1
|
Gao S, Hu Q. What curves are parallel? The core feature of preschoolers' intuitive parallel category. Child Dev 2024; 95:1186-1199. [PMID: 38334138 DOI: 10.1111/cdev.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Existing evidence has revealed that humans can spontaneously categorize many geometric shapes without formal education. Children around 4 years could distinguish between intersecting lines and parallel lines. Three features can be used to identify parallel lines, namely "translational congruence," "never meet," and "constant distance." This study separated them by using pairs of curves that possess only one of these features. Two experiments across 2021-2023, respectively, compared the relative priority of "translational congruence" with "constant distance," and "never meet" with "constant distance" among 3- to 5-year-old Chinese preschoolers (Ntotal = 314, 48% female). The results showed that preschoolers consistently grouped "constant distance" curves with parallel lines. This suggests that the core feature of intuitive parallel category is "constant distance" at this age.
Collapse
Affiliation(s)
- Shaojing Gao
- Institute of Developmental Psychology, Beijing Normal University, Beijing, China
| | - Qingfen Hu
- Institute of Developmental Psychology, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Overvliet KE, Postma A, Röder B. Child development and the role of visual experience in the use of spatial and non-spatial features in haptic object perception. J Exp Child Psychol 2024; 242:105885. [PMID: 38471382 DOI: 10.1016/j.jecp.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 10/25/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Previous work has suggested a different developmental timeline and role of visual experience for the use of spatial and non-spatial features in haptic object recognition. To investigate this conjecture, we used a haptic ambiguous odd-one-out task in which one object needed to be selected as being different from two other objects. The odd-one-out could be selected based on four characteristics: size, shape (spatial), texture, and weight (non-spatial). We tested sighted children from 4 to 12 years of age; congenitally blind, late blind, and adult participants with low vision; and normally sighted adults. Given the protracted developmental time course for spatial perception, we expected a shift from a preference for non-spatial features toward spatial features during typical development. Due to the dominant influence of vision for spatial perception, we expected congenitally blind adults to show a similar preference for non-spatial features as the youngest children. The results confirmed our first hypothesis; the 4-year-olds demonstrated a lower dominance for spatial features for object classification compared with older children and sighted adults. In contrast, our second hypothesis was not confirmed; congenitally blind adults' preferred categorization criteria were indistinguishable from those of sighted controls. These findings suggest an early development, but late maturation, of spatial processing in haptic object recognition independent of visual experience.
Collapse
Affiliation(s)
- Krista E Overvliet
- Biological Psychology and Neuropsychology, University of Hamburg, 20146 Hamburg, Germany; Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, The Netherlands.
| | - Albert Postma
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, 20146 Hamburg, Germany; LV Prasad Eye Institute, Hyderabad 500 034, India
| |
Collapse
|
3
|
Marupudi V, Varma S. Graded human sensitivity to geometric and topological concepts. Cognition 2023; 232:105331. [PMID: 36495709 DOI: 10.1016/j.cognition.2022.105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
In a seminal study, Dehaene et al. (2006) found evidence that adults and children are sensitive to geometric and topological (GT) concepts using a novel odd-one-out task. However, performance on this task could reflect more general cognitive abilities than intuitive knowledge of GT concepts. Here, we developed a new 2-alternative forced choice (2-AFC) version of the original task where chance represents a higher bar to clear (50% vs. 16.67%) and where the role of general cognitive abilities is minimized. Replicating the original finding, American adult participants showed above-chance sensitivity to 41 of the 43 GT concepts tested. Moreover, their performance was not strongly driven by two general cognitive abilities, fluid intelligence and mental rotation, nor was it strongly associated with mathematical achievement as measured by ACT/SAT scores. The performance profile across the 43 concepts as measured by the new 2-AFC task was found to be highly correlated with the profiles as measured using the original odd-one-out task, as an analysis of data sets spanning populations and ages revealed. Most significantly, an aggregation of the 43 concepts into seven classes of GT concepts found evidence for graded sensitivity. Some classes, such as Euclidean geometry and Topology, were found to be more domain-specific: they "popped out" for participants and were judged very quickly and highly accurately. Others, notably Symmetry and Geometric transformations, were found to be more domain-general: better predicted by participants' general cognitive abilities and mathematical achievement. These results shed light on the graded nature of GT concepts in humans and challenge computational models that emphasize the role of induction.
