1
|
Clement A, Anderson BA. Statistically learned associations among objects bias attention. Atten Percept Psychophys 2024; 86:2251-2261. [PMID: 39198359 DOI: 10.3758/s13414-024-02941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
A growing body of research suggests that semantic relationships among objects can influence the control of attention. There is also some evidence that learned associations among objects can bias attention. However, it is unclear whether these findings are due to statistical learning or existing semantic relationships. In the present study, we examined whether statistically learned associations among objects can bias attention in the absence of existing semantic relationships. Participants searched for one of four targets among pairs of novel shapes and identified whether the target was present or absent from the display. In an initial training phase, each target was paired with an associated distractor in a fixed spatial configuration. In a subsequent test phase, each target could be paired with the previously associated distractor or a different distractor. In our first experiment, the previously associated distractor was always presented in the same pair as the target. Participants were faster to respond when this distractor was present on target-present trials. In our second experiment, the previously associated distractor was presented in a different pair than the target in the test phase. In this case, participants were slower to respond when this distractor was present on both target-present and target-absent trials. Together, these findings provide clear evidence that statistically learned associations among objects can bias attention, analogous to the effects of semantic relationships on attention.
Collapse
Affiliation(s)
- Andrew Clement
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA.
- Department of Psychology and Neuroscience, Millsaps College, 1701 N. State St, Jackson, MS, 39210, USA.
| | - Brian A Anderson
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Anderson BA. Trichotomy revisited: A monolithic theory of attentional control. Vision Res 2024; 217:108366. [PMID: 38387262 PMCID: PMC11523554 DOI: 10.1016/j.visres.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
The control of attention was long held to reflect the influence of two competing mechanisms of assigning priority, one goal-directed and the other stimulus-driven. Learning-dependent influences on the control of attention that could not be attributed to either of those two established mechanisms of control gave rise to the concept of selection history and a corresponding third mechanism of attentional control. The trichotomy framework that ensued has come to dominate theories of attentional control over the past decade, replacing the historical dichotomy. In this theoretical review, I readily affirm that distinctions between the influence of goals, salience, and selection history are substantive and meaningful, and that abandoning the dichotomy between goal-directed and stimulus-driven mechanisms of control was appropriate. I do, however, question whether a theoretical trichotomy is the right answer to the problem posed by selection history. If we reframe the influence of goals and selection history as different flavors of memory-dependent modulations of attentional priority and if we characterize the influence of salience as a consequence of insufficient competition from such memory-dependent sources of priority, it is possible to account for a wide range of attention-related phenomena with only one mechanism of control. The monolithic framework for the control of attention that I propose offers several concrete advantages over a trichotomy framework, which I explore here.
Collapse
Affiliation(s)
- Brian A Anderson
- Texas A&M University, Department of Psychological & Brain Sciences, 4235 TAMU, College Station, TX 77843-4235, United States.
| |
Collapse
|
3
|
Plater L, Giammarco M, Joubran S, Al-Aidroos N. Control over attentional capture within 170 ms by long-term memory control settings: Evidence from the N2pc. Psychon Bull Rev 2024; 31:283-292. [PMID: 37566216 DOI: 10.3758/s13423-023-02352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
Observers adopt attentional control settings (ACSs) based on their goals that guide the capture of attention: Searched-for stimuli capture attention, and stimuli that are not searched for do not. While previous behavioural research indicates that observers can adopt long-term memory (LTM) ACSs (Giammarco et al. Visual Cognition, 24, 78-101, 2016), it seems surprising that representations in LTM could guide attention quickly enough to control attentional capture. To assess the claim that LTM ACSs exert control over early attentional orienting, we recorded electroencephalography while participants studied and searched for 30 target objects in an attention cueing task. Participants reported the studied target and ignored the preceding cues. To control for perceptual evoked responses, on each trial we presented two cue objects (one studied and one nonstudied). Even though participants were instructed to ignore the cues, studied cues produced the N2pc event-related potential, indicating early attentional orienting that was preferentially directed towards the studied cue versus the nonstudied cue. Critically, the N2pc was detectable within 170 ms, confirming that LTM ACSs rapidly control early capture. We propose an update to contemporary models of attentional capture to account for rapid attentional guidance by LTM ACSs.
Collapse
Affiliation(s)
- Lindsay Plater
- Department of Psychology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Maria Giammarco
- Department of Psychology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Samantha Joubran
- Department of Psychology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Naseem Al-Aidroos
- Department of Psychology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
4
|
Favila SE, Aly M. Hippocampal mechanisms resolve competition in memory and perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561548. [PMID: 37873400 PMCID: PMC10592663 DOI: 10.1101/2023.10.09.561548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Behaving adaptively requires selection of relevant memories and sensations and suppression of competing ones. We hypothesized that these mechanisms are linked, such that hippocampal computations that resolve competition in memory also shape the precision of sensory representations to guide selective attention. We leveraged f MRI-based pattern similarity, receptive field modeling, and eye tracking to test this hypothesis in humans performing a memory-dependent visual search task. In the hippocampus, differentiation of competing memories predicted the precision of memory-guided eye movements. In visual cortex, preparatory coding of remembered target locations predicted search successes, whereas preparatory coding of competing locations predicted search failures due to interference. These effects were linked: stronger hippocampal memory differentiation was associated with lower competitor activation in visual cortex, yielding more precise preparatory representations. These results demonstrate a role for memory differentiation in shaping the precision of sensory representations, highlighting links between mechanisms that overcome competition in memory and perception.
