safety, ANSES, Boulogne-sur-Mer, France
| |
Collapse
|
11
|
Mougin J, Pavaux AS, Fanesi A, Lopez J, Pruvost E, Guihéneuf F, Sciandra A, Briandet R, Lopes F. Bacterial adhesion inhibition by microalgal EPSs from Cylindrotheca closterium and Tetraselmis suecica biofilms. Appl Microbiol Biotechnol 2024; 108:168. [PMID: 38261095 DOI: 10.1007/s00253-023-12960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 01/24/2024]
Abstract
In the food industry, successful bacterial pathogen colonization and persistence begin with their adhesion to a surface, followed by the spatial development of mature biofilm of public health concerns. Compromising bacterial settlement with natural inhibitors is a promising alternative to conventional anti-fouling treatments typically based on chemical biocides that contribute to the growing burden of antimicrobial resistance. In this study, three extracellular polymeric substance (EPS) fractions extracted from microalgae biofilms of Cylindrotheca closterium (fraction C) and Tetraselmis suecica (fraction Ta rich in insoluble scale structure and fraction Tb rich in soluble EPS) were screened for their anti-adhesive properties, against eight human food-borne pathogens belonging to Escherichia coli, Staphylococcus aureus, Salmonella enterica subsp. enterica, and Listeria monocytogenes species. The results showed that the fraction Ta was the most effective inducing statistically significant reduction for three strains of E. coli, S. aureus, and L. monocytogenes. Overall, EPSs coating on polystyrene surfaces of the different fractions increased the hydrophilic character of the support. Differences in bacterial adhesion on the different coated surfaces could be explained by several dissimilarities in the structural and physicochemical EPS compositions, according to HPLC and ATR-FTIR analysis. Interestingly, while fractions Ta and Tb were extracted from the same microalgal culture, distinct adhesion patterns were observed, highlighting the importance of the extraction process. Overall, the findings showed that EPS extracted from microalgal photosynthetic biofilms can exhibit anti-adhesive effects against food-borne pathogens and could help develop sustainable and non-toxic anti-adhesive surfaces for the food industry. KEY POINTS: •EPSs from a biofilm-based culture of C. closterium/T. suecica were characterized. •Microalgal EPS extracted from T. suecica biofilms showed bacterial anti-adhesive effects. •The anti-adhesive effect is strain-specific and affects both Gram - and Gram + bacteria.
Collapse
Affiliation(s)
- Julia Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Anne-Sophie Pavaux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Andrea Fanesi
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Julien Lopez
- Laboratoire d, Océanographie de Villefranche LOV, CNRS, Sorbonne Université, UMR 7093, BP 28, 06230, Villefranche-Sur-Mer, France
| | - Eric Pruvost
- Laboratoire d, Océanographie de Villefranche LOV, CNRS, Sorbonne Université, UMR 7093, BP 28, 06230, Villefranche-Sur-Mer, France
| | | | - Antoine Sciandra
- Laboratoire d, Océanographie de Villefranche LOV, CNRS, Sorbonne Université, UMR 7093, BP 28, 06230, Villefranche-Sur-Mer, France
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| | - Filipa Lopes
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France.
| |
Collapse
|
12
|
Asghar A, Khalid A, Baqar Z, Hussain N, Saleem MZ, Sairash, Rizwan K. An insights into emerging trends to control the threats of antimicrobial resistance (AMR): an address to public health risks. Arch Microbiol 2024; 206:72. [PMID: 38252323 DOI: 10.1007/s00203-023-03800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Antimicrobial agents are used to treat microbial ailments, but increased use of antibiotics and exposure to infections in healthcare facilities and hospitals as well as the excessive and inappropriate use of antibiotics at the society level lead to the emergence of multidrug-resistant (MDR) bacteria. Antimicrobial resistance (AMR) is considered a public health concern and has rendered the treatment of different infections more challenging. The bacterial strains develop resistance against antimicrobial agents by limiting intracellular drug accumulation (increasing efflux or decreasing influx of antibiotics), modification and inactivation of drugs and its targets, enzymatic inhibition, and biofilm formation. However, the driving factors of AMR include the sociocultural and economic circumstances of a country, the use of falsified and substandard medicines, the use of antibiotics in farm animals, and food processing technologies. These factors make AMR one of the major menaces faced by mankind. In order to promote reciprocal learning, this article summarizes the current AMR situation in Pakistan and how it interacts with the health issues related to the COVID-19 pandemic. The COVID-19 pandemic aids in illuminating the possible long-term impacts of AMR, which are less immediate but not less severe since their measures and effects are equivalent. Impact on other sectors, including the health industry, the economy, and trade are also discussed. We conclude by summarizing the several approaches that could be used to address this issue.
Collapse
Affiliation(s)
- Ayesha Asghar
- School of Biochemistry and Biotechnology, University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan
| | - Aneeza Khalid
- School of Biochemistry and Biotechnology, University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan
| | - Zulqarnain Baqar
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan.
| | - Muhammad Zafar Saleem
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan
| | - Sairash
- Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan.
| |
Collapse
|
13
|
Girma A, Abera B, Mekuye B, Mebratie G. Antibacterial Activity and Mechanisms of Action of Inorganic Nanoparticles against Foodborne Bacterial Pathogens: A Systematic Review. IET Nanobiotechnol 2024; 2024:5417924. [PMID: 38863967 PMCID: PMC11095078 DOI: 10.1049/2024/5417924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 06/13/2024] Open
Abstract
Foodborne disease outbreaks due to bacterial pathogens and their toxins have become a serious concern for global public health and security. Finding novel antibacterial agents with unique mechanisms of action against the current spoilage and foodborne bacterial pathogens is a central strategy to overcome antibiotic resistance. This study examined the antibacterial activities and mechanisms of action of inorganic nanoparticles (NPs) against foodborne bacterial pathogens. The articles written in English were recovered from registers and databases (PubMed, ScienceDirect, Web of Science, Google Scholar, and Directory of Open Access Journals) and other sources (websites, organizations, and citation searching). "Nanoparticles," "Inorganic Nanoparticles," "Metal Nanoparticles," "Metal-Oxide Nanoparticles," "Antimicrobial Activity," "Antibacterial Activity," "Foodborne Bacterial Pathogens," "Mechanisms of Action," and "Foodborne Diseases" were the search terms used to retrieve the articles. The PRISMA-2020 checklist was applied for the article search strategy, article selection, data extraction, and result reporting for the review process. A total of 27 original research articles were included from a total of 3,575 articles obtained from the different search strategies. All studies demonstrated the antibacterial effectiveness of inorganic NPs and highlighted their different mechanisms of action against foodborne bacterial pathogens. In the present study, small-sized, spherical-shaped, engineered, capped, low-dissolution with water, high-concentration NPs, and in Gram-negative bacterial types had high antibacterial activity as compared to their counterparts. Cell wall interaction and membrane penetration, reactive oxygen species production, DNA damage, and protein synthesis inhibition were some of the generalized mechanisms recognized in the current study. Therefore, this study recommends the proper use of nontoxic inorganic nanoparticle products for food processing industries to ensure the quality and safety of food while minimizing antibiotic resistance among foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Birhanu Abera
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Bawoke Mekuye
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Gedefaw Mebratie
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| |
Collapse
|
14
|
Kläui A, Bütikofer U, Naskova J, Wagner E, Marti E. Fresh produce as a reservoir of antimicrobial resistance genes: A case study of Switzerland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167671. [PMID: 37813266 DOI: 10.1016/j.scitotenv.2023.167671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Antimicrobial resistance (AMR) can be transferred to humans through food and fresh produce can be an ideal vector as it is often consumed raw or minimally processed. The production environment of fresh produce and the agricultural practices and regulations can vary substantially worldwide, and consequently, the contamination sources of AMR. In this study, 75 imported and 75 non-imported fresh produce samples purchased from Swiss retailers were tested for the presence of antimicrobial resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Moreover, the plasmidome of 4 selected samples was sequenced to have an insight on the diversity of mobile resistome. In total, 91 ARB were isolated from fresh produce, mainly cephalosporin-resistant Enterobacterales (n = 64) and carbapenem-resistant P. aeruginosa (n = 13). All P. aeruginosa, as well as 16 Enterobacterales' isolates were multidrug-resistant. No differences between imported and Swiss fresh produce were found regarding the number of ARB. In 95 % of samples at least one ARG was detected, being the most frequent sul1, blaTEM, and ermB. Abundance of sul1 and intI1 correlated strongly with the total amount of ARGs, suggesting they could be good indicators for AMR in fresh produce. Furthermore, sul1 correlated with the fecal marker yccT, indicating that fecal contamination could be one of the sources of AMR. The gene sulI was significantly higher in most imported samples, suggesting higher anthropogenic contamination in the food production chain of imported produce. The analyses of the plasmidome of coriander and carrot samples revealed the presence of several ARGs as well as genes conferring resistance to antiseptics and disinfectants in mobile genetic elements. Overall, this study demonstrated that fresh produce contributes to the dissemination of ARGs and ARB.
