1
|
Rosenbaum RS, Halilova JG, Agnihotri S, D'Angelo MC, Winocur G, Ryan JD, Moscovitch M. Dramatic changes to well-known places go unnoticed. Neuropsychologia 2024; 196:108818. [PMID: 38355037 DOI: 10.1016/j.neuropsychologia.2024.108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
How well do we know our city? It turns out, much more poorly than we might imagine. We used declarative memory and eye-tracking techniques to examine people's ability to detect modifications to real-world landmarks and scenes in Toronto locales with which they have had extensive experience. Participants were poor at identifying which scenes contained altered landmarks, whether the modification was to the landmarks' relative size, internal features, or relation to surrounding context. To determine whether an indirect measure would prove more sensitive, we tracked eye movements during viewing. Changes in overall visual exploration, but not to specific regions of change, were related to participants' explicit endorsement of scenes as modified. These results support the contention that very familiar landmarks are represented at a global or gist level, but not local or fine-grained, level. These findings offer a unified view of memory for gist across verbal and spatial domains, and across recent and remote memory, with implications for hippocampal-neocortical interactions.
Collapse
Affiliation(s)
- R S Rosenbaum
- York University, Toronto, ON, Canada; Rotman Research Institute, Baycrest, Toronto, ON, Canada.
| | | | - S Agnihotri
- York University, Toronto, ON, Canada; University of Toronto, ON, Canada
| | - M C D'Angelo
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - G Winocur
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - J D Ryan
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; University of Toronto, ON, Canada
| | - M Moscovitch
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; University of Toronto, ON, Canada
| |
Collapse
|
2
|
Weisberg SM, Ebner NC, Seidler RD. Getting LOST: A conceptual framework for supporting and enhancing spatial navigation in aging. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1669. [PMID: 37933623 PMCID: PMC10939954 DOI: 10.1002/wcs.1669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Spatial navigation is more difficult and effortful for older than younger individuals, a shift which occurs for a variety of neurological, physical, and cognitive reasons associated with aging. Despite a large body of evidence documenting age-related deficits in spatial navigation, comparatively less research addresses how to facilitate more effective navigation behavior for older adults. Since navigation challenges arise for a variety of reasons in old age, a one-size-fits-all solution is unlikely to work. Here, we introduce a framework for the variety of spatial navigation challenges faced in aging, which we call LOST-Location, Orientation, Spatial mapping, and Transit. The LOST framework builds on evidence from the cognitive neuroscience of spatial navigation, which reveals distinct components underpinning human wayfinding. We evaluate research on navigational aids-devices and depictions-which help people find their way around; and we reflect on how navigation aids solve (or fail to solve) specific wayfinding difficulties faced by older adults. In summary, we emphasize a bespoke approach to improving spatial navigation in aging, which focuses on tailoring navigation solutions to specific navigation challenges. Our hope is that by providing precise support to older navigators, navigation opportunities can facilitate independence and exploration, while minimizing the danger of becoming lost. We conclude by delineating critical knowledge gaps in how to improve older adults' spatial navigation capacities that the novel LOST framework could guide to address. This article is categorized under: Psychology > Development and Aging Neuroscience > Cognition Neuroscience > Behavior.