Collapse
Affiliation(s)
- Serra E Favila
- Department of Psychology, Columbia University, New York, NY, 10027
| | - Mariam Aly
- Department of Psychology, Columbia University, New York, NY, 10027
| |
Collapse
|
5
|
Fischer M, Moscovitch M, Fukuda K, Alain C. Ready for action! When the brain learns, yet memory-biased action does not follow. Neuropsychologia 2023; 189:108660. [PMID: 37604333 DOI: 10.1016/j.neuropsychologia.2023.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/23/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
Does memory prepare us to act? Long-term memory can facilitate signal detection, though the degree of benefit varies and can even be absent. To dissociate between learning and behavioral expression of learning, we used high-density electroencephalography (EEG) to assess memory retrieval and response processing. At learning, participants heard everyday sounds. Half of these sound clips were paired with an above-threshold lateralized tone, such that it was possible to form incidental associations between the sound clip and the location of the tone. Importantly, attention was directed to either the sound clip (Experiment 1) or the tone (Experiment 2). Participants then completed a novel detection task that separated cued retrieval from response processing. At retrieval, we observed a striking brain-behavior dissociation. Learning was observed neurally in both experiments. Behaviorally, however, signal detection was only facilitated in Experiment 2, for which there was an accompanying explicit memory for tone presence. Further, implicit neural memory for tone location correlated with the degree of response preparation, but not response execution. Together, the findings suggest 1) that attention at learning affects memory-biased action and 2) that memory prepared action via both explicit and implicit associative memory, with the latter triggering response preparation.
Collapse
Affiliation(s)
- Manda Fischer
- Department of Psychology, University of Toronto, Toronto, Canada; Department of Psychology, Rotman Research Institute at Baycrest Hospital, Toronto, Canada.
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, Canada; Department of Psychology, Rotman Research Institute at Baycrest Hospital, Toronto, Canada.
| | - Keisuke Fukuda
- Department of Psychology, University of Toronto, Toronto, Canada.
| | - Claude Alain
- Department of Psychology, University of Toronto, Toronto, Canada; Department of Psychology, Rotman Research Institute at Baycrest Hospital, Toronto, Canada.
| |
Collapse
|
6
|
Long NM. The intersection of the retrieval state and internal attention. Nat Commun 2023; 14:3861. [PMID: 37386043 PMCID: PMC10310828 DOI: 10.1038/s41467-023-39609-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
Large-scale brain states or distributed patterns of brain activity modulate downstream processing and behavior. Sustained attention and memory retrieval states impact subsequent memory, yet how these states relate to one another is unclear. I hypothesize that internal attention is a central process of the retrieval state. The alternative is that the retrieval state specifically reflects a controlled, episodic retrieval mode, engaged only when intentionally accessing events situated within a spatiotemporal context. To test my hypothesis, I developed a mnemonic state classifier independently trained to measure retrieval state evidence and applied this classifier to a spatial attention task. I find that retrieval state evidence increases during delay and response intervals when participants are maintaining spatial information. Critically, retrieval state evidence is positively related to the amount of maintained spatial location information and predicts target detection reaction times. Together, these findings support the hypothesis that internal attention is a central process of the retrieval state.
Collapse
Affiliation(s)
- Nicole M Long
- Department of Psychology, University of Virginia, 22904, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Long-term memory and working memory compete and cooperate to guide attention. Atten Percept Psychophys 2022:10.3758/s13414-022-02593-1. [PMID: 36303020 DOI: 10.3758/s13414-022-02593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 11/08/2022]
Abstract
Multiple types of memory guide attention: Both long-term memory (LTM) and working memory (WM) effectively guide visual search. Furthermore, both types of memories can capture attention automatically, even when detrimental to performance. It is less clear, however, how LTM and WM cooperate or compete to guide attention in the same task. In a series of behavioral experiments, we show that LTM and WM reliably cooperate to guide attention: Visual search is faster when both memories cue attention to the same spatial location (relative to when only one memory can guide attention). LTM and WM competed to guide attention in more limited circumstances: Competition only occurred when these memories were in different dimensions - particularly when participants searched for a shape and held an accessory color in mind. Finally, we found no evidence for asymmetry in either cooperation or competition: There was no evidence that WM helped (or hindered) LTM-guided search more than the other way around. This lack of asymmetry was found despite differences in LTM-guided and WM-guided search overall, and differences in how two LTMs and two WMs compete or cooperate with each other to guide attention. This work suggests that, even if only one memory is currently task-relevant, WM and LTM can cooperate to guide attention; they can also compete when distracting features are salient enough. This work elucidates interactions between WM and LTM during attentional guidance, adding to the literature on costs and benefits to attention from multiple active memories.