Collapse
Affiliation(s)
- Anita Kläui
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Ueli Bütikofer
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Javorka Naskova
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Elvira Wagner
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Elisabet Marti
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| |
Collapse
|
15
|
Sequino G, Valentino V, Esposito A, Volpe S, Torrieri E, De Filippis F, Ercolini D. Microbiome dynamics, antibiotic resistance gene patterns and spoilage-associated genomic potential in fresh anchovies stored in different conditions. Food Res Int 2024; 175:113788. [PMID: 38129066 DOI: 10.1016/j.foodres.2023.113788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Fresh fish is a highly perishable product and is easily spoiled by microbiological activity and chemical oxidation of lipids. However, microbial spoilage is the main factor linked with the rapid fish sensorial degradation due to the action of specific spoilage organisms (SSOs) that have the ability to dominate over other microorganisms and produce metabolites responsible for off-flavours. We explored the microbial dynamics in fresh anchovies stored in different packaging (air, modified atmosphere, under vacuum) and temperatures (0, 4 and 10 °C) using shotgun metagenomics, highlighting the selection of different microbial species according to the packaging type. Indeed, Pseudoalteromonas nigrifaciens, Psychrobacter cryohalolentis and Ps. immobilis, Pseudomonas deceptionensis and Vibrio splendidus have been identified as the main SSOs in aerobically stored anchovies, while Shewanella baltica, Photobacterium iliopiscarium, Ps. cryohalolentis and Ps. immobilis prevailed in VP and MAP. In addition, we identified the presence of spoilage-associated genes, leading to the potential production of biogenic amines and different off-flavors (H2S, TMA). In particular, the abundance of microbial genes leading to BA biosynthesis increased at higher storage temperature, while those related to H2S and TMA production were enriched in aerobically and VP packed anchovies, suggesting that MAP could be an effective strategy in delaying the production of these compounds. Finally, we provided evidence of the presence of a wide range of antibiotic resistance genes conferring resistance to different classes of antibiotic (β-lactams, tetracyclines, polymyxins, trimethoprims and phenicols) and highlighted that storage at higher temperature (4 and 10 °C) boosted the abundance of ARG-carrying taxa, especially in aerobically and MAP packed fish.
Collapse
Affiliation(s)
- Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Alessia Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Stefania Volpe
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Elena Torrieri
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Corso Umberto I 40, 80138 Naples, Italy.
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Corso Umberto I 40, 80138 Naples, Italy
| |
Collapse
|
16
|
Walsh LH, Coakley M, Walsh AM, O'Toole PW, Cotter PD. Bioinformatic approaches for studying the microbiome of fermented food. Crit Rev Microbiol 2023; 49:693-725. [PMID: 36287644 DOI: 10.1080/1040841x.2022.2132850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
Abstract
High-throughput DNA sequencing-based approaches continue to revolutionise our understanding of microbial ecosystems, including those associated with fermented foods. Metagenomic and metatranscriptomic approaches are state-of-the-art biological profiling methods and are employed to investigate a wide variety of characteristics of microbial communities, such as taxonomic membership, gene content and the range and level at which these genes are expressed. Individual groups and consortia of researchers are utilising these approaches to produce increasingly large and complex datasets, representing vast populations of microorganisms. There is a corresponding requirement for the development and application of appropriate bioinformatic tools and pipelines to interpret this data. This review critically analyses the tools and pipelines that have been used or that could be applied to the analysis of metagenomic and metatranscriptomic data from fermented foods. In addition, we critically analyse a number of studies of fermented foods in which these tools have previously been applied, to highlight the insights that these approaches can provide.
Collapse
Affiliation(s)
- Liam H Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- School of Microbiology, University College Cork, Ireland
| | - Mairéad Coakley
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Aaron M Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Paul W O'Toole
- School of Microbiology, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Cork, Ireland
| |
Collapse
|
17
|
Liao X, Deng R, Warriner K, Ding T. Antibiotic resistance mechanism and diagnosis of common foodborne pathogens based on genotypic and phenotypic biomarkers. Compr Rev Food Sci Food Saf 2023; 22:3212-3253. [PMID: 37222539 DOI: 10.1111/1541-4337.13181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
The emergence of antibiotic-resistant bacteria due to the overuse or inappropriate use of antibiotics has become a significant public health concern. The agri-food chain, which serves as a vital link between the environment, food, and human, contributes to the large-scale dissemination of antibiotic resistance, posing a concern to both food safety and human health. Identification and evaluation of antibiotic resistance of foodborne bacteria is a crucial priority to avoid antibiotic abuse and ensure food safety. However, the conventional approach for detecting antibiotic resistance heavily relies on culture-based methods, which are laborious and time-consuming. Therefore, there is an urgent need to develop accurate and rapid tools for diagnosing antibiotic resistance in foodborne pathogens. This review aims to provide an overview of the mechanisms of antibiotic resistance at both phenotypic and genetic levels, with a focus on identifying potential biomarkers for diagnosing antibiotic resistance in foodborne pathogens. Furthermore, an overview of advances in the strategies based on the potential biomarkers (antibiotic resistance genes, antibiotic resistance-associated mutations, antibiotic resistance phenotypes) for antibiotic resistance analysis of foodborne pathogens is systematically exhibited. This work aims to provide guidance for the advancement of efficient and accurate diagnostic techniques for antibiotic resistance analysis in the food industry.
Collapse
Affiliation(s)
- Xinyu Liao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo, Zhejiang, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, China
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang, China
| |
Collapse
|
18
|
Guidotti-Takeuchi M, Melo RTD, Ribeiro LNDM, Dumont CF, Ribeiro RAC, Brum BDA, de Amorim Junior TLIF, Rossi DA. Interference with Bacterial Conjugation and Natural Alternatives to Antibiotics: Bridging a Gap. Antibiotics (Basel) 2023; 12:1127. [PMID: 37508224 PMCID: PMC10376302 DOI: 10.3390/antibiotics12071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Horizontal gene transfer (HGT) in food matrices has been investigated under conditions that favor gene exchange. However, the major challenge lies in determining the specific conditions pertaining to the adapted microbial pairs associated with the food matrix. HGT is primarily responsible for enhancing the microbial repertoire for the evolution and spread of antimicrobial resistance and is a major target for controlling pathogens of public health concern in food ecosystems. In this study, we investigated Salmonella Heidelberg (SH) and Escherichia coli (EC) regarding gene exchange under conditions mimicking the industrial environment, with the coproducts whey (SL) and chicken juice (CJ). The S. Heidelberg strain was characterized by antibiotic susceptibility standards and PCR to detect the blaTEM gene. A concentration of 0.39 mg/mL was determined to evaluate the anti-conjugation activity of nanostructured lipid nanocarriers (NLCs) of essential oils to mitigate β-lactam resistance gene transfer. The results showed that the addition of these coproducts promoted an increase of more than 3.5 (whey) and 2.5 (chicken juice) orders of magnitude in the conjugation process (p < 0.01), and NLCs of sage essential oil significantly reduced the conjugation frequency (CF) by 74.90, 90.6, and 124.4 times when compared to the transfers in the absence of coproducts and the presence of SL and CJ, respectively. For NLCs from olibanum essential oil, the decrease was 4.46-fold for conjugations without inhibitors and 3.12- and 11.3-fold in the presence of SL and CJ. NLCs associated with sage and olibanum essential oils effectively control the transfer of antibiotic resistance genes and are a promising alternative for use at industrial levels.
