1
|
Ahmad MS, Alanazi YA, Alrohaimi Y, Shaik RA, Alrashidi S, Al-Ghasham YA, Alkhalifah YS, Ahmad RK. Infant nutrition at risk: a global systematic review of ochratoxin A in human breast milk-human health risk assessment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024:1-14. [PMID: 39292700 DOI: 10.1080/19440049.2024.2401976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Human breast milk is the optimal source of nutrition for newborns, but the potential transfer of contaminants like mycotoxins, particularly ochratoxin A (OTA), from maternal blood to milk remains a concern. This systematic review aims to provide a comprehensive analysis of global OTA levels in human breast milk and assess the associated health risks. We conducted a thorough search of scientific databases, including Web of Science, ScienceDirect, Scopus, Google Scholar and PubMed, using keywords related to OTA in human breast milk. A total of 39 studies met the inclusion criteria for this review. OTA levels compared to limits, estimated infant intake at various ages and health risks assessed using Margin of Exposures (MOEs) and Hazard quotient (HQ). Our findings reveal the widespread presence of OTA in breast milk across different regions, with notably higher levels detected in Africa compared to Asia, South America and Europe. The higher concentrations observed in warmer, humid climates suggest that environmental factors significantly influence OTA contamination. Mature breast milk samples generally exhibited greater OTA exposure. The neoplastic and non-neoplastic effects demonstrate generally low risks globally. The regional differences in OTA levels and associated health risk assessments underscore the need for continued research into the health impacts of OTA exposure in infants. This includes further investigation into multiple sources of exposure, such as infant formula, within the broader context of the exposome framework.
Collapse
Affiliation(s)
- Mohammad Shakil Ahmad
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Yousef Abud Alanazi
- Department of Paediatrics, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Yousef Alrohaimi
- Department of Paediatrics, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Riyaz Ahamed Shaik
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Sami Alrashidi
- Department of Paediatrics, Maternity and Children Hospital, Qassim, Saudi Arabia
| | - Yazeed A Al-Ghasham
- Department of Paediatrics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Yasir S Alkhalifah
- Department of Paediatrics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Ritu Kumar Ahmad
- Department of Applied Medical Science, Buraydah Private Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
2
|
Pașca D, Frangiamone M, Mangiapelo L, Vila-Donat P, Mîrza O, Vlase AM, Miere D, Filip L, Mañes J, Loghin F, Manyes L. Phytochemical Characterization of Bilberries and Their Potential as a Functional Ingredient to Mitigate Ochratoxin A Toxicity in Cereal-Based Products. Nutrients 2024; 16:3137. [PMID: 39339737 PMCID: PMC11435120 DOI: 10.3390/nu16183137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Mycotoxin contamination of cereals and cereal-based products is a serious problem for food safety. Antioxidant-rich ingredients such as bilberries (Vaccinium myrtillus L., VM) may mitigate their harmful effects. Firstly, total phenolic content, antioxidant activity, and analytical phytochemical composition (hydroxycinnamic and hydroxybenzoic acids, flavanols, flavonols, and anthocyanins) were assessed in lyophilized wild bilberries from Romania. Secondly, this study evaluated bilberries' effects on reducing ochratoxin A (OTA) bioaccessibility and cytotoxicity. An in vitro digestion model was developed and applied to four different types of bread: Control, VM (2%), OTA (15.89 ± 0.13 mg/kg), and OTA (16.79 ± 0.55 mg/kg)-VM (2%). The results indicated that VM decreased OTA bioaccessibility by 15% at the intestinal level. OTA-VM digests showed improved Caco-2 cell viability in comparison to OTA digests across different exposure times. Regarding the alterations in Jurkat cell line cell cycle phases and apoptosis/necrosis, significant increases in cell death were observed using OTA digests (11%), while VM addition demonstrated a protective effect (1%). Reactive oxygen species (ROS) analysis confirmed these findings, with OTA-VM digests showing significantly lower ROS levels compared to OTA digests, resulting in a 3.7-fold decrease. Thus, bilberries exhibit high potential as a functional ingredient, demonstrating protection in OTA mitigation effects.