Collapse
|
8
|
Contextual cueing in co-active visual search: Joint action allows acquisition of task-irrelevant context. Atten Percept Psychophys 2022; 84:1114-1129. [PMID: 35437702 DOI: 10.3758/s13414-022-02470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2022] [Indexed: 11/08/2022]
Abstract
Repeatedly presenting a target within a stable search array facilitates visual search, an effect termed contextual cueing. Previous solo-performance studies have shown that successful acquisition of contextual memories requires explicit allocation of attentional resources to the task-relevant repeated contexts. By contrast, repeated but task-irrelevant contexts could not be learned when presented together with repeated task-relevant contexts due to a blocking effect. Here we investigated if such blocking of context learning could be diminished in a social context, when the task-irrelevant context is task-relevant for a co-actor in a joint action search mode. We adopted the contextual cueing paradigm and extended this to the co-active search mode. Participants learned a context-cued subset of the search displays (color-defined) in the training phase, and their search performance was tested in the transfer phase, where previously irrelevant and relevant subsets were swapped. The experiments were conducted either in a solo search mode (Experiments 1 and 3) or in a co-active search mode (Experiment 2). Consistent with the classical contextual cueing studies, contextual cueing was observed in the training phase of all three experiments. Importantly, however, in the "swapped" test session, a significant contextual cueing effect was manifested only in the co-active search mode, not in the solo search mode. Our findings suggest that social context may widen the scope of attention, thus facilitating the acquisition of task-irrelevant contexts.
Collapse
|
9
|
Anderson BA, Kim H, Kim AJ, Liao MR, Mrkonja L, Clement A, Grégoire L. The past, present, and future of selection history. Neurosci Biobehav Rev 2021; 130:326-350. [PMID: 34499927 PMCID: PMC8511179 DOI: 10.1016/j.neubiorev.2021.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/08/2021] [Accepted: 09/02/2021] [Indexed: 01/22/2023]
Abstract
The last ten years of attention research have witnessed a revolution, replacing a theoretical dichotomy (top-down vs. bottom-up control) with a trichotomy (biased by current goals, physical salience, and selection history). This third new mechanism of attentional control, selection history, is multifaceted. Some aspects of selection history must be learned over time whereas others reflect much more transient influences. A variety of different learning experiences can shape the attention system, including reward, aversive outcomes, past experience searching for a target, target‒non-target relations, and more. In this review, we provide an overview of the historical forces that led to the proposal of selection history as a distinct mechanism of attentional control. We then propose a formal definition of selection history, with concrete criteria, and identify different components of experience-driven attention that fit within this definition. The bulk of the review is devoted to exploring how these different components relate to one another. We conclude by proposing an integrative account of selection history centered on underlying themes that emerge from our review.
Collapse
Affiliation(s)
- Brian A Anderson
- Texas A&M University, College Station, TX, 77843, United States.
| | - Haena Kim
- Texas A&M University, College Station, TX, 77843, United States
| | - Andy J Kim
- Texas A&M University, College Station, TX, 77843, United States
| | - Ming-Ray Liao
- Texas A&M University, College Station, TX, 77843, United States
| | - Lana Mrkonja
- Texas A&M University, College Station, TX, 77843, United States
| | - Andrew Clement
- Texas A&M University, College Station, TX, 77843, United States
| | | |
Collapse
|
10
|
Getting it right from the start: Attentional control settings without a history of target selection. Atten Percept Psychophys 2020; 83:133-141. [PMID: 33241529 DOI: 10.3758/s13414-020-02193-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 11/08/2022]
Abstract
Observers can adopt attentional control settings that regulate how their attention is drawn to salient stimuli in the environment. Do observers choose their attentional control settings voluntarily, or are they primed in a bottom-up manner based on the stimuli that the observer has recently attended and responded to (i.e., target-selection history)? In the present experiment, we tested these two accounts using a long-term memory attentional control settings paradigm, in which participants memorized images of 18 common visual objects, and then searched for those objects in a spatial blink task. Unbeknownst to participants, we manipulated priming by dividing the set of target objects into two subsets: nine objects appeared frequently as targets in the spatial blink task (frequently primed objects), and nine infrequently (infrequently primed objects). We assessed attentional capture by presenting these objects as distractors in the spatial blink task and measuring their effect on task accuracy. We found that both subsets of objects captured attention more than non-studied objects, and frequently primed objects did not capture attention more than infrequently primed objects. Moreover, a follow-up analysis revealed that all studied objects captured attention, even before those objects had appeared as targets in the spatial blink task. These findings suggest that priming through target-selection history plays little-to-no role in long-term memory attentional control settings. Rather, these findings align with a growing body of evidence that attentional control settings are primarily implemented through voluntary control.
Collapse
|