Collapse
Affiliation(s)
- Steven M. Weisberg
- Department of Psychology, University of Florida, 945 Center Dr., Gainesville, FL 32611
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, 1225 Center Dr., Gainesville, FL 32611
| | - Natalie C. Ebner
- Department of Psychology, University of Florida, 945 Center Dr., Gainesville, FL 32611
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, 1225 Center Dr., Gainesville, FL 32611
- Institute on Aging, University of Florida, 2004 Mowry Rd., Gainesville, FL 32611
- Department of Physiology and Aging, University of Florida, 1345 Center Drive, Gainesville, FL 32610-0274
| | - Rachael D. Seidler
- Department of Applied Physiology & Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611
- Department of Neurology, University of Florida, 1149 Newell Dr., Gainesville, FL 32611
- Normal Fixel Institute for Neurological Diseases, University of Florida, 3009 SW Williston Rd. 1864 Stadium Rd., Gainesville, FL 32608
| |
Collapse
|
3
|
Peer M, Nadar C, Epstein RA. The format of the cognitive map depends on the structure of the environment. J Exp Psychol Gen 2024; 153:224-240. [PMID: 37843528 PMCID: PMC10872840 DOI: 10.1037/xge0001498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Humans and animals form cognitive maps that allow them to navigate through large-scale environments. Here we address a central unresolved question about these maps: whether they exhibit similar characteristics across all environments, or-alternatively-whether different environments yield different types of maps. To investigate this question, we examined spatial learning in three virtual environments: an open courtyard with patios connected by paths (open maze), a set of rooms connected by corridors (closed maze), and a set of isolated rooms connected only by teleporters (teleport maze). All three environments shared the same underlying topological graph structure. Postlearning tests showed that participants formed representations of the three environments that varied in accuracy, format, and individual variability. The open maze was most accurately remembered, followed by the closed maze, and then the teleport maze. In the open maze, most participants developed representations that reflected the Euclidean structure of the space, whereas in the teleport maze, most participants constructed representations that aligned more closely with a mental model of an interconnected graph. In the closed maze, substantial individual variability emerged, with some participants forming Euclidean representations and others forming graph-like representations. These results indicate that an environment's features shape the quality and nature of the spatial representations formed within it, determining whether spatial knowledge takes a Euclidean or graph-like format. Consequently, experimental findings obtained in any single environment may not generalize to others with different features. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Michael Peer
- Department of Psychology, University of Pennsylvania
| | | | | |
Collapse
|
4
|
Parra-Barrero E, Vijayabaskaran S, Seabrook E, Wiskott L, Cheng S. A map of spatial navigation for neuroscience. Neurosci Biobehav Rev 2023; 152:105200. [PMID: 37178943 DOI: 10.1016/j.neubiorev.2023.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Spatial navigation has received much attention from neuroscientists, leading to the identification of key brain areas and the discovery of numerous spatially selective cells. Despite this progress, our understanding of how the pieces fit together to drive behavior is generally lacking. We argue that this is partly caused by insufficient communication between behavioral and neuroscientific researchers. This has led the latter to under-appreciate the relevance and complexity of spatial behavior, and to focus too narrowly on characterizing neural representations of space-disconnected from the computations these representations are meant to enable. We therefore propose a taxonomy of navigation processes in mammals that can serve as a common framework for structuring and facilitating interdisciplinary research in the field. Using the taxonomy as a guide, we review behavioral and neural studies of spatial navigation. In doing so, we validate the taxonomy and showcase its usefulness in identifying potential issues with common experimental approaches, designing experiments that adequately target particular behaviors, correctly interpreting neural activity, and pointing to new avenues of research.
Collapse
Affiliation(s)
- Eloy Parra-Barrero
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sandhiya Vijayabaskaran
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Eddie Seabrook
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Laurenz Wiskott
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
5
|
Abstract
A schema refers to a structured body of prior knowledge that captures common patterns across related experiences. Schemas have been studied separately in the realms of episodic memory and spatial navigation across different species and have been grounded in theories of memory consolidation, but there has been little attempt to integrate our understanding across domains, particularly in humans. We propose that experiences during navigation with many similarly structured environments give rise to the formation of spatial schemas (for example, the expected layout of modern cities) that share properties with but are distinct from cognitive maps (for example, the memory of a modern city) and event schemas (such as expected events in a modern city) at both cognitive and neural levels. We describe earlier theoretical frameworks and empirical findings relevant to spatial schemas, along with more targeted investigations of spatial schemas in human and non-human animals. Consideration of architecture and urban analytics, including the influence of scale and regionalization, on different properties of spatial schemas may provide a powerful approach to advance our understanding of spatial schemas.
Collapse
|
6
|
Rodríguez MF, Ramirez Butavand D, Cifuentes MV, Bekinschtein P, Ballarini F, García Bauza C. A virtual reality platform for memory evaluation: Assessing effects of spatial strategies. Behav Res Methods 2022; 54:2707-2719. [PMID: 34918216 DOI: 10.3758/s13428-021-01758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 01/01/2023]
Abstract
Human spatial memories are usually evaluated using computer screens instead of real arenas or landscapes where subjects could move voluntarily and use allocentric cues to guide their behavior. A possible approach to fill this gap is the adoption of virtual reality, which provides the opportunity to create spatial memory tasks closer to real-life experience. Here we present and evaluate a new software to create experiments using this technology. Specifically, we have developed a spatial memory task that is carried out in a computer-assisted virtual environment where participants walk around a virtual arena using a joystick. This spatial memory task provides an immersive environment where the spatial component is constantly present without the use of virtual reality goggles. The design is similar to that of tasks used for animal studies, allowing a direct comparison across species. We found that only participants who reported using spatial cues to guide their behavior showed significant learning and performed significantly better during a memory test. This tool allows evaluation of human spatial memory in an ecological environment and will be useful to develop a wide range of other tasks to assess spatial cognition.