Collapse
Affiliation(s)
- Micaela Guidotti-Takeuchi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Carolyne Ferreira Dumont
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Bárbara de Araújo Brum
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| |
Collapse
|
19
|
Soro AB, Ekhlas D, Marmion M, Scannell AGM, Whyte P, Bolton DJ, Burgess CM, Tiwari BK. Investigation of differences in susceptibility of Campylobacter jejuni strains to UV light-emitting diode (UV-LED) technology. Sci Rep 2023; 13:9459. [PMID: 37301882 PMCID: PMC10257703 DOI: 10.1038/s41598-023-35315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Campylobacter jejuni remains a high priority in public health worldwide. Ultraviolet light emitting-diode technology (UV-LED) is currently being explored to reduce Campylobacter levels in foods. However, challenges such as differences in species and strain susceptibilities, effects of repeated UV-treatments on the bacterial genome and the potential to promote antimicrobial cross-protection or induce biofilm formation have arisen. We investigated the susceptibility of eight C. jejuni clinical and farm isolates to UV-LED exposure. UV light at 280 nm induced different inactivation kinetics among strains, of which three showed reductions greater than 1.62 log CFU/mL, while one strain was particularly resistant to UV light with a maximum reduction of 0.39 log CFU/mL. However, inactivation was reduced by 0.46-1.03 log CFU/mL in these three strains and increased to 1.20 log CFU/mL in the resistant isolate after two repeated-UV cycles. Genomic changes related to UV light exposure were analysed using WGS. C. jejuni strains with altered phenotypic responses following UV exposure were also found to have changes in biofilm formation and susceptibility to ethanol and surface cleaners.
Collapse
Affiliation(s)
- Arturo B Soro
- Teagasc Food Research Centre, Ashtown, D15 DY05, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8, Ireland
- Infectious Diseases in Humans, Service Foodborne Pathogens, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Daniel Ekhlas
- Teagasc Food Research Centre, Ashtown, D15 DY05, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8, Ireland
| | - Maitiú Marmion
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8, Ireland
- UCD Centre for Food Safety, University College Dublin, Belfield, D04 V1W8, Ireland
| | - Amalia G M Scannell
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8, Ireland
- UCD Centre for Food Safety, University College Dublin, Belfield, D04 V1W8, Ireland
- UCD Institute of Food and Health, University College Dublin, Belfield, D04 V1W8, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8, Ireland
| | - Declan J Bolton
- Teagasc Food Research Centre, Ashtown, D15 DY05, Dublin, Ireland
| | | | - Brijesh K Tiwari
- Teagasc Food Research Centre, Ashtown, D15 DY05, Dublin, Ireland.
- Teagasc Food Research Centre, Ashtown, Dublin, D15 DY05, Ireland.
| |
Collapse
|
20
|
da Silva DAV, Dieckmann R, Makarewicz O, Hartung A, Bethe A, Grobbel M, Belik V, Pletz MW, Al Dahouk S, Neuhaus S. Biocide Susceptibility and Antimicrobial Resistance of Escherichia coli Isolated from Swine Feces, Pork Meat and Humans in Germany. Antibiotics (Basel) 2023; 12:antibiotics12050823. [PMID: 37237726 DOI: 10.3390/antibiotics12050823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Phenotypic susceptibility testing of Escherichia (E.) coli is an essential tool to gain a better understanding of the potential impact of biocide selection pressure on antimicrobial resistance. We, therefore, determined the biocide and antimicrobial susceptibility of 216 extended-spectrum β-lactamase-producing (ESBL) and 177 non-ESBL E. coli isolated from swine feces, pork meat, voluntary donors and inpatients and evaluated associations between their susceptibilities. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of benzalkonium chloride, chlorhexidine digluconate (CHG), chlorocresol (PCMC), glutaraldehyde (GDA), isopropanol (IPA), octenidine dihydrochloride and sodium hypochlorite (NaOCl) showed unimodal distributions, indicating the absence of bacterial adaptation to biocides due to the acquisition of resistance mechanisms. Although MIC95 and MBC95 did not vary more than one doubling dilution step between isolates of porcine and human origin, significant differences in MIC and/or MBC distributions were identified for GDA, CHG, IPA, PCMC and NaOCl. Comparing non-ESBL and ESBL E. coli, significantly different MIC and/or MBC distributions were found for PCMC, CHG and GDA. Antimicrobial susceptibility testing revealed the highest frequency of resistant E. coli in the subpopulation isolated from inpatients. We observed significant but weakly positive correlations between biocide MICs and/or MBCs and antimicrobial MICs. In summary, our data indicate a rather moderate effect of biocide use on the susceptibility of E. coli to biocides and antimicrobials.
Collapse
Affiliation(s)
- David Attuy Vey da Silva
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Ralf Dieckmann
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Oliwia Makarewicz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Anita Hartung
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Mirjam Grobbel
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Vitaly Belik
- System Modeling Group, Institute of Veterinary Epidemiology and Biostatistics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
- Department of Internal Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Szilvia Neuhaus
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| |
Collapse
|
21
|
Oguadinma I, Mishra A, Dev Kumar G. Antibiotic resistance associated lactic acid cross tolerance in Shiga-toxin producing E. coli. Front Microbiol 2023; 14:1059144. [PMID: 37180239 PMCID: PMC10169816 DOI: 10.3389/fmicb.2023.1059144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/21/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction The occurrence of antibiotic resistant (ABR) bacteria in foods is a growing public health challenge. We evaluated sanitizer cross-tolerance among ABR Escherichia coli (E. coli) O157:H7 and non-O157:H7 Shiga-toxin producing E. coli (STEC) serogroups. Sanitizer tolerance in STEC could be a public health concern as mitigation strategies against the pathogen might be compromised. Methods Resistance to ampicillin and streptomycin were evolved in E. coli serogroups: O157:H7 (H1730, and ATCC 43895), O121:H19 and O26:H11. Resistance to antibiotics was evolved chromosomally through incremental exposure to ampicillin (amp C) and streptomycin (strep C). Transformation using a plasmid was performed to confer resistance to ampicillin to generate amp P strep C. Results The minimum inhibitory concentration (MIC) of lactic acid for all strains evaluated was 0.375% v/v. Analysis of bacterial growth parameters in tryptic soy broth amended with 0.0625% v/v, 0.125% v/v, and 0.25% v/v (subMIC) lactic acid indicated that growth correlated positively with the lag phase duration, and negatively with both the maximum growth rate and change in population density for all strains evaluated except for the highly tolerant variant- O157:H7 amp P strep C. Strains O121 NR (non-ABR), O121 amp C, O121 amp P strep C, O157:H7 H1730 amp C and O157:H7 H1730 amp P strep C were not inactivated after exposure to 1% and 2.5% v/v lactic acid for 300 s. No recovery of cells was observed after the strains were exposed to 5% v/v lactic acid for 300 s. ABR strains O157:H7 H1730 amp C and O157: H7 H1730 amp P strep C demonstrated a high tolerance to lactic acid (P ≤ 0.05). Conclusion ABR in isolate E. coli O157: H7 H1730 may improve tolerance to lactic acid. Increased tolerance may be discerned by evaluating growth parameters of bacteria in presence of sub-MIC levels of lactic acid.
Collapse
Affiliation(s)
- Ikechukwu Oguadinma
- Center for Food Safety, The University of Georgia, Griffin, GA, United States
| | - Abhinav Mishra
- Department of Food Science & Technology, The University of Georgia, Athens, GA, United States
| | | |
Collapse
|
22
|
Kumar GD, Oguadinma IC, Mishra A, Suh JH, Singh M. Influence of antibiotic-resistance and exudate on peroxyacetic acid tolerance in O157 and non-O157 Shiga toxin producing E. coli. Int J Food Microbiol 2023; 391-393:110144. [PMID: 36842254 DOI: 10.1016/j.ijfoodmicro.2023.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Shiga toxin producing Escherichia coli (STEC) continues to cause foodborne outbreaks associated with beef and beef products despite consistent use of antimicrobial interventions. In this study, the influence of antibiotic resistance (ABR) in E. coli O157:H7 H1730, O157:H7 43,895, O121:H19 and O26:H11 on tolerance to peroxyacetic acid (PAA) was evaluated. Further, bactericidal concentrations of PAA in the presence of nutrient rich media (Tryptic Soy Broth, TSB and beef exudates) and nutrient deficient media (Sterile Deionized Water, SDW and Phosphate Buffered Saline, PBS) were evaluated for all bacterial strains. Antibiotic resistance to ampicillin (amp C), or ampicillin and streptomycin (amp P strep C) was generated in each bacterial strain through incremental exposure to the antibiotics or by plasmid transformation (n = 12 total strains). The mean bactericidal concentrations of PAA were higher (p ≤ 0.05) in nutrient rich media (205.55 ± 31.11 in beef exudate and 195.83 ± 25.00 ppm in TSB) than in nutrient deficient media (57.91 ± 11.97 ppm in SDW and 56.66 ± 9.56 ppm in PBS). Strain O157: H7 ampP strepC was the most tolerant to PAA (p ≤ 0.05). At 200 ppm in nutrient rich media and 60 ppm in nutrient deficient media, all bacterial strains declined in population to below the limit of detection. Analysis of the beef exudates indicated the presence of diverse amino acids that have been associated with acid tolerance. The results from this study indicate that beef exudates could contribute to acid tolerance and suggest that some STEC bacterial strains with certain ABR profiles might be more tolerant to PAA.