Collapse
Affiliation(s)
- Vijay Marupudi
- Georgia Institute of Technology, United States of America.
| | - Sashank Varma
- Georgia Institute of Technology, United States of America
| |
Collapse
|
4
|
Spatial Learning by Using Non-Visual Geometry and a Visual 3D Landmark in Zebrafish ( Danio rerio). Animals (Basel) 2023; 13:ani13030440. [PMID: 36766329 PMCID: PMC9913453 DOI: 10.3390/ani13030440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
Fish conjoin environmental geometry with conspicuous landmarks to reorient towards foraging sites and social stimuli. Zebrafish (Danio rerio) can merge a rectangular opaque arena with a 2D landmark (a blue-colored wall) but cannot merge a rectangular transparent arena with a 3D landmark (a blue cylinder) without training to "feel" the environment thanks to other-than-sight pathways. Thus, their success is linked to tasks differences (spontaneous vs. rewarded). This study explored the reorientation behavior of zebrafish within a rectangular transparent arena, with a blue cylinder outside, proximal to/distal from a target corner position, on the short/long side of the arena. Adult males were extensively trained to distinguish the correct corner from the rotational one, sharing an equivalent metric-sense relationship (short surface left, long surface right), to access food and companions. Results showed that zebrafish's reorientation behavior was driven by both the non-visual geometry and the visual landmark, partially depending on the landmark's proximity and surface length. Better accuracy was attained when the landmark was proximal to the target corner. When long-term experience was allowed, zebrafish handled non-visual and visual sensory stimulations over time for reorienting. We advance the possibility that multisensory processes affect fish's reorientation behavior and spatial learning, providing a link through which to investigate animals' exploratory strategies to face situations of visual deprivation or impairments.
Collapse
|
5
|
Maimon A, Netzer O, Heimler B, Amedi A. Testing geometry and 3D perception in children following vision restoring cataract-removal surgery. Front Neurosci 2023; 16:962817. [PMID: 36711132 PMCID: PMC9879291 DOI: 10.3389/fnins.2022.962817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
As neuroscience and rehabilitative techniques advance, age-old questions concerning the visual experience of those who gain sight after blindness, once thought to be philosophical alone, take center stage and become the target for scientific inquiries. In this study, we employ a battery of visual perception tasks to study the unique experience of a small group of children who have undergone vision-restoring cataract removal surgery as part of the Himalayan Cataract Project. We tested their abilities to perceive in three dimensions (3D) using a binocular rivalry task and the Brock string task, perceive visual illusions, use cross-modal mappings between touch and vision, and spatially group based on geometric cues. Some of the children in this study gained a sense of sight for the first time in their lives, having been born with bilateral congenital cataracts, while others suffered late-onset blindness in one eye alone. This study simultaneously supports yet raises further questions concerning Hubel and Wiesel's critical periods theory and provides additional insight into Molyneux's problem, the ability to correlate vision with touch quickly. We suggest that our findings present a relatively unexplored intermediate stage of 3D vision development. Importantly, we spotlight some essential geometrical perception visual abilities that strengthen the idea that spontaneous geometry intuitions arise independently from visual experience (and education), thus replicating and extending previous studies. We incorporate a new model, not previously explored, of testing children with congenital cataract removal surgeries who perform the task via vision. In contrast, previous work has explored these abilities in the congenitally blind via touch. Taken together, our findings provide insight into the development of what is commonly known as the visual system in the visually deprived and highlight the need to further empirically explore an amodal, task-based interpretation of specializations in the development and structure of the brain. Moreover, we propose a novel objective method, based on a simple binocular rivalry task and the Brock string task, for determining congenital (early) vs. late blindness where medical history and records are partial or lacking (e.g., as is often the case in cataract removal cases).