Collapse
Affiliation(s)
- María Florencia Rodríguez
- CONICET, PLADEMA, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.
| | - Daniela Ramirez Butavand
- Laboratorio de Neurociencia Traslacional, Instituto de Biología Celular y Neurociencias "Dr. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, BA, Argentina
- Instituto de Neurociencia Cognitiva y Traslacional (INCyT, CONICET-Fundación INECO-Universidad de Favaloro, Buenos Aires, BA, Argentina
| | - María Virginia Cifuentes
- CICPBA, PLADEMA, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Instituto de Neurociencia Cognitiva y Traslacional (INCyT, CONICET-Fundación INECO-Universidad de Favaloro, Buenos Aires, BA, Argentina
| | - Fabricio Ballarini
- Laboratorio de Neurociencia Traslacional, Instituto de Biología Celular y Neurociencias "Dr. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, BA, Argentina
- Departamento de Ciencias de la Vida, ITBA, Buenos Aires, BA, Argentina
| | - Cristian García Bauza
- CONICET, PLADEMA, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| |
Collapse
|
7
|
Non-spatial similarity can bias spatial distances in a cognitive map. Cognition 2022; 229:105251. [PMID: 36152528 DOI: 10.1016/j.cognition.2022.105251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022]
Abstract
The cognitive map theory suggests the hippocampal-entorhinal system has a representation of space that encodes geometric properties. There is also evidence that the hippocampus plays a critical role in supporting declarative memory, and recent theories have hypothesized the mechanism for encoding space is the same as that for processing memory. If space is not represented independently, it might be influenced by non-spatial properties. This study tested whether connections between non-spatial properties can distort judgments about spatial distance. In virtual reality, subjects navigated through an environment to learn the locations of target houses, and then were tested on their ability to judge the pairwise distances between houses and reconstruct a map of the environment. The environment was constructed to have pairs of houses with the same spatial distance but either the same or different color. If memory for spatial and non-spatial properties interact, similar houses would be expected to be judged as closer. In Experiment 1, the similar pairs all had the same color, while in Experiment 2, each pair had a different color to make the pairs more distinctive. We observed that similar houses were drawn closer on reconstructed maps in both experiments, and pairwise distance judgments were smaller for similar houses in Experiment 2. Biases from color similarity are difficult to reconcile with independent representation of space. Our results support theories that space is represented with other properties, and the mechanisms for encoding space in the hippocampal-entorhinal system have a broader function.
Collapse
|
8
|
Aesthetic experience enhances first-person spatial representation. Proc Natl Acad Sci U S A 2022; 119:e2201540119. [PMID: 36251990 PMCID: PMC9618070 DOI: 10.1073/pnas.2201540119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Episodic autobiographical memories are characterized by a spatial context and an affective component. But how do affective and spatial aspects interact? Does affect modulate the way we encode the spatial context of events? We investigated how one element of affect, namely aesthetic liking, modulates memory for location, in three online experiments (n = 124, 79, and 80). Participants visited a professionally curated virtual art exhibition. They then relocated previously viewed artworks on the museum map and reported how much they liked them. Across all experiments, liking an artwork was associated with increased ability to recall the wall on which it was hung. The effect was not explained by viewing time and appeared to modulate recognition speed. The liking-wall memory effect remained when participants attended to abstractness, rather than liking, and when testing occurred 24 h after the museum visit. Liking also modulated memory for the room where a work of art was hung, but this effect primarily involved reduced room memory for disliked artworks. Further, the liking-wall memory effect remained after controlling for effects of room memory. Recalling the wall requires recalling one's facing direction, so our findings suggest that positive aesthetic experiences enhance first-person spatial representations. More generally, a first-person component of positive affect transfers to wider spatial representation and facilitates the encoding of locations in a subject-centered reference frame. Affect and spatial representations are therefore important, and linked, elements of sentience and subjectivity. Memories of aesthetic experiences are also spatial memories of how we encountered a work of art. This linkage may have implications for museum design.