Collapse
Affiliation(s)
- Govindaraj Dev Kumar
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA, USA.
| | | | - Abhinav Mishra
- Department of Food Science & Technology, University of Georgia, Athens, GA, USA
| | - Joon Hyuk Suh
- Department of Food Science & Technology, University of Georgia, Athens, GA, USA
| | - Manpreet Singh
- Department of Food Science & Technology, University of Georgia, Athens, GA, USA
| |
Collapse
|
23
|
Sielski Galvão Soares L, Casella T, Kawagoe EK, Benetti Filho V, Omori WP, Nogueira MCL, Wagner G, Rodrigues de Oliveira R, Stahlhofer SR, Antunes Ferreira F, Tondo EC, De Dea Lindner J. Phenotypic and genotypic characterization of antibiotic resistance of Salmonella Heidelberg in the south of Brazil. Int J Food Microbiol 2023; 391-393:110151. [PMID: 36871395 DOI: 10.1016/j.ijfoodmicro.2023.110151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Salmonella is the main human pathogen present in the poultry chain. Salmonella Heidelberg is one of the most important serovars for public health since it has been frequently isolated in broiler chickens from different countries and may present multidrug resistance (MDR). This study was carried out with 130 S. Heidelberg isolates collected from pre-slaughter broiler farms in 2019 and 2020 in 18 cities from three Brazilian states to study relevant aspects regarding their genotypic and phenotypic resistance. The isolates were tested and identified using somatic and flagellar antiserum (0:4, H:2, and H:r), and an antimicrobial susceptibility test (AST) was performed against 11 antibiotics for veterinary use. The strains were typed by Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR, and representatives of the main clusters of the identified profiles were sequenced by Whole Genome Sequencing (WGS). AST results showed that all isolates were resistant to sulfonamide, 54 % (70/130) were resistant to amoxicillin, and only one was sensitive to tetracycline. Twelve isolates (15.4 %) were MDR. The dendrogram obtained from the ERIC-PCR showed that the strains were grouped into 27 clusters with similarity above 90 %, with some isolates showing 100 % similarity but with different phenotypic profiles of antimicrobial resistance. Identical strains collected on the same farm on other dates were identified, indicating that they were residents. WGS identified 66 antibiotic-resistance genes. The sul2 (present in all sequenced samples) and tet(A) genes were highlighted and validated in the experimental analysis. The fosA7 gene was also identified in all sequenced samples, but resistance was not observed in the phenotypic test, possibly due to the heteroresistance of the S. Heidelberg strains evaluated. Considering that chicken meat is one of the most consumed meats in the world, the data obtained in the present study can corroborate the mapping of the origin and trends of antimicrobial resistance.
Collapse
Affiliation(s)
- Luana Sielski Galvão Soares
- Food Technology and Bioprocess Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Tiago Casella
- Center for Microorganisms Investigation, São José Do Rio Preto Medical School (FAMERP), São José Do Rio Preto, SP, Brazil
| | - Eric Kazuo Kawagoe
- Laboratory of Bioinformatics, Department of Microbiology, Immunology and Parasitology, UFSC, Florianópolis, SC, Brazil
| | - Vilmar Benetti Filho
- Laboratory of Bioinformatics, Department of Microbiology, Immunology and Parasitology, UFSC, Florianópolis, SC, Brazil
| | | | - Mara Corrêa Lelles Nogueira
- Center for Microorganisms Investigation, São José Do Rio Preto Medical School (FAMERP), São José Do Rio Preto, SP, Brazil
| | - Glauber Wagner
- Laboratory of Bioinformatics, Department of Microbiology, Immunology and Parasitology, UFSC, Florianópolis, SC, Brazil
| | | | | | | | - Eduardo Cesar Tondo
- Laboratory of Food Microbiology and Food Control, Institute of Food Science and Food Technology of Federal University of Rio Grande do Sul (ICTA/UFRGS), Porto Alegre, RS, Brazil
| | - Juliano De Dea Lindner
- Food Technology and Bioprocess Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
24
|
Zarzecka U, Zadernowska A, Chajęcka-Wierzchowska W, Adamski P. High-pressure processing effect on conjugal antibiotic resistance genes transfer in vitro and in the food matrix among strains from starter cultures. Int J Food Microbiol 2023; 388:110104. [PMID: 36706580 DOI: 10.1016/j.ijfoodmicro.2023.110104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
This study analyzed the effect of high-pressure processing (HPP) on the frequency of conjugal gene transfer of antibiotic resistance genes among strains obtained from starter cultures. Gene transfer ability was analyzed in vitro and in situ in the food matrix. It was found that the transfer of aminoglycoside resistance genes did not occur after high-pressure treatment, either in vitro or in situ. After exposure to HPP, the transfer frequencies of tetracycline, ampicillin and chloramphenicol resistance genes increased significantly compared to the control sample, both in vitro and in situ. The frequency of resistance genes transfer in the food matrix in the pressurized samples did not differ significantly from the in vitro transfer rate. Minimum Inhibitory Concentrations (MICs) for these antibiotics determined for transconjugants were lower or equal to MICs determined for the donors. No significant differences were observed between the MIC values determined for the transconjugants obtained in vitro and in situ. The results suggest that HPP may contribute to the spread of antibiotic resistance. This points to the need to verify starter cultures strains for their antibiotic resistance and pressurization parameters to avoid spreading antibiotic resistance genes.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland.
| | - Anna Zadernowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Wioleta Chajęcka-Wierzchowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Patryk Adamski
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| |
Collapse
|
25
|
Abdelrahman F, Gangakhedkar R, Nair G, El-Didamony G, Askora A, Jain V, El-Shibiny A. Pseudomonas Phage ZCPS1 Endolysin as a Potential Therapeutic Agent. Viruses 2023; 15:520. [PMID: 36851734 PMCID: PMC9961711 DOI: 10.3390/v15020520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
The challenge of antibiotic resistance has gained much attention in recent years due to the rapid emergence of resistant bacteria infecting humans and risking industries. Thus, alternatives to antibiotics are being actively searched for. In this regard, bacteriophages and their enzymes, such as endolysins, are a very attractive alternative. Endolysins are the lytic enzymes, which are produced during the late phase of the lytic bacteriophage replication cycle to target the bacterial cell walls for progeny release. Here, we cloned, expressed, and purified LysZC1 endolysin from Pseudomonas phage ZCPS1. The structural alignment, molecular dynamic simulation, and CD studies suggested LysZC1 to be majorly helical, which is highly similar to various phage-encoded lysozymes with glycoside hydrolase activity. Our endpoint turbidity reduction assay displayed the lytic activity against various Gram-positive and Gram-negative pathogens. Although in synergism with EDTA, LysZC1 demonstrated significant activity against Gram-negative pathogens, it demonstrated the highest activity against Bacillus cereus. Moreover, LysZC1 was able to reduce the numbers of logarithmic-phase B. cereus by more than 2 log10 CFU/mL in 1 h and also acted on the stationary-phase culture. Remarkably, LysZC1 presented exceptional thermal stability, pH tolerance, and storage conditions, as it maintained the antibacterial activity against its host after nearly one year of storage at 4 °C and after being heated at temperatures as high as 100 °C for 10 min. Our data suggest that LysZC1 is a potential candidate as a therapeutic agent against bacterial infection and an antibacterial bio-control tool in food preservation technology.