Collapse
Affiliation(s)
- Denisia Pașca
- Biotech AgriFood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, Burjassot, 46100 València, Spain
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Massimo Frangiamone
- Biotech AgriFood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, Burjassot, 46100 València, Spain
| | - Luciano Mangiapelo
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Pilar Vila-Donat
- Biotech AgriFood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, Burjassot, 46100 València, Spain
| | - Oana Mîrza
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania
- Academy of Romanian Scientists (AOSR), 3 Ilfov St, 050044 Bucharest, Romania
| | - Jordi Mañes
- Biotech AgriFood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, Burjassot, 46100 València, Spain
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Lara Manyes
- Biotech AgriFood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, Burjassot, 46100 València, Spain
| |
Collapse
|
3
|
Yin L, Cai J, Ma L, You T, Arslan M, Jayan H, Zou X, Gong Y. Dual function of magnetic nanocomposites-based SERS lateral flow strip for simultaneous detection of aflatoxin B1 and zearalenone. Food Chem 2024; 446:138817. [PMID: 38401299 DOI: 10.1016/j.foodchem.2024.138817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Aflatoxin B1 (AFB1) and zearalenone (ZEN) are two mycotoxins that often co-occur in corn. A surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) that can simultaneously detect AFB1 and ZEN in corn samples was developed employing the core-interlayer-satellite magnetic nanocomposites (Fe3O4@PEI/AuMBA@AgMBA) as dual-functional SERS tags. Under the optimal conditions, the detection ranges of AFB1 and ZEN in corn samples were 0.1-10 μg/kg and 4-400 μg/kg, respectively. Moreover, the test results for two mycotoxins in contaminated corn samples employing the suggested SERS-LFIA was in line with those of the HPLC technique. In view of its satisfactory sensitivity, accuracy, precision and short testing time (20 min), the developed system has a promising application prospect in the on-site simultaneous detection of AFB1 and ZEN.
Collapse
Affiliation(s)
- Limei Yin
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jianrong Cai
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lixin Ma
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyan You
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Arslan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
4
|
Mangiapelo L, Frangiamone M, Vila-Donat P, Paşca D, Ianni F, Cossignani L, Manyes L. Grape pomace as a novel functional ingredient: Mitigating ochratoxin A bioaccessibility and unraveling cytoprotective mechanisms in vitro. Curr Res Food Sci 2024; 9:100800. [PMID: 39040226 PMCID: PMC11261260 DOI: 10.1016/j.crfs.2024.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Mycotoxins, secondary metabolites produced by molds, pose significant health risk through contamination of globally consumed cereals. Ochratoxin A (OTA), a prevalent mycotoxin in cereals, is associated with various health hazards, including immunotoxicity. This study explores the bioaccessibility of OTA in bread and its impact on the gastrointestinal barrier. A focus is placed on grape pomace (GP), a by-product of the wine industry, as a potential mitigator of OTA toxicity. Results demonstrate that GP reduces OTA bioaccessibility in the human gastrointestinal system from 94% to 81% at intestinal level, showing promise in limiting the absorption of the harmful toxin. Additionally, GP exhibits cytoprotective effects, enhancing cell viability and mitigating OTA-induced toxicity in both Caco-2 and Jurkat T cells. In view of the above, to understand the mechanisms by which OTA exhibits its toxic effects, flow cytometry was chosen as the main technique for the analysis of cell cycle, reactive oxygen species levels and mitochondrial parameters. Cytofluorimetric evaluation indicates GP's potential in limiting OTA-induced damage at cellular level. The study suggests that GP could serve as functional ingredient to reduce mycotoxin bioaccessibility and toxicity in cereal-based foods, offering a novel and promising approach to enhance food safety and protect public health. The finding highlights the potential of utilizing grape pomace in food formulations to mitigate mycotoxin contamination, providing a valuable contribution to the ongoing efforts to ensure the safety of globally consumed cereal products.