Collapse
|
9
|
Buckley MG, Myles LA, Easton A, McGregor A. The spatial layout of doorways and environmental boundaries shape the content of event memories. Cognition 2022; 225:105091. [DOI: 10.1016/j.cognition.2022.105091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/03/2022]
|
10
|
Peer M, Epstein RA. The human brain uses spatial schemas to represent segmented environments. Curr Biol 2021; 31:4677-4688.e8. [PMID: 34473949 PMCID: PMC8578397 DOI: 10.1016/j.cub.2021.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/25/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
Humans and animals use cognitive maps to represent the spatial structure of the environment. Although these maps are typically conceptualized as extending in an equipotential manner across known space, psychological evidence suggests that people mentally segment complex environments into subspaces. To understand the neurocognitive mechanisms behind this operation, we familiarized participants with a virtual courtyard that was divided into two halves by a river; we then used behavioral testing and fMRI to understand how spatial locations were encoded within this environment. Participants' spatial judgments and multivoxel activation patterns were affected by the division of the courtyard, indicating that the presence of a boundary can induce mental segmentation even when all parts of the environment are co-visible. In the hippocampus and occipital place area (OPA), the segmented organization of the environment manifested in schematic spatial codes that represented geometrically equivalent locations in the two subspaces as similar. In the retrosplenial complex (RSC), responses were more consistent with an integrated spatial map. These results demonstrate that people use both local spatial schemas and integrated spatial maps to represent segmented environment. We hypothesize that schematization may serve as a general mechanism for organizing complex knowledge structures in terms of their component elements.
Collapse
Affiliation(s)
- Michael Peer
- Department of Psychology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Russell A Epstein
- Department of Psychology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Berens SC, Joensen BH, Horner AJ. Tracking the Emergence of Location-based Spatial Representations in Human Scene-Selective Cortex. J Cogn Neurosci 2020; 33:445-462. [PMID: 33284080 PMCID: PMC8658499 DOI: 10.1162/jocn_a_01654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Scene-selective regions of the human brain form allocentric representations of locations in our environment. These representations are independent of heading direction and allow us to know where we are regardless of our direction of travel. However, we know little about how these location-based representations are formed. Using fMRI representational similarity analysis and linear mixed models, we tracked the emergence of location-based representations in scene-selective brain regions. We estimated patterns of activity for two distinct scenes, taken before and after participants learnt they were from the same location. During a learning phase, we presented participants with two types of panoramic videos: (1) an overlap video condition displaying two distinct scenes (0° and 180°) from the same location and (2) a no-overlap video displaying two distinct scenes from different locations (which served as a control condition). In the parahippocampal cortex
(PHC) and retrosplenial cortex (RSC), representations of scenes from the same location became more similar to each other only after they had been shown in the overlap condition, suggesting the emergence of viewpoint-independent location-based representations. Whereas these representations emerged in the PHC regardless of task performance, RSC representations only emerged for locations where participants could behaviorally identify the two scenes as belonging to the same location. The results suggest that we can track the emergence of location-based representations in the PHC and RSC in a single fMRI experiment. Further, they support computational models that propose the RSC plays a key role in transforming viewpoint-independent representations into behaviorally relevant representations of specific viewpoints.
Collapse
Affiliation(s)
| | - Bárður H Joensen
- University of York.,UCL Institute of Cognitive Neuroscience.,UCL Institute of Neurology
| | | |
Collapse
|
12
|
Wang Y, Yu X, Dou Y, McNamara TP, Li J. Mental representations of recently learned nested environments. PSYCHOLOGICAL RESEARCH 2020; 85:2922-2934. [PMID: 33211160 DOI: 10.1007/s00426-020-01447-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/03/2020] [Indexed: 10/22/2022]
Abstract
Two experiments investigated the mental representations of objects' location in a virtual nested environment. In Experiment 1, participants learned the locations of objects (buildings or related accessories) in an exterior environment and then learned the locations of objects inside one of the centrally located buildings (interior environment). Participants completed judgments of relative direction in which the imagined heading was established by pairs of objects from the interior environment and the target was one of the objects in the exterior environment. Performance was best for the imagined heading and allocentric target direction parallel to the learning heading of the exterior environment, but the effect of allocentric target direction was only significant for the imagined headings aligned with the reference axes of both environments; in addition, performance was best along the front-back egocentric axis (parallel to the imagined heading). Experiment 2 used the same learning procedure. After learning, the viewpoint was moved from the exterior environment along a smooth path into a side entrance of the building/interior environment. There participants saw the array of interior objects in the orientation consistent with their movement (correct cue), the array of objects in an orientation inconsistent with their movement (misleading cue), or no array of objects (no cue), and then pointed to objects in the exterior environment. Pointing performance was best for the correct-cue condition. Collectively the results indicated that memories of nested spaces are segregated by spatial conceptual level, and that spatial relations between levels are specified in terms of the dominant reference directions.