Collapse
Affiliation(s)
- Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, 6th of October City 12578, Egypt
| | - Rutuja Gangakhedkar
- Microbiology and Molecular Biology Laboratory, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Gokul Nair
- Microbiology and Molecular Biology Laboratory, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Gamal El-Didamony
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Askora
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, 6th of October City 12578, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt
| |
Collapse
|
26
|
Guergueb N, Alloui N. Emergence of Tobramycin Escherichia coli resistance in poultry meat linked to biocides overuse during COVID-19. REVISTA CIENTÍFICA DE LA FACULTAD DE CIENCIAS VETERINARIAS 2023. [DOI: 10.52973/rcfcv-e33196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The effect of excessive use of biocides during the COVID-19, on the resistance of Escherichia coli to Tobramycin in poultry, meat was examined in this observational epidemiological study (Before and after COVID–19). Tobramycin E. coli resistant strains isolated from poultry meat before COVID-19 appearance were compared with those isolated after COVID-19 emergence. Univariable analyses were performed using t-test and chi-squared test. Odds ratios and 95% confidence intervals were used for statistically significant risk factor. Multivariate analysis was done with the binary logistic regression to detect an independent predictor, and with the principal component analysis (PCA), to analyze whether the Tobramycin resistance in E. coli was linked with the COVID-19 outbreak. Statistical significance was set at P<0.05. The frequency of Tobramycin E. coli resistant isolates was more important after COVID-19 emergence (12.5%) than before COVID-19 (2.1%). Graphical representation of PCA qualitative variables shows the interfactor relationship. A significant relationship between Tobramycin E. coli resistance and COVID-19 emergence (P=0.014), and the effect of the emergence of COVID-19 on the Tobramycin E. coli resistance was OR = 6.57 (95% Confidence interval (CI) 1.61-7.94). The probability of Tobramycin E. coli resistance linked with poultry meat bought after COVID-19 was 1.88 times more than before COVID-19 emergence. Poultry meat purchased after COVID-19 found related to Tobramycin resistance in E. coli. It seems possible that the overuse of biocides during COVID-19 increased the risk of Tobramycin E. coli resistance in poultry meat.
Collapse
Affiliation(s)
- Nadjah Guergueb
- The University of Batna 1, Department of Veterinary Medicine. Batna, Algeria
| | - Nadir Alloui
- The University of Batna 1, Department of Veterinary Medicine. Batna, Algeria
| |
Collapse
|
27
|
Alvarez-Molina A, Trigal E, Prieto M, López M, Alvarez-Ordóñez A. Assessment of a plasmid conjugation procedure to monitor horizontal transfer of an extended-spectrum β-lactamase resistance gene under food chain scenarios. Curr Res Food Sci 2022; 6:100405. [PMID: 36506112 PMCID: PMC9732120 DOI: 10.1016/j.crfs.2022.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Plasmids are relevant reservoirs of antimicrobial resistance genes (ARGs) which confer adaptive advantages to their host and can be horizontally transferred. The aims of this study were to develop a conjugation procedure to monitor the horizontal transfer of a 193 kb plasmid containing the extended-spectrum β-lactamase production gene bla CTX-M-14 between two Escherichia coli strains under a range of food chain-related scenarios, including temperature (20-37 °C), pH (5.0-9.0) or the presence of some biocidal agents (benzalkonium chloride, sodium hypochlorite or peracetic acid). The average conjugation rate in LB broth after 18 h at 37 °C was 2.09e-04 and similar rates were observed in a food matrix (cow's milk). The conjugation was reduced at temperatures below 37 °C, at alkaline pH (especially at pH 9.0) or in the presence of benzalkonium chloride. Peracetic acid and sodium hypochlorite slightly increased conjugation rates, which reached 5.59e-04 and 6.77e-03, respectively. The conjugation procedure described can be used to identify risk scenarios leading to an enhanced ARGs transmission via plasmid conjugation, as well as to identify novel intervention strategies impairing plasmid conjugation and tackling antimicrobial resistance.
Collapse
Affiliation(s)
| | - Elena Trigal
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain,Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain,Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain,Institute of Food Science and Technology, Universidad de León, León, Spain,Corresponding author. Campus de Vegazana, Veterinary Faculty, León, Spain.
| |
Collapse
|
28
|
Teng L, Zou G, Zhou Y, Li J, Song Z, Dong X, Ma Z, Zheng Z, Chen H, Li J. Phage controlling method against novel freshwater-derived Vibrio parahaemolyticus in ready-to-eat crayfish (Procambarus clarkii). Food Res Int 2022; 162:111986. [DOI: 10.1016/j.foodres.2022.111986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022]
|
29
|
Haryani Y, Halid NA, Guat GS, Nor-Khaizura MAR, Hatta MAM, Sabri S, Radu S, Hasan H. High prevalence of multiple antibiotic resistance in fermented food-associated lactic acid bacteria in Malaysia. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Antimicrobial Resistance Profile of Common Foodborne Pathogens Recovered from Livestock and Poultry in Bangladesh. Antibiotics (Basel) 2022; 11:antibiotics11111551. [PMID: 36358208 PMCID: PMC9686756 DOI: 10.3390/antibiotics11111551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Multidrug-resistant (MDR) foodborne pathogens have created a great challenge to the supply and consumption of safe & healthy animal-source foods. The study was conducted to identify the common foodborne pathogens from animal-source foods & by-products with their antimicrobial drug susceptibility and resistance gene profile. The common foodborne pathogens Escherichia coli (E. coli), Salmonella, Streptococcus, Staphylococcus, and Campylobacter species were identified in livestock and poultry food products. The prevalence of foodborne pathogens was found higher in poultry food & by-product compared with livestock (p < 0.05). The antimicrobial drug susceptibility results revealed decreased susceptibility to penicillin, ampicillin, amoxicillin, levofloxacin, ciprofloxacin, tetracycline, neomycin, streptomycin, and sulfamethoxazole-trimethoprim whilst gentamicin was found comparatively more sensitive. Regardless of sources, the overall MDR pattern of E. coli, Salmonella, Staphylococcus, and Streptococcus were found to be 88.33%, 75%, 95%, and 100%, respectively. The genotypic resistance showed a prevalence of blaTEM, blaSHV, blaCMY, tetA, tetB, sul1, aadA1, aac(3)-IV, and ereA resistance genes. The phenotype and genotype resistance patterns of isolated pathogens from livestock and poultry had harmony and good concordance, and sul1 & tetA resistance genes had a higher prevalence. Good agricultural practices along with proper biosecurity may reduce the rampant use of antimicrobial drugs. In addition, proper handling, processing, storage, and transportation of foods may decline the spread of MDR foodborne pathogens in the food chain.
Collapse
|
31
|
Evidence of virulence and antibiotic resistance genes from the microbiome mapping in minimally processed vegetables producing facilities. Food Res Int 2022; 162:112202. [DOI: 10.1016/j.foodres.2022.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
32
|
Kim Y, Shin M, Kang J, Kang D. Effect of sub‐lethal treatment of carvacrol and thymol on virulence potential and resistance to several bactericidal treatments of
Staphylococcus aureus
. J Food Saf 2022. [DOI: 10.1111/jfs.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu‐Min Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
| | - Minjung Shin
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
| | - Jun‐Won Kang
- Department of Food Science and Biotechnology Dongguk University‐Seoul Goyang‐si Gyeonggi‐do Republic of Korea
| | - Dong‐Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
- Institutes of Green Bio Science & Technology Seoul National University Pyeongchang‐gun Gangwon‐do Republic of Korea
| |
Collapse
|
33
|
Akullo JO, Kiage B, Nakimbugwe D, Kinyuru J. Effect of aqueous and organic solvent extraction on in-vitro antimicrobial activity of two varieties of fresh ginger (Zingiber officinale) and garlic (Allium sativum). Heliyon 2022; 8:e10457. [PMID: 36091965 PMCID: PMC9450146 DOI: 10.1016/j.heliyon.2022.e10457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
The current state of antimicrobial resistance to synthetic antimicrobial drugs has led to renewed interest in natural antimicrobial compounds. Antimicrobial activity of extracts of (local and hybrid) ginger and garlic was investigated using the agar well diffusion method against Staphylococcus aureus, Escherichia coli and Candida albicans. Aqueous and organic solvent extracts of both varieties of ginger and garlic exhibited varied and concentration-dependant antimicrobial activity. Inhibition zones at 25 mg/mL varied significantly against the microorganisms, being highest on C. albicans; 18.00 ± 2.00 to 30.67 ± 1.16 mm for acetone extracts and raw juice of hybrid ginger and 19.67 ± 1.16 to 30.33 ± 1.53 mm for methanol and raw extracts of local garlic respectively. Minimum Inhibitory Concentration ranged from 2.5 to 10 mg/mL in garlic extracts. The study concluded that both varieties of ginger and garlic possess antimicrobial substances, though ginger is more potent as antifungal agent. Extracts exhibited varied concentration-dependant antimicrobial activity. Inhibition was higher for garlic compared to ginger extracts against bacteria. Activity of garlic ethanolic extracts compared favourably with garlic raw juices Minimum Inhibitory Concentration ranged from 2.5 to 10 mg/mL in garlic extracts
Collapse
Affiliation(s)
- Jolly Oder Akullo
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University, PO box 203, Soroti, Uganda
- Department of Human Nutrition Sciences, School of Food and Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62 000, 00200 Nairobi, Kenya
- Corresponding author.