Collapse
Affiliation(s)
- Luciano Mangiapelo
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, 06123, Perugia, Italy
| | - Massimo Frangiamone
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon, 1005, Lausanne, Switzerland
| | - Pilar Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, 46100, Burjassot, Spain
| | - Denisia Paşca
- Laboratory of Food Chemistry and Toxicology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, 46100, Burjassot, Spain
- Bromatology, Hygiene, Nutrition, Department 3 - Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Federica Ianni
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, 06123, Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, 06123, Perugia, Italy
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, 46100, Burjassot, Spain
| |
Collapse
|
5
|
de Sá SVM, Faria MA, Fernandes JO, Cunha SC. In Vitro Digestion and Intestinal Absorption of Mycotoxins Due to Exposure from Breakfast Cereals: Implications for Children's Health. Toxins (Basel) 2024; 16:205. [PMID: 38787057 PMCID: PMC11126104 DOI: 10.3390/toxins16050205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Breakfast cereals play a crucial role in children's diets, providing essential nutrients that are vital for their growth and development. Children are known to be more susceptible than adults to the harmful effects of food contaminants, with mycotoxins being a common concern in cereals. This study specifically investigated aflatoxin B1 (AFB1), enniatin B (ENNB), and sterigmatocystin (STG), three well-characterized mycotoxins found in cereals. The research aimed to address existing knowledge gaps by comprehensively evaluating the bioaccessibility and intestinal absorption of these three mycotoxins, both individually and in combination, when consumed with breakfast cereals and milk. The in vitro gastrointestinal method revealed patterns in the bioaccessibility of AFB1, ENNB, and STG. Overall, bioaccessibility increased as the food progressed from the stomach to the intestinal compartment, with the exception of ENNB, whose behavior differed depending on the type of milk. The ranking of overall bioaccessibility in different matrices was as follows: digested cereal > cereal with semi-skimmed milk > cereal with lactose-free milk > cereal with soy beverage. Bioaccessibility percentages varied considerably, ranging from 3.1% to 86.2% for AFB1, 1.5% to 59.3% for STG, and 0.6% to 98.2% for ENNB. Overall, the inclusion of milk in the ingested mixture had a greater impact on bioaccessibility compared to consuming the mycotoxins as a single compound or in combination. During intestinal transport, ENNB and STG exhibited the highest absorption rates when ingested together. This study highlights the importance of investigating the combined ingestion and transport of these mycotoxins to comprehensively assess their absorption and potential toxicity in humans, considering their frequent co-occurrence and the possibility of simultaneous exposure.
Collapse
Affiliation(s)
| | | | | | - Sara C. Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (S.V.M.d.S.); (M.A.F.); (J.O.F.)
| |
Collapse
|
6
|
Lee SY, Cho S, Woo SY, Hwang M, Chun HS. Risk Assessment Considering the Bioavailability of 3-β-d-Glucosides of Deoxynivalenol and Nivalenol through Food Intake in Korea. Toxins (Basel) 2023; 15:460. [PMID: 37505729 PMCID: PMC10467052 DOI: 10.3390/toxins15070460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Deoxynivalenol and nivalenol are major type B trichothecenes and the most frequently occurring mycotoxins worldwide. Their 3-β-d-glucoside forms have recently become a safety management issue. These glucoside conjugates are converted back to the parent toxins during human digestion, but studies to confirm their bioavailability are lacking. In this study, a risk assessment was performed considering the bioavailability of glucoside conjugates. A literature review was conducted to compile the existing bioavailability studies of glucoside conjugates, and three exposure scenarios considering bioavailability were established. As a result of a risk assessment using deterministic and probabilistic methods, both the deoxynivalenol and nivalenol groups had safe levels of tolerable daily intake percentage (TDI%), not exceeding 100%. The TDI% for the nivalenol group was approximately 2-3 times higher than that for the deoxynivalenol group. Notably, infants showed higher TDI% than adults for both toxin groups. By food processing type, the overall TDI% was highest for raw material, followed by simple-processed and then fermented-processed. Since glucoside conjugates can be converted into parent toxins during the digestion process, a risk assessment considering bioavailability allows the more accurate evaluation of the risk level of glucoside conjugates and can direct their safety management in the future.
Collapse
Affiliation(s)
- Sang Yoo Lee
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea; (S.Y.L.); (S.C.); (S.Y.W.)
| | - Solyi Cho
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea; (S.Y.L.); (S.C.); (S.Y.W.)
| | - So Young Woo
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea; (S.Y.L.); (S.C.); (S.Y.W.)
| | - Myungsil Hwang
- Department of Food & Nutrition, Gachon University, Incheon 21936, Republic of Korea;
| | - Hyang Sook Chun
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea; (S.Y.L.); (S.C.); (S.Y.W.)