Collapse
Affiliation(s)
- Yao Wang
- School of Psychology, Nanjing Normal University, Nanjing, 210097, People's Republic of China
| | - Xiaohan Yu
- School of Psychology, Nanjing Normal University, Nanjing, 210097, People's Republic of China
| | - Yan Dou
- School of Psychology, Nanjing Normal University, Nanjing, 210097, People's Republic of China
| | | | - Jing Li
- School of Psychology, Nanjing Normal University, Nanjing, 210097, People's Republic of China.
| |
Collapse
|
13
|
Agent-Based Analysis of Urban Spaces Using Space Syntax and Spatial Cognition Approaches: A Case Study in Bari, Italy. SUSTAINABILITY 2020. [DOI: 10.3390/su12114625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study provides a reflection on the agent-based intelligence of urban spatial environments through the comparison of a formal quantitative approach, i.e., space syntax, and a qualitative experimentation based on the spatial cognition approach. Until recently, space syntax was adopted by urban planners and designers to support urban design and planning decisions, based on an analysis of the urban physical environment. Researchers in the cognitive science field have increased their attempts to address space syntax techniques to better understand the relationships of cognitive spatial agents with the spatial features of urban environments. In this context, the experimental approach focuses on the qualities of the environment as interacted, perceived and interpreted by cognitive agents and reflects on the role which it plays in affecting spatial decisions and route choices. The present paper aimed to explore the extent to which possible integration between the different approaches can provide insights on agent-based decisions in actions and behavioural processes in space for useful perspectives in urban analysis and planning. Findings suggest relevant correlations between the experimentation results and space syntax predictions when a correspondence of some aspects can be found. Conversely, interesting qualitative insights from the spatial cognition approach are pointed out to enrich the configurational analysis. The potential and constraints of each approach and the ways of combining these are presented. Evidence supports the suitability of the proposal outlined in the present paper within the framework of urban planning practice.
Collapse
|
14
|
Schöberl F, Zwergal A, Brandt T. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control. Front Neural Circuits 2020; 14:6. [PMID: 32210769 PMCID: PMC7069479 DOI: 10.3389/fncir.2020.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Successful navigation relies on the flexible and appropriate use of metric representations of space or topological knowledge of the environment. Spatial dimensions (2D vs. 3D), spatial scales (vista-scale vs. large-scale environments) and the abundance of visual landmarks critically affect navigation performance and behavior in healthy human subjects. Virtual reality (VR)-based navigation paradigms in stationary position have given insight into the major navigational strategies, namely egocentric (body-centered) and allocentric (world-centered), and the cerebral control of navigation. However, VR approaches are biased towards optic flow and visual landmark processing. This major limitation can be overcome to some extent by increasingly immersive and realistic VR set-ups (including large-screen projections, eye tracking and use of head-mounted camera systems). However, the highly immersive VR settings are difficult to apply particularly to older subjects and patients with neurological disorders because of cybersickness and difficulties with learning and conducting the tasks. Therefore, a need for the development of novel spatial tasks in real space exists, which allows a synchronous analysis of navigational behavior, strategy, visual explorations and navigation-induced brain activation patterns. This review summarizes recent findings from real space navigation studies in healthy subjects and patients with different cognitive and sensory neurological disorders. Advantages and limitations of real space navigation testing and different VR-based navigation paradigms are discussed in view of potential future applications in clinical neurology.