| | - Beatrice Kiage
- Department of Human Nutrition Sciences, School of Food and Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62 000, 00200 Nairobi, Kenya
| | - Dorothy Nakimbugwe
- Department of Food Technology and Nutrition, School of Food Technology, Nutrition and Bio-Engineering, Makerere University, PO Box 7062, Kampala, Uganda
| | - John Kinyuru
- Department of Food Science and Technology, School of Food and Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62 000, 00200 Nairobi, Kenya
| |
Collapse
|
34
|
Huang L, Zha S, Yu H, He Y, Li Y, Shen Y, Peng Y, Liu G, Fu Y. Chemical and electrochemical conversion of magnetic nanoparticles to Prussian blue for label-free and refreshment-enhanced electrochemical biosensing of enrofloxacin. Anal Chim Acta 2022; 1221:340123. [DOI: 10.1016/j.aca.2022.340123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/01/2022]
|
35
|
Oguadinma IC, Mishra A, Juneja VK, Dev Kumar G. Antibiotic Resistance Influences Growth Rates and Cross-Tolerance to Lactic Acid in Escherichia coli O157:H7 H1730. Foodborne Pathog Dis 2022; 19:622-629. [PMID: 35856661 DOI: 10.1089/fpd.2022.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli O157:H7-contaminated beef has been implicated in numerous foodborne outbreaks. Contamination occurs despite the use of antimicrobial interventions such as lactic acid (LA). In addition, resistance to antibiotics such as ampicillin and streptomycin among isolates has been frequently reported. The influence of antibiotic resistance (ABR) on growth rates and cross-tolerance of lettuce isolate E. coli O157:H7 H1730 to LA was evaluated. Antibiotic-resistant strain variants were generated by conferring resistance to either ampicillin (ampC) or streptomycin (strepC) or both ampicillin and streptomycin (ampC strepC) through incremental exposure to the antibiotics. Ampicillin resistance was also conferred by plasmid transformation to generate the ampP and ampP strepC strains. The minimum inhibitory concentration of LA on all the strains evaluated was 0.375% v/v. The lag phase duration of all strains except E. coli O157:H7 ampP strepC increased with increasing concentration of LA. The ampP strepC and ampC strains were most tolerant to 5% LA with declines in the cell population of 2.86 and 2.56 log CFU/mL, respectively (p < 0.05). The ampP strepC strain was the most tolerant when evaluated by the live/dead viability assay. The addition of the efflux pump inhibitor, carbonyl cyanide m-chlorophenylhydrazone, with 2.5% LA resulted in a significant increase in sensitivity in the no resistance (NR) wild-type and ampC strains, resulting in 6.62 and 6.65 log CFU/mL reduction, respectively, while the highly tolerant ampP strepC strain had a 2.90 log CFU/mL decrease. Tolerance to LA was significantly influenced by both the ABR profile of the strain and LA concentration. The results from this study indicate that E. coli O157:H7 strains with certain ABR profiles might be more tolerant to LA.
Collapse
Affiliation(s)
- Ikechukwu Chukwuma Oguadinma
- Center for Food Safety, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Abhinav Mishra
- Department of Food Science & Technology, University of Georgia, Athens, Georgia, USA
| | - Vijay K Juneja
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania, USA
| | - Govindaraj Dev Kumar
- Center for Food Safety, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| |
Collapse
|
36
|
Kusi J, Ojewole CO, Ojewole AE, Nwi-Mozu I. Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Antibiotics (Basel) 2022; 11:821. [PMID: 35740227 PMCID: PMC9219700 DOI: 10.3390/antibiotics11060821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 01/03/2023] Open
Abstract
Human health is threatened by antibiotic-resistant bacteria and their related infections, which cause thousands of human deaths every year worldwide. Surface waters are vulnerable to human activities and natural processes that facilitate the emergence and spread of antibiotic-resistant bacteria in the environment. This study evaluated the pathways and drivers of antimicrobial resistance (AR) in surface waters. We analyzed antibiotic resistance healthcare-associated infection (HAI) data reported to the CDC's National Healthcare Safety Network to determine the number of antimicrobial-resistant pathogens and their isolates detected in healthcare facilities. Ten pathogens and their isolates associated with HAIs tested resistant to the selected antibiotics, indicating the role of healthcare facilities in antimicrobial resistance in the environment. The analyzed data and literature research revealed that healthcare facilities, wastewater, agricultural settings, food, and wildlife populations serve as the major vehicles for AR in surface waters. Antibiotic residues, heavy metals, natural processes, and climate change were identified as the drivers of antimicrobial resistance in the aquatic environment. Food and animal handlers have a higher risk of exposure to resistant pathogens through ingestion and direct contact compared with the general population. The AR threat to public health may grow as pathogens in aquatic systems adjust to antibiotic residues, contaminants, and climate change effects. The unnecessary use of antibiotics increases the risk of AR, and the public should be encouraged to practice antibiotic stewardship to decrease the risk.
Collapse
Affiliation(s)
- Joseph Kusi
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Catherine Oluwalopeye Ojewole
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Akinloye Emmanuel Ojewole
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Isaac Nwi-Mozu
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA;
| |
Collapse
|
37
|
Gaeta NC, de Carvalho DU, Fontana H, Sano E, Moura Q, Fuga B, Munoz PM, Gregory L, Lincopan N. Genomic features of a multidrug-resistant and mercury-tolerant environmental Escherichia coli recovered after a mining dam disaster in South America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153590. [PMID: 35122850 PMCID: PMC8994849 DOI: 10.1016/j.scitotenv.2022.153590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 05/03/2023]
Abstract
Mining dam disasters contribute to the contamination of aquatic environments, impacting associated ecosystems and wildlife. A multidrug-resistant Escherichia coli strain (B2C) was isolated from a river water sample in Brazil after the Mariana mining dam disaster. The genome was sequenced using the Illumina MiSeq platform, and de novo assembled using Unicycler. Resistome, virulome, and plasmidome were predicted using bioinformatics tools. Data analysis revealed that E. coli B2C belonged to sequence type ST219 and phylogroup E. Strikingly, a broad resistome (antibiotics, hazardous heavy metals, and biocides) was predicted, including the presence of the clinically relevant blaCTX-M-2 extended-spectrum β-lactamase (ESBL) gene, qacE∆1 efflux pump gene, and the mer (mercury resistance) operon. SNP-based analysis revealed that environmental E. coli B2C was clustered along to ESBL-negative E. coli strains of ST219 isolated between 1980 and 2021 from livestock in the United States of America. Acquisition of clinically relevant genes by ST219 seems to be a recent genetic event related to anthropogenic activities, where polluted water environments may contribute to its dissemination at the human-animal-environment interface. In addition, the presence of genes conferring resistance to heavy metals could be related to environmental pollution from mining activities. Antimicrobial resistance genes could be essential biomarkers of environmental exposure to human and mining pollution.
