1
|
Telangore H, Azad V, Sharma M, Bhurane A, Tan RS, Acharya UR. Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert-Huang and wavelet transforms with explainable vision transformer and CNN models. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108455. [PMID: 39447439 DOI: 10.1016/j.cmpb.2024.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND AND OBJECTIVE Sudden cardiac death (SCD) is a critical health issue characterized by the sudden failure of heart function, often caused by ventricular fibrillation (VF). Early prediction of SCD is crucial to enable timely interventions. However, current methods predict SCD only a few minutes before its onset, limiting intervention time. This study aims to develop a deep learning-based model for the early prediction of SCD using electrocardiography (ECG) signals. METHODS A multimodal explainable deep learning-based model is developed to analyze ECG signals at discrete intervals ranging from 5 to 30 min before SCD onset. The raw ECG signals, 2D scalograms generated through wavelet transform and 2D Hilbert spectrum generated through Hilbert-Huang transform (HHT) of ECG signals were applied to multiple deep learning algorithms. For raw ECG, a combination of 1D-convolutional neural networks (1D-CNN) and long short-term memory networks were employed for feature extraction and temporal pattern recognition. Besides, to extract and analyze features from scalograms and Hilbert spectra, Vision Transformer (ViT) and 2D-CNN have been used. RESULTS The developed model achieved high performance, with accuracy, precision, recall and F1-score of 98.81%, 98.83%, 98.81%, and 98.81% respectively to predict SCD onset 30 min in advance. Further, the proposed model can accurately classify SCD patients and normal controls with 100% accuracy. Thus, the proposed method outperforms the existing state-of-the-art methods. CONCLUSIONS The developed model is capable of capturing diverse patterns on ECG signals recorded at multiple discrete time intervals (at 5-minute increments from 5 min to 30 min) prior to SCD onset that could discriminate for SCD. The proposed model significantly improves early SCD prediction, providing a valuable tool for continuous ECG monitoring in high-risk patients.
Collapse
Affiliation(s)
- Hardik Telangore
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, 380026, India; Centre of Advanced Defence Technology, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, 380026, India.
| | - Victor Azad
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, 380026, India.
| | - Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, 380026, India; Centre of Advanced Defence Technology, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, 380026, India.
| | - Ankit Bhurane
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, 440010, Maharashtra, India.
| | - Ru San Tan
- National Heart Centre, Singapore, 169609, Singapore; Duke-NUS Medical School, Singapore, 169857, Singapore.
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia; Centre for Health Research, University of Southern Queensland, Australia.
| |
Collapse
|
2
|
Khan K, Ullah F, Syed I, Ali H. Accurately assessing congenital heart disease using artificial intelligence. PeerJ Comput Sci 2024; 10:e2535. [PMID: 39650370 PMCID: PMC11623015 DOI: 10.7717/peerj-cs.2535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024]
Abstract
Congenital heart disease (CHD) remains a significant global health challenge, particularly contributing to newborn mortality, with the highest rates observed in middle- and low-income countries due to limited healthcare resources. Machine learning (ML) presents a promising solution by developing predictive models that more accurately assess the risk of mortality associated with CHD. These ML-based models can help healthcare professionals identify high-risk infants and ensure timely and appropriate care. In addition, ML algorithms excel at detecting and analyzing complex patterns that can be overlooked by human clinicians, thereby enhancing diagnostic accuracy. Despite notable advancements, ongoing research continues to explore the full potential of ML in the identification of CHD. The proposed article provides a comprehensive analysis of the ML methods for the diagnosis of CHD in the last eight years. The study also describes different data sets available for CHD research, discussing their characteristics, collection methods, and relevance to ML applications. In addition, the article also evaluates the strengths and weaknesses of existing algorithms, offering a critical review of their performance and limitations. Finally, the article proposes several promising directions for future research, with the aim of further improving the efficacy of ML in the diagnosis and treatment of CHD.