Collapse
Affiliation(s)
- Florian Schöberl
- Department of Neurology, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, DSGZ, LMU Munich, Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, DSGZ, LMU Munich, Munich, Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders, DSGZ, LMU Munich, Munich, Germany.,Clinical Neurosciences, LMU Munich, Munich, Germany
| |
Collapse
|
15
|
Kan IP, Rosenbaum RS, Verfaellie M. Schema processing across the lifespan: From theory to applications. Cogn Neuropsychol 2020; 37:1-7. [PMID: 32106740 DOI: 10.1080/02643294.2020.1736019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Irene P Kan
- Department of Psychological & Brain Sciences, Villanova University, Villanova, PA, USA
| | - R Shayna Rosenbaum
- Department of Psychology, Vision: Science to Applications (VISTA) Program, York University, Toronto, Canada.,Rotman Research Institute, Baycrest, Toronto, Canada
| | - Mieke Verfaellie
- Memory Disorders Research Center, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
16
|
Julian JB, Keinath AT, Marchette SA, Epstein RA. The Neurocognitive Basis of Spatial Reorientation. Curr Biol 2019; 28:R1059-R1073. [PMID: 30205055 DOI: 10.1016/j.cub.2018.04.057] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ability to recover one's bearings when lost is a skill that is fundamental for spatial navigation. We review the cognitive and neural mechanisms that underlie this ability, with the aim of linking together previously disparate findings from animal behavior, human psychology, electrophysiology, and cognitive neuroscience. Behavioral work suggests that reorientation involves two key abilities: first, the recovery of a spatial reference frame (a cognitive map) that is appropriate to the current environment; and second, the determination of one's heading and location relative to that reference frame. Electrophysiological recording studies, primarily in rodents, have revealed potential correlates of these operations in place, grid, border/boundary, and head-direction cells in the hippocampal formation. Cognitive neuroscience studies, primarily in humans, suggest that the perceptual inputs necessary for these operations are processed by neocortical regions such as the retrosplenial complex, occipital place area and parahippocampal place area, with the retrosplenial complex mediating spatial transformations between the local environment and the recovered spatial reference frame, the occipital place area supporting perception of local boundaries, and the parahippocampal place area processing visual information that is essential for identification of the local spatial context. By combining results across these various literatures, we converge on a unified account of reorientation that bridges the cognitive and neural domains.
Collapse
Affiliation(s)
- Joshua B Julian
- University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA; Kavli Institute for Systems Neuroscience, Centre for Neural Computation, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Alexandra T Keinath
- University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA; McGill University, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Verdun, QC, Canada
| | - Steven A Marchette
- University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Russell A Epstein
- University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Sugar J, Moser MB. Episodic memory: Neuronal codes for what, where, and when. Hippocampus 2019; 29:1190-1205. [PMID: 31334573 DOI: 10.1002/hipo.23132] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/07/2022]
Abstract
Episodic memory is defined as the ability to recall events in a spatiotemporal context. Formation of such memories is critically dependent on the hippocampal formation and its inputs from the entorhinal cortex. To be able to support the formation of episodic memories, entorhinal cortex and hippocampal formation should contain a neuronal code that follows several requirements. First, the code should include information about position of the agent ("where"), sequence of events ("when"), and the content of the experience itself ("what"). Second, the code should arise instantly thereby being able to support memory formation of one-shot experiences. For successful encoding and to avoid interference between memories during recall, variations in location, time, or in content of experience should result in unique ensemble activity. Finally, the code should capture several different resolutions of experience so that the necessary details relevant for future memory-based predictions will be stored. We review how neuronal codes in entorhinal cortex and hippocampus follow these requirements and argue that during formation of episodic memories entorhinal cortex provides hippocampus with instant information about ongoing experience. Such information originates from (a) spatially modulated neurons in medial entorhinal cortex, including grid cells, which provide a stable and universal positional metric of the environment; (b) a continuously varying signal in lateral entorhinal cortex providing a code for the temporal progression of events; and (c) entorhinal neurons coding the content of experiences exemplified by object-coding and odor-selective neurons. During formation of episodic memories, information from these systems are thought to be encoded as unique sequential ensemble activity in hippocampus, thereby encoding associations between the content of an event and its spatial and temporal contexts. Upon exposure to parts of the encoded stimuli, activity in these ensembles can be reinstated, leading to reactivation of the encoded activity pattern and memory recollection.
Collapse
Affiliation(s)
- Jørgen Sugar
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University for Science and Technology (NTNU), Trondheim, Norway
| | - May-Britt Moser
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University for Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
18
|
Baraduc P, Duhamel JR, Wirth S. Schema cells in the macaque hippocampus. Science 2019; 363:635-639. [DOI: 10.1126/science.aav5404] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/09/2019] [Indexed: 02/03/2023]
Abstract
Concept cells in the human hippocampus encode the meaning conveyed by stimuli over their perceptual aspects. Here we investigate whether analogous cells in the macaque can form conceptual schemas of spatial environments. Each day, monkeys were presented with a familiar and a novel virtual maze, sharing a common schema but differing by surface features (landmarks). In both environments, animals searched for a hidden reward goal only defined in relation to landmarks. With learning, many neurons developed a firing map integrating goal-centered and task-related information of the novel maze that matched that for the familiar maze. Thus, these hippocampal cells abstract the spatial concepts from the superficial details of the environment and encode space into a schema-like representation.