Collapse
Affiliation(s)
- Natália C Gaeta
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Daniel U de Carvalho
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Lilian Gregory
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
38
|
Preconcentration and determination of four antibiotics in biological samples using nanofluid-assisted magnetic dispersive micro-solid-phase extraction coupled with high-performance liquid chromatography. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Shen W, Chen H, Geng J, Wu RA, Wang X, Ding T. Prevalence, serovar distribution, and antibiotic resistance of Salmonella spp. isolated from pork in China: A systematic review and meta-analysis. Int J Food Microbiol 2022; 361:109473. [PMID: 34768041 DOI: 10.1016/j.ijfoodmicro.2021.109473] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022]
Abstract
The epidemiological characteristics of Salmonella spp. in pork have been widely studied in China, but the results remain inconsistent. This study aimed to summarize the epidemiological characteristics of Salmonella spp. isolated from pork, including its prevalence, serovar distribution, and antibiotic resistance rate. We systematically reviewed published studies on Salmonella spp. isolated from pork in China between 2000 and 2020 in two Chinese and three English databases and quantitatively summarized its prevalence, serovar distribution, and antibiotic resistance using meta-analysis methods. Furthermore, we conducted subgroup analysis and meta-regression to explore the source of the heterogeneity from historical changes and regional difference perspectives. Ninety-one eligible studies published between 2000 and 2020 were included. The meta-analysis showed that the pooled prevalence of Salmonella isolated from pork was 0.17 (95% CI: 0.14, 0.20), with a detected growing trend over time. For the proportions of serovars, Derby (0.32, 95% CI: 0.26, 0.38), Typhimurium (0.10, 95% CI: 0.07, 0.15) and London (0.05, 95% CI: 0.03, 0.08) were dominant in these studies. The antibiotic resistance rates were high for tetracycline (0.68, 95% CI: 0.59, 0.77), sulfisoxazole (0.65, 95% CI: 0.45, 0.83), ampicillin (0.43, 95% CI: 0.34, 0.53), streptomycin (0.42, 95% CI: 0.29, 0.56), and sulfamethoxazole (0.42, 95% CI: 0.25, 0.60). The results of this study revealed a high prevalence, the regional characteristics of serovar distribution, and the severe challenges of antibiotic resistance of Salmonella originating from pork in China, suggesting the potential increasing risk and disease burden. Therefore, it is necessary to improve the prevention and control strategies of Salmonella in pork.
Collapse
Affiliation(s)
- Wangwang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Jiawei Geng
- Center for Global Health, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Ricardo A Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
40
|
The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review. Microorganisms 2022; 10:microorganisms10010162. [PMID: 35056612 PMCID: PMC8781958 DOI: 10.3390/microorganisms10010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Managing spoilage and pathogenic bacteria contaminations represents a major challenge for the food industry, especially for the dairy sector. Biofilms formed by these microorganisms in food processing environment continue to pose concerns to food manufacturers as they may impact both the safety and quality of processed foods. Bacteria inside biofilm can survive in harsh environmental conditions and represent a source of repeated food contamination in dairy manufacturing plants. Among the novel approaches proposed to control biofilm in food processing plants, the ozone treatment, in aqueous or gaseous form, may represent one of the most promising techniques due to its antimicrobial action and low environmental impact. The antimicrobial effectiveness of ozone has been well documented on a wide variety of microorganisms in planktonic forms, whereas little data on the efficacy of ozone treatment against microbial biofilms are available. In addition, ozone is recognized as an eco-friendly technology since it does not leave harmful residuals in food products or on contact surfaces. Thus, this review intends to present an overview of the current state of knowledge on the possible use of ozone as an antimicrobial agent against the most common spoilage and pathogenic microorganisms, usually organized in biofilm, in dairy manufacturing plants.
Collapse
|
41
|
Multi-Drug and β-Lactam Resistance in Escherichia coli and Food-Borne Pathogens from Animals and Food in Portugal, 2014–2019. Antibiotics (Basel) 2022; 11:antibiotics11010090. [PMID: 35052967 PMCID: PMC8773433 DOI: 10.3390/antibiotics11010090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Animal and food sources are seen as a potential transmission pathway of antimicrobial resistance (AMR) to humans. The aim of this study is to describe Campylobacter, Salmonella, and commensal Escherichia coli multi-drug resistance (MDR) in the food chain between 2014 and 2019 in Portugal. AMR surveillance data from food-producing animals and food were assessed. MDR relative frequencies were estimated by bacterial genus and year. AMR profiles were created using observations of resistance to antimicrobial classes from each isolate. Antimicrobial susceptibility testing results were clustered using k-modes. Clusters were described by population, AMR classification, β-lactamases, sample stage, sample type, season, and year. Overall, MDR was more prevalent for E. coli, ranging from 74–90% in animal and 94–100% in food samples. MDR was found to be more widespread in resistance profiles that were common among E. coli and Salmonella isolates and in those exclusively observed for E. coli, frequently including (fluoro)quinolones and cephalosporins resistance. β-lactam resistance was observed around 75% to 3rd/4th-generation cephalosporins in E. coli. Clusters suggest an escalating MDR behaviour from farm to post-farm stages in all bacteria and that Salmonella (fluoro)quinolones resistance may be associated with broilers. These findings support policy and decision making to tackle MDR in farm and post-farm stages.
Collapse
|
42
|
Abreu ACDS, Crippa BL, Souza VVMAD, Nuñez KVM, Almeida JMD, Rodrigues MX, Silva NCC. Assessment of sanitiser efficacy against Staphylococcus spp. isolated from Minas Frescal cheese producers in São Paulo, Brazil. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Sabater C, Cobo-Díaz JF, Álvarez-Ordóñez A, Ruas-Madiedo P, Ruiz L, Margolles A. Novel methods of microbiome analysis in the food industry. Int Microbiol 2021; 24:593-605. [PMID: 34686940 DOI: 10.1007/s10123-021-00215-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
The study of the food microbiome has gained considerable interest in recent years, mainly due to the wide range of applications that can be derived from the analysis of metagenomes. Among these applications, it is worth mentioning the possibility of using metagenomic analyses to determine food authenticity, to assess the microbiological safety of foods thanks to the detection and tracking of pathogens, antibiotic resistance genes and other undesirable traits, as well to identify the microorganisms responsible for food processing defects. Metataxonomics and metagenomics are currently the gold standard methodologies to explore the full potential of metagenomes in the food industry. However, there are still a number of challenges that must be solved in order to implement these methods routinely in food chain monitoring, and for the regulatory agencies to take them into account in their opinions. These challenges include the difficulties of analysing foods and food-related environments with a low microbial load, the lack of validated bioinformatics pipelines adapted to food microbiomes and the difficulty of assessing the viability of the detected microorganisms. This review summarizes the methods of microbiome analysis that have been used, so far, in foods and food-related environments, with a specific focus on those involving Next-Generation Sequencing technologies.
Collapse
Affiliation(s)
- Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain. .,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| |
Collapse
|
44
|
Pakbin B, Allahyari S, Amani Z, Brück WM, Mahmoudi R, Peymani A. Prevalence, Phylogroups and Antimicrobial Susceptibility of Escherichia coli Isolates from Food Products. Antibiotics (Basel) 2021; 10:antibiotics10111291. [PMID: 34827229 PMCID: PMC8615174 DOI: 10.3390/antibiotics10111291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
The emergence of multi-drug resistant E. coli is an important matter of increasing considerable concern to global public health. The aim of this study was to investigate the incidence, antibiotic resistance pattern and phylogroups of E. coli isolates obtained from raw milk, vegetable salad and ground meat samples collected from Qazvin Province (Iran). Culture-based techniques, Kirby-Bauer disk diffusion susceptibility testing and PCR assays were used to determine the incidence rate, antimicrobial resistance pattern and phylogenetic groups of the E. coli isolates. The E. coli isolates were highly resistant to amoxicillin (79.1%), trimethoprim-sulfamethoxazole (70.8%), amoxicillin-clavulanic acid (62.5%), tetracycline (54.1%), chloramphenicol (54.1%), nitrofurantoin (54.1%), ampicillin (45.8%), streptomycin (45.8%), and kanamycin (33.3%); and completely susceptible to norfloxacin and azithromycin and 70.8% of the isolates were multi-drug resistant. Most E. coli isolates (46%) belonged to phylogroup A. Novel, practical, efficient food safety control and surveillance systems of multi-drug resistant foodborne pathogens are required to control the foodborne pathogen contamination.
Collapse
Affiliation(s)
- Babak Pakbin
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 34197-59811, Iran; (B.P.); (S.A.); (Z.A.); (A.P.)
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| | - Samaneh Allahyari
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 34197-59811, Iran; (B.P.); (S.A.); (Z.A.); (A.P.)
| | - Zahra Amani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 34197-59811, Iran; (B.P.); (S.A.); (Z.A.); (A.P.)