Collapse
Affiliation(s)
- Amber Maimon
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel,The Ruth & Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel,*Correspondence: Amber Maimon,
| | - Ophir Netzer
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Benedetta Heimler
- Center of Advanced Technologies in Rehabilitation (CATR), Sheba Medical Center, Ramat Gan, Israel
| | - Amir Amedi
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel,The Ruth & Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| |
Collapse
|
6
|
Cappagli G, Cuturi LF, Signorini S, Morelli F, Cocchi E, Gori M. Early visual deprivation disrupts the mental representation of numbers in visually impaired children. Sci Rep 2022; 12:22538. [PMID: 36581659 PMCID: PMC9800586 DOI: 10.1038/s41598-022-25044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/23/2022] [Indexed: 12/30/2022] Open
Abstract
Several shreds of evidence indicate that visual deprivation does not alter numerical competence neither in adults nor in children. However, studies reporting non-impaired numerical abilities in the visually impaired population present some limitations: (a) they mainly assessed the ability to process numbers (e.g. mathematical competence) rather than represent numbers (e.g. mental number line); (b) they principally focused on positive rather than negative number estimates; (c) they investigated numerical abilities in adult individuals except one focusing on children (Crollen et al. in Cognition 210:104586, 2021). Overall, this could limit a comprehensive explanation of the role exerted by vision on numerical processing when vision is compromised. Here we investigated how congenital visual deprivation affects the ability to represent positive and negative numbers in horizontal and sagittal planes in visually impaired children (thirteen children with low vision, eight children with complete blindness, age range 6-15 years old). We adapted the number-to-position paradigm adopted by Crollen et al. (Cognition 210:104586, 2021), asking children to indicate the spatial position of positive and negative numbers on a graduated rule positioned horizontally or sagittally in the frontal plane. Results suggest that long-term visual deprivation alters the ability to identify the spatial position of numbers independently of the spatial plane and the number polarity. Moreover, results indicate that relying on poor visual acuity is detrimental for low vision children when asked to localize both positive and negative numbers in space, suggesting that visual experience might have a differential role in numerical processing depending on number polarity. Such findings add knowledge related to the impact of visual experience on numerical processing. Since both positive and negative numbers are fundamental aspects of learning mathematical principles, the outcomes of the present study inform about the need to implement early rehabilitation strategies to prevent the risk of numerical difficulties in visually impaired children.
Collapse
Affiliation(s)
- G. Cappagli
- grid.25786.3e0000 0004 1764 2907Unit for Visually Impaired People (UVIP), Istituto Italiano di Tecnologia, Via Melen 83, 16100 Genova, Italy ,grid.419416.f0000 0004 1760 3107Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - L. F. Cuturi
- grid.25786.3e0000 0004 1764 2907Unit for Visually Impaired People (UVIP), Istituto Italiano di Tecnologia, Via Melen 83, 16100 Genova, Italy ,grid.10438.3e0000 0001 2178 8421Department of Cognitive, Psychological, Pedagogical Sciences and of Cultural Studies, University of Messina, Messina, Italy
| | - S. Signorini
- grid.419416.f0000 0004 1760 3107Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - F. Morelli
- grid.419416.f0000 0004 1760 3107Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy ,grid.8982.b0000 0004 1762 5736Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | - M. Gori
- grid.25786.3e0000 0004 1764 2907Unit for Visually Impaired People (UVIP), Istituto Italiano di Tecnologia, Via Melen 83, 16100 Genova, Italy
| |
Collapse
|
7
|
Baran B, Krzyżowski M, Rádai Z, Francikowski J, Hohol M. Geometry-based navigation in the dark: layout symmetry facilitates spatial learning in the house cricket, Acheta domesticus, in the absence of visual cues. Anim Cogn 2022; 26:755-770. [PMID: 36369419 PMCID: PMC10066172 DOI: 10.1007/s10071-022-01712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
Abstract
AbstractThe capacity to navigate by layout geometry has been widely recognized as a robust strategy of place-finding. It has been reported in various species, although most studies were performed with vision-based paradigms. In the presented study, we aimed to investigate layout symmetry-based navigation in the house cricket, Acheta domesticus, in the absence of visual cues. For this purpose, we used a non-visual paradigm modeled on the Tennessee Williams setup. We ensured that the visual cues were indeed inaccessible to insects. In the main experiment, we tested whether crickets are capable of learning to localize the centrally positioned, inconspicuous cool spot in heated arenas of various shapes (i.e., circular, square, triangular, and asymmetric quadrilateral). We found that the symmetry of the arena significantly facilitates crickets’ learning to find the cool spot, indicated by the increased time spent on the cool spot and the decreased latency in locating it in subsequent trials. To investigate mechanisms utilized by crickets, we analyzed their approach paths to the spot. We found that crickets used both heuristic and directed strategies of approaching the target, with the dominance of a semi-directed strategy (i.e., a thigmotactic phase preceding direct navigation to the target). We propose that the poor performance of crickets in the asymmetrical quadrilateral arena may be explained by the difficulty of encoding its layout with cues from a single modality.
Collapse
|