Collapse
|
19
|
Holmes CA, Newcombe NS, Shipley TF. Move to learn: Integrating spatial information from multiple viewpoints. Cognition 2018; 178:7-25. [DOI: 10.1016/j.cognition.2018.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/27/2022]
|
20
|
Herweg NA, Kahana MJ. Spatial Representations in the Human Brain. Front Hum Neurosci 2018; 12:297. [PMID: 30104966 PMCID: PMC6078001 DOI: 10.3389/fnhum.2018.00297] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Abstract
While extensive research on the neurophysiology of spatial memory has been carried out in rodents, memory research in humans had traditionally focused on more abstract, language-based tasks. Recent studies have begun to address this gap using virtual navigation tasks in combination with electrophysiological recordings in humans. These studies suggest that the human medial temporal lobe (MTL) is equipped with a population of place and grid cells similar to that previously observed in the rodent brain. Furthermore, theta oscillations have been linked to spatial navigation and, more specifically, to the encoding and retrieval of spatial information. While some studies suggest a single navigational theta rhythm which is of lower frequency in humans than rodents, other studies advocate for the existence of two functionally distinct delta-theta frequency bands involved in both spatial and episodic memory. Despite the general consensus between rodent and human electrophysiology, behavioral work in humans does not unequivocally support the use of a metric Euclidean map for navigation. Formal models of navigational behavior, which specifically consider the spatial scale of the environment and complementary learning mechanisms, may help to better understand different navigational strategies and their neurophysiological mechanisms. Finally, the functional overlap of spatial and declarative memory in the MTL calls for a unified theory of MTL function. Such a theory will critically rely upon linking task-related phenomena at multiple temporal and spatial scales. Understanding how single cell responses relate to ongoing theta oscillations during both the encoding and retrieval of spatial and non-spatial associations appears to be key toward developing a more mechanistic understanding of memory processes in the MTL.
Collapse
Affiliation(s)
- Nora A. Herweg
- Computational Memory Lab, Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael J. Kahana
- Computational Memory Lab, Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Hinterecker T, Pretto P, de Winkel KN, Karnath HO, Bülthoff HH, Meilinger T. Body-relative horizontal-vertical anisotropy in human representations of traveled distances. Exp Brain Res 2018; 236:2811-2827. [PMID: 30030590 PMCID: PMC6153888 DOI: 10.1007/s00221-018-5337-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023]
Abstract
A growing number of studies investigated anisotropies in representations of horizontal and vertical spaces. In humans, compelling evidence for such anisotropies exists for representations of multi-floor buildings. In contrast, evidence regarding open spaces is indecisive. Our study aimed at further enhancing the understanding of horizontal and vertical spatial representations in open spaces utilizing a simple traveled distance estimation paradigm. Blindfolded participants were moved along various directions in the sagittal plane. Subsequently, participants passively reproduced the traveled distance from memory. Participants performed this task in an upright and in a 30° backward-pitch orientation. The accuracy of distance estimates in the upright orientation showed a horizontal–vertical anisotropy, with higher accuracy along the horizontal axis compared with the vertical axis. The backward-pitch orientation enabled us to investigate whether this anisotropy was body or earth-centered. The accuracy patterns of the upright condition were positively correlated with the body-relative (not the earth-relative) coordinate mapping of the backward-pitch condition, suggesting a body-centered anisotropy. Overall, this is consistent with findings on motion perception. It suggests that the distance estimation sub-process of path integration is subject to horizontal–vertical anisotropy. Based on the previous studies that showed isotropy in open spaces, we speculate that real physical self-movements or categorical versus isometric encoding are crucial factors for (an)isotropies in spatial representations.