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
- Correspondence: (W.M.B.); (R.M.)
| | - Razzagh Mahmoudi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 34197-59811, Iran; (B.P.); (S.A.); (Z.A.); (A.P.)
- Correspondence: (W.M.B.); (R.M.)
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 34197-59811, Iran; (B.P.); (S.A.); (Z.A.); (A.P.)
| |
Collapse
|
45
|
Cobo-Díaz JF, Alvarez-Molina A, Alexa EA, Walsh CJ, Mencía-Ares O, Puente-Gómez P, Likotrafiti E, Fernández-Gómez P, Prieto B, Crispie F, Ruiz L, González-Raurich M, López M, Prieto M, Cotter P, Alvarez-Ordóñez A. Microbial colonization and resistome dynamics in food processing environments of a newly opened pork cutting industry during 1.5 years of activity. MICROBIOME 2021; 9:204. [PMID: 34645520 PMCID: PMC8515711 DOI: 10.1186/s40168-021-01131-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The microorganisms that inhabit food processing environments (FPE) can strongly influence the associated food quality and safety. In particular, the possibility that FPE may act as a reservoir of antibiotic-resistant microorganisms, and a hotspot for the transmission of antibiotic resistance genes (ARGs) is a concern in meat processing plants. Here, we monitor microbial succession and resistome dynamics relating to FPE through a detailed analysis of a newly opened pork cutting plant over 1.5 years of activity. RESULTS We identified a relatively restricted principal microbiota dominated by Pseudomonas during the first 2 months, while a higher taxonomic diversity, an increased representation of other taxa (e.g., Acinetobacter, Psychrobacter), and a certain degree of microbiome specialization on different surfaces was recorded later on. An increase in total abundance, alpha diversity, and β-dispersion of ARGs, which were predominantly assigned to Acinetobacter and associated with resistance to certain antimicrobials frequently used on pig farms of the region, was detected over time. Moreover, a sharp increase in the occurrence of extended-spectrum β-lactamase-producing Enterobacteriaceae and vancomycin-resistant Enterococcaceae was observed when cutting activities started. ARGs associated with resistance to β-lactams, tetracyclines, aminoglycosides, and sulphonamides frequently co-occurred, and mobile genetic elements (i.e., plasmids, integrons) and lateral gene transfer events were mainly detected at the later sampling times in drains. CONCLUSIONS The observations made suggest that pig carcasses were a source of resistant bacteria that then colonized FPE and that drains, together with some food-contact surfaces, such as equipment and table surfaces, represented a reservoir for the spread of ARGs in the meat processing facility. Video Abstract.
Collapse
Affiliation(s)
- José F. Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | | | - Elena A. Alexa
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Present address: Microbiology Department, National University of Ireland, Galway, Ireland
| | - Calum J. Walsh
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Paula Puente-Gómez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Eleni Likotrafiti
- Department of Food Science & Technology, International Hellenic University, Thessaloniki, Greece
| | | | - Bernardo Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Fiona Crispie
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Lorena Ruiz
- Dairy Research Institute, Spanish National Research Council, Instituto de Productos Lácteos de Asturias-CSIC, Villaviciosa, Spain
- MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias Spain
| | - Montserrat González-Raurich
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Paul Cotter
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| |
Collapse
|
46
|
Mevo SIU, Ashrafudoulla M, Furkanur Rahaman Mizan M, Park SH, Ha SD. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry-A review. Compr Rev Food Sci Food Saf 2021; 20:5938-5964. [PMID: 34626152 DOI: 10.1111/1541-4337.12852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023]
Abstract
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
47
|
Morphological and metabolomics impact of sublethal doses of natural compounds and its nanoemulsions in Bacillus cereus. Food Res Int 2021; 149:110658. [PMID: 34600660 DOI: 10.1016/j.foodres.2021.110658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/31/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023]
Abstract
Microbiological safety in food industry are always a concern regarding sublethal tolerance in bacteria for common and natural sanitizers. Natural bacteriocins, such as nisin (NIS), may negatively interfere in the efficiency of major compounds of essential oils against foodborne pathogenic bacteria. However, nanoemulsioned forms increase the bactericidal potential of natural compounds acting synergistically. In this study, cinnamaldehyde (CIN), citral (CIT), and linalool (LIN) were evaluated independently, associated with NIS, and in nanoemulsions (NEs) against Bacillus cereus using untargeted-metabolomics. Results revealed morphological changes in the structure of B. cereus treated with NEs of CIN and CIT, both NIS-associated. In addition, sensibility tests and UHPLC-QTOF-MS analyses indicated that NIS might react together with CIT reducing the bactericidal efficiency, while the nanoemulsion of CIT effect was enhanced by NIS in nanoemulsioned forms. This study highlights the importance of prudent administration of natural compounds as antimicrobial agents to prevent sublethal tolerance in pathogenic bacteria.
Collapse
|
48
|
|
49
|
Shani N, Oberhaensli S, Arias-Roth E. Antibiotic Susceptibility Profiles of Pediococcus pentosaceus from Various Origins and Their Implications for the Safety Assessment of Strains with Food-Technology Applications. J Food Prot 2021; 84:1160-1168. [PMID: 33320937 DOI: 10.4315/jfp-20-363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/11/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT In the fight against the spread of antibiotic resistance, authorities usually require that strains "intentionally added into the food chain" be tested for their antibiotic susceptibility. This applies to strains used in starter or adjunct cultures for the production of fermented foods, such as many strains of Pediococcus pentosaceus. The European Food Safety Authority recommends testing strains for their antibiotic susceptibility based on both genomic and phenotypic approaches. Furthermore, it proposes a set of antibiotics to assess as well as a list of microbiological cutoffs (MCs), allowing classification of lactic acid bacteria as susceptible or resistant. Accurate MCs are essential not only to avoid false-negative strains, which may carry antibiotic resistance genes and remain unnoticed, but also to avoid false-positive strains, which may be discarded while screening potential candidates for food-technology applications. Because of relatively scarce data, MCs have been defined for the whole Pediococcus genus, although differences between species should be expected. In this study, we investigated the antibiotic susceptibility of 35 strains of P. pentosaceus isolated from various matrices in the past 70 yr. MICs were determined using a standard protocol, and MIC distributions were established. Phenotypic analyses were complemented with genome sequencing and by seeking known antibiotic resistance genes. The genomes of all the strains were free of known antibiotic resistance genes, but most displayed MICs above the currently defined MCs for chloramphenicol, and all showed excessive MICs for tetracycline. Based on the distributions, we calculated and proposed new MCs for chloramphenicol (16 instead of 4 mg/L) and tetracycline (256 instead of 8 mg/L). HIGHLIGHTS
Collapse
Affiliation(s)
- Noam Shani
- Competence Division Method Development and Analytics, University of Bern, 3012 Bern, Switzerland.,(ORCID: https://orcid.org/0000-0002-3570-9947 [N.S.])
| | - Simone Oberhaensli
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | | |
Collapse
|
50
|
Effect of Gaseous Ozone on Listeria monocytogenes Planktonic Cells and Biofilm: An In Vitro Study. Foods 2021; 10:foods10071484. [PMID: 34206833 PMCID: PMC8306814 DOI: 10.3390/foods10071484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
Among food-borne pathogens, Listeria monocytogenes continues to pose concerns to food business operators due to its capacity to form biofilm in processing environments. Ozone may be an eco-friendly technology to control microbial contaminations, but data concerning its effect on Listeria monocytogenes biofilm are still limited. In this study, the effect of gaseous ozone at 50 ppm on planktonic cells and biofilm of reference and food-related Listeria monocytogenes strains was evaluated. Ozone caused a reduction in microbial loads of 3.7 ± 0.4 and 3.9 ± 0.4 Log10 CFU/mL after 10 and 30 min, respectively. A complete inactivation of planktonic cells after 6 h of treatment was observed. Biofilm inhibition and eradication treatments (50 ppm, 6 h) resulted in a significant decrease of the biofilm biomass for 59% of the strains tested, whilst a slight dampening of live cell loads in the biofilm state was observed. In conclusion, gaseous ozone is not sufficient to completely counteract Listeria monocytogenes biofilm, but it may be useful as an additional tool to contrast Listeria monocytogenes free-living cells and to improve the existing sanitization procedures in food processing environments.
Collapse
|