| |
Collapse
|
7
|
Güneş B, Yalçın S, Yalçın SS. Longitudinal follow-up of zearalenone and deoxynivalenol mycotoxins in breast milk in the first five months of life. BMC Pharmacol Toxicol 2023; 24:37. [PMID: 37254214 DOI: 10.1186/s40360-023-00677-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023] Open
Abstract
OBJECTIVES There is a possibility for exposed lactating mammalians to transfer some contaminants to their milk. This study aimed to determine the levels and changes of Zearalenone (ZEN), Deoxynivalenol (DON) mycotoxins for the first five months in human milk. METHODS Voluntary lactating mothers having infants with gestational length ≥ 37 weeks were enrolled between August 2017 and June 2018 in Şanlıurfa. Mothers and infants with chronic health problems were not included in the study. Human milk samples were taken at three different times; on enrollment (Day 6-10, visit 1), between 4 and 6 weeks postpartum (visit 2), and between 14 and 19 weeks postpartum (visit 3). Mycotoxin levels in human milk were measured utilizing Helica brand commercial kit. RESULTS Nineteen voluntary mothers and their breastfed infants with three human milk samples completed the study. The mean ages of mothers and infant (± SD) were 27.4 (± 5.4) years and 7.6 (± 0.9) days on enrollment. Median levels of ZEN and DON in human milk samples were 0.39 and 16.7 ng/mL, respectively. None of the cases had a ZEN daily intake higher than 250 ng/kg bw per day. However, three fourth of the cases had DON intake higher than > 1000 ng/kg bw per day. When adjusted for infant weight for age and sex, both ZEN levels and daily intake were decreased progressively from visit 1 to visit 3 (p < 0.001). DON levels and daily intake at visit 2 were found to be significantly lower in samples of visit 3 than that taken in visit 2 (p = 0.004 and p < 0.001, respectively). CONCLUSIONS Breast milk monitoring study revealed that ZEN and DON mycotoxins were present in the mother-infant environment. Contamination levels changed during the lactation period.
Collapse
Affiliation(s)
- Bülent Güneş
- Şanlıurfa Training and Research Hospital, Child Health and Disease Service, Şanlıurfa, Turkey
| | - Suzan Yalçın
- Department of Food Hygiene and Technology, Selcuk University Faculty of Veterinary Medicine, Konya, Turkey
| | - Sıddika Songül Yalçın
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
8
|
Pereira C, Cunha SC, Fernandes JO. Mycotoxins of Concern in Children and Infant Cereal Food at European Level: Incidence and Bioaccessibility. Toxins (Basel) 2022; 14:toxins14070488. [PMID: 35878226 PMCID: PMC9317499 DOI: 10.3390/toxins14070488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
Cereals are of utmost importance for the nutrition of infants and children, as they provide important nutrients for their growth and development and, in addition, they are easily digestible, being the best choice for the transition from breast milk/infant formula to solid foods. It is well known that children are more susceptible than adults to toxic food contaminants, such as mycotoxins, common contaminants in cereals. Many mycotoxins are already regulated and controlled according to strict quality control standards in Europe and around the world. There are, however, some mycotoxins about which the level of knowledge is lower: the so-called emerging mycotoxins, which are not yet regulated. The current review summarizes the recent information (since 2014) published in the scientific literature on the amounts of mycotoxins in infants’ and children’s cereal-based food in Europe, as well as their behaviour during digestion (bioaccessibility). Additionally, analytical methods used for mycotoxin determination and in vitro methods used to evaluate bioaccessibility are also reported. Some studies demonstrated the co-occurrence of regulated and emerging mycotoxins in cereal products used in children’s food, which highlights the need to adopt guidelines on the simultaneous presence of more than one mycotoxin. Although very little research has been done on the bioaccessibility of mycotoxins in these food products, very interesting results correlating the fiber and lipid contents of such products with a higher or lower bioaccessibility of mycotoxins were reported. LC-MS/MS is the method of choice for the detection and quantification of mycotoxins due to its high sensibility and accuracy. In vitro static digestion models are the preferred ones for bioaccessibility evaluation due to their simplicity and accuracy.