Collapse
Affiliation(s)
- Thomas Hinterecker
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany. .,Graduate Training Centre of Neuroscience, Tübingen University, Tübingen, Germany.
| | - Paolo Pretto
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| | - Ksander N de Winkel
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| | - Hans-Otto Karnath
- Division of Neuropsychology, Center of Neurology, Tübingen University, Tübingen, Germany
| | - Heinrich H Bülthoff
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| | - Tobias Meilinger
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| |
Collapse
|
22
|
Brunec IK, Moscovitch M, Barense MD. Boundaries Shape Cognitive Representations of Spaces and Events. Trends Cogn Sci 2018; 22:637-650. [DOI: 10.1016/j.tics.2018.03.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 12/14/2022]
|
23
|
Kim M, Maguire EA. Hippocampus, Retrosplenial and Parahippocampal Cortices Encode Multicompartment 3D Space in a Hierarchical Manner. Cereb Cortex 2018; 28:1898-1909. [PMID: 29554231 PMCID: PMC5907342 DOI: 10.1093/cercor/bhy054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 01/09/2023] Open
Abstract
Humans commonly operate within 3D environments such as multifloor buildings and yet there is a surprising dearth of studies that have examined how these spaces are represented in the brain. Here, we had participants learn the locations of paintings within a virtual multilevel gallery building and then used behavioral tests and fMRI repetition suppression analyses to investigate how this 3D multicompartment space was represented, and whether there was a bias in encoding vertical and horizontal information. We found faster response times for within-room egocentric spatial judgments and behavioral priming effects of visiting the same room, providing evidence for a compartmentalized representation of space. At the neural level, we observed a hierarchical encoding of 3D spatial information, with left anterior hippocampus representing local information within a room, while retrosplenial cortex, parahippocampal cortex, and posterior hippocampus represented room information within the wider building. Of note, both our behavioral and neural findings showed that vertical and horizontal location information was similarly encoded, suggesting an isotropic representation of 3D space even in the context of a multicompartment environment. These findings provide much-needed information about how the human brain supports spatial memory and navigation in buildings with numerous levels and rooms.
Collapse
Affiliation(s)
- Misun Kim
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| |
Collapse
|
24
|
Abstract
Search is a central visual function. Most of what is known about search derives from experiments where subjects view 2D displays on computer monitors. In the natural world, however, search involves movement of the body in large-scale spatial contexts, and it is unclear how this might affect search strategies. In this experiment, we explore the nature of memory representations developed when searching in an immersive virtual environment. By manipulating target location, we demonstrate that search depends on episodic spatial memory as well as learnt spatial priors. Subjects rapidly learned the large-scale structure of the space, with shorter paths and less head rotation to find targets. These results suggest that spatial memory of the global structure allows a search strategy that involves efficient attention allocation based on the relevance of scene regions. Thus spatial memory may allow less energetically costly search strategies.
Collapse
Affiliation(s)
- Chia-Ling Li
- Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas, USA.
| | - M Pilar Aivar
- Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Mary M Hayhoe
- Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
25
|
Meilinger T, Strickrodt M, Bülthoff HH. Spatial Survey Estimation Is Incremental and Relies on Directed Memory Structures. LECTURE NOTES IN COMPUTER SCIENCE 2018. [DOI: 10.1007/978-3-319-96385-3_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Consistency of Spatial Representations in Rat Entorhinal Cortex Predicts Performance in a Reorientation Task. Curr Biol 2017; 27:3658-3665.e4. [DOI: 10.1016/j.cub.2017.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/17/2017] [Accepted: 10/05/2017] [Indexed: 11/21/2022]
|
27
|
Epstein RA, Patai EZ, Julian JB, Spiers HJ. The cognitive map in humans: spatial navigation and beyond. Nat Neurosci 2017; 20:1504-1513. [PMID: 29073650 PMCID: PMC6028313 DOI: 10.1038/nn.4656] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
The 'cognitive map' hypothesis proposes that brain builds a unified representation of the spatial environment to support memory and guide future action. Forty years of electrophysiological research in rodents suggest that cognitive maps are neurally instantiated by place, grid, border and head direction cells in the hippocampal formation and related structures. Here we review recent work that suggests a similar functional organization in the human brain and yields insights into how cognitive maps are used during spatial navigation. Specifically, these studies indicate that (i) the human hippocampus and entorhinal cortex support map-like spatial codes, (ii) posterior brain regions such as parahippocampal and retrosplenial cortices provide critical inputs that allow cognitive maps to be anchored to fixed environmental landmarks, and (iii) hippocampal and entorhinal spatial codes are used in conjunction with frontal lobe mechanisms to plan routes during navigation. We also discuss how these three basic elements of cognitive map based navigation-spatial coding, landmark anchoring and route planning-might be applied to nonspatial domains to provide the building blocks for many core elements of human thought.
Collapse
Affiliation(s)
- Russell A. Epstein
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eva Zita Patai
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London
| | - Joshua B. Julian
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hugo J. Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London
| |
Collapse
|