Collapse
Affiliation(s)
- Khalil Khan
- Department of Computer Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Farhan Ullah
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Ikram Syed
- Dept of Information and Communication Engineering, Hankuk University of Foreign Studies, Yongin, Gyeonggy-do, Republic of South Korea
| | - Hashim Ali
- Department of Computer Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
3
|
Zeng W, Yuan C. Myocardial infarction detection using ITD, DWT and deterministic learning based on ECG signals. Cogn Neurodyn 2023; 17:941-964. [PMID: 37522048 PMCID: PMC10374507 DOI: 10.1007/s11571-022-09870-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/16/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022] Open
Abstract
Nowadays, cardiovascular diseases (CVD) is one of the prime causes of human mortality, which has received tremendous and elaborative research interests regarding the prevention issue. Myocardial ischemia is a kind of CVD which will lead to myocardial infarction (MI). The diagnostic criterion of MI is supplemented with clinical judgement and several electrocardiographic (ECG) or vectorcardiographic (VCG) programs. However the visual inspection of ECG or VCG signals by cardiologists is tedious, laborious and subjective. To overcome such disadvantages, numerous MI detection techniques including signal processing and artificial intelligence tools have been developed. In this study, we propose a novel technique for automatic detection of MI based on disparity of cardiac system dynamics and synthesis of the standard 12-lead and Frank XYZ leads. First, 12-lead ECG signals are synthesized with Frank XYZ leads to build a hybrid 4-dimensional cardiac vector, which is decomposed into a series of proper rotation components (PRCs) by using the intrinsic time-scale decomposition (ITD) method. The novel cardiac vector may fully reflect the pathological alterations provoked by MI and may be correlated to the disparity of cardiac system dynamics between healthy and MI subjects. ITD is employed to measure the variability of cardiac vector and the first PRCs are extracted as predominant PRCs which contain most of the cardiac vector's energy. Second, four levels discrete wavelet transform with third-order Daubechies (db3) wavelet function is employed to decompose the predominant PRCs into different frequency bands, which combines with three-dimensional phase space reconstruction to derive features. The properties associated with the cardiac system dynamics are preserved. Since the frequency components above 40 Hz are lack of use in ECG analysis, in order to reduce the feature dimension, the advisable sub-band (D4) is selected for feature acquisition. Third, neural networks are then used to model, identify and classify cardiac system dynamics between normal (healthy) and MI cardiac vector signals. The difference of cardiac system dynamics between healthy control and MI cardiac vector is computed and used for the detection of MI based on a bank of estimators. Finally, experiments are carried out on the PhysioNet PTB database to assess the effectiveness of the proposed method, in which conventional 12-lead and Frank XYZ leads ECG signal fragments from 148 patients with MI and 52 healthy controls were extracted. By using the tenfold cross-validation style, the achieved average classification accuracy is reported to be 98.20%. Results verify the effectiveness of the proposed method which can serve as a potential candidate for the automatic detection of MI in the clinical application.
Collapse
Affiliation(s)
- Wei Zeng
- School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan, 364012 People’s Republic of China
| | - Chengzhi Yuan
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881 USA
| |
Collapse
|
4
|
sEMG signal-based lower limb movements recognition using tunable Q-factor wavelet transform and Kraskov entropy. Ing Rech Biomed 2023. [DOI: 10.1016/j.irbm.2023.100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Sbrollini A, Barocci M, Mancinelli M, Paris M, Raffaelli S, Marcantoni I, Morettini M, Swenne CA, Burattini L. Automatic diagnosis of newly emerged heart failure from serial electrocardiography by repeated structuring & learning procedure. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Susič D, Poglajen G, Gradišek A. Identification of decompensation episodes in chronic heart failure patients based solely on heart sounds. Front Cardiovasc Med 2022; 9:1009821. [DOI: 10.3389/fcvm.2022.1009821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Decompensation episodes in chronic heart failure patients frequently result in unplanned outpatient or emergency room visits or even hospitalizations. Early detection of these episodes in their pre-symptomatic phase would likely enable the clinicians to manage this patient cohort with the appropriate modification of medical therapy which would in turn prevent the development of more severe heart failure decompensation thus avoiding the need for heart failure-related hospitalizations. Currently, heart failure worsening is recognized by the clinicians through characteristic changes of heart failure-related symptoms and signs, including the changes in heart sounds. The latter has proven to be largely unreliable as its interpretation is highly subjective and dependent on the clinicians’ skills and preferences. Previous studies have indicated that the algorithms of artificial intelligence are promising in distinguishing the heart sounds of heart failure patients from those of healthy individuals. In this manuscript, we focus on the analysis of heart sounds of chronic heart failure patients in their decompensated and recompensated phase. The data was recorded on 37 patients using two types of electronic stethoscopes. Using a combination of machine learning approaches, we obtained up to 72% classification accuracy between the two phases, which is better than the accuracy of the interpretation by cardiologists, which reached 50%. Our results demonstrate that machine learning algorithms are promising in improving early detection of heart failure decompensation episodes.