Collapse
|
9
|
Tamirys dos Santos Caramês E, Piacentini KC, Aparecida Almeida N, Lopes Pereira V, Azevedo Lima Pallone J, de Oliveira Rocha L. Rapid assessment of enniatins in barley grains using near infrared spectroscopy and chemometric tools. Food Res Int 2022; 161:111759. [DOI: 10.1016/j.foodres.2022.111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022]
|
10
|
Frangiamone M, Alonso-Garrido M, Font G, Cimbalo A, Manyes L. Pumpkin extract and fermented whey individually and in combination alleviated AFB1- and OTA-induced alterations on neuronal differentiation invitro. Food Chem Toxicol 2022; 164:113011. [PMID: 35447289 DOI: 10.1016/j.fct.2022.113011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023]
Abstract
Food and feed are daily exposed to mycotoxin contamination which effects may be counteracted by functional compounds like carotenoids and fermented whey. Among mycotoxins, the most toxic and studied are aflatoxin B1 (AFB1) and ochratoxin A (OTA), which neurotoxicity is not well reported. Therefore, SH-SY5Y human neuroblastoma cells ongoing differentiation were exposed during 7 days to digested bread extracts contained pumpkin and fermented whey, individually and in combination, along with AFB1 and OTA and their combination, in order to evaluate their presumed effects on neuronal differentiation. The immunofluorescence analysis of βIII-tubulin and dopamine markers pointed to OTA as the most damaging treatment for cell differentiation. Cell cycle analysis reported the highest significant differences for OTA-contained bread compared to the control in phase G0/G1. Lastly, RNA extraction was performed and gene expression was analyzed by qPCR. The selected genes were related to neuronal differentiation and cell cycle. The addition of functional ingredients in breads not only enhancing the expression of neuronal markers, but also induced an overall improvement of gene expression compromised by mycotoxins activity. These data confirm that in vitro neuronal differentiation may be impaired by AFB1 and OTA-exposure, which could be modulated by bioactive compounds naturally found in diet.
Collapse
Affiliation(s)
- Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Manuel Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain.
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| |
Collapse
|
11
|
Llorens P, Pietrzak-Fiećko R, Moltó JC, Mañes J, Juan C. Development of an Extraction Method of Aflatoxins and Ochratoxin A from Oral, Gastric and Intestinal Phases of Digested Bread by In Vitro Model. Toxins (Basel) 2022; 14:toxins14010038. [PMID: 35051014 PMCID: PMC8779207 DOI: 10.3390/toxins14010038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 02/01/2023] Open
Abstract
Validated extraction methods from in vitro digestion phases are necessary to obtain a suitable bioaccessibility study of mycotoxins in bakery products. The bakery industry produces bread with different ingredients to enrich the nutritional properties of this product and protect it from fungal growth. This bread can be contaminated by AFB1, AFB2, AFG1, AFG2 and OTA, so an extraction method was developed to analyse these five legislated mycotoxins in digested phases of two types of bread, one with wheat and the other with wheat and also enriched with Cucurbita Maxima Pepo at 20%. The studied “in vitro” digestion model consists of oral, gastric and duodenal phases, each one with different salt solutions and enzymes, that can affect the extraction and most probably the stability of the mycotoxins. The proposed method is a liquid–liquid extraction using ethyl acetate by extract concentration. These analytes and components have an important effect on the matrix effect (MEs) in the analytical equipment, therefore, validating the method and obtaining high sensitivity will be suitable. In the proposed method, the highest MEs were observed in the oral phase of digested pumpkin bread (29 to 15.9 %). Regarding the accuracy, the recoveries were above 83% in the digested duodenal wheat bread and above 76 % in the digested duodenal pumpkin wheat bread. The developed method is a rapid, easy and optimal option to apply to oral, gastric and duodenal phases of digested bread contaminated at a level of established maximum levels by European legislation (RC. 1881/2006) for food.
Collapse
Affiliation(s)
- Paula Llorens
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (P.L.); (J.C.M.); (J.M.)
| | - Renata Pietrzak-Fiećko
- Department of Commodities and Food Analysis, Faculty of Food Sciences, University of Warmia and Mazury, 10-719 Olsztyn, Poland
- Correspondence: (R.P.-F.); (C.J.)
| | - Juan Carlos Moltó
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (P.L.); (J.C.M.); (J.M.)
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (P.L.); (J.C.M.); (J.M.)
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (P.L.); (J.C.M.); (J.M.)
- Correspondence: (R.P.-F.); (C.J.)
| |
Collapse
|