Collapse
|
7
|
A novel technique for the detection of myocardial dysfunction using ECG signals based on CEEMD, DWT, PSR and neural networks. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Kaya Y, Kuncan F, Tekin R. A New Approach for Congestive Heart Failure and Arrhythmia Classification Using Angle Transformation with LSTM. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06617-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Javeed A, Khan SU, Ali L, Ali S, Imrana Y, Rahman A. Machine Learning-Based Automated Diagnostic Systems Developed for Heart Failure Prediction Using Different Types of Data Modalities: A Systematic Review and Future Directions. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9288452. [PMID: 35154361 PMCID: PMC8831075 DOI: 10.1155/2022/9288452] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 12/13/2022]
Abstract
One of the leading causes of deaths around the globe is heart disease. Heart is an organ that is responsible for the supply of blood to each part of the body. Coronary artery disease (CAD) and chronic heart failure (CHF) often lead to heart attack. Traditional medical procedures (angiography) for the diagnosis of heart disease have higher cost as well as serious health concerns. Therefore, researchers have developed various automated diagnostic systems based on machine learning (ML) and data mining techniques. ML-based automated diagnostic systems provide an affordable, efficient, and reliable solutions for heart disease detection. Various ML, data mining methods, and data modalities have been utilized in the past. Many previous review papers have presented systematic reviews based on one type of data modality. This study, therefore, targets systematic review of automated diagnosis for heart disease prediction based on different types of modalities, i.e., clinical feature-based data modality, images, and ECG. Moreover, this paper critically evaluates the previous methods and presents the limitations in these methods. Finally, the article provides some future research directions in the domain of automated heart disease detection based on machine learning and multiple of data modalities.
Collapse
Affiliation(s)
- Ashir Javeed
- Aging Research Center, Karolinska Institutet, Sweden
| | - Shafqat Ullah Khan
- Department of Electrical Engineering, University of Science and Technology Bannu, Pakistan
| | - Liaqat Ali
- Department of Electronics, University of Buner, Buner, Pakistan
| | - Sardar Ali
- School of Engineering and Applied Sciences, Isra University Islamabad Campus, Pakistan
| | - Yakubu Imrana
- School of Engineering, University of Development Studies, Tamale, Ghana
- School of Computer Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Atiqur Rahman
- Department of Computer Science, University of Science and Technology Bannu, Pakistan
| |
Collapse
|
10
|
Wei C, Wang H, Lu Y, Hu F, Feng N, Zhou B, Jiang D, Wang Z. Recognition of lower limb movements using empirical mode decomposition and k-nearest neighbor entropy estimator with surface electromyogram signals. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Chen L, Yu H, Huang Y, Jin H. ECG Signal-Enabled Automatic Diagnosis Technology of Heart Failure. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5802722. [PMID: 34777736 PMCID: PMC8580675 DOI: 10.1155/2021/5802722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Usually, heart failure occurs when heart-related diseases are developed and continue to deteriorate veins and arteries. Heart failure is the final stage of heart disease, and it has become an important medical problem, particularly among the aging population. In medical diagnosis and treatment, the examination of heart failure contains various indicators such as electrocardiogram. It is one of the relatively common ways to collect heart failure or attack related information and is also used as a reference indicator for doctors. Electrocardiogram indicates the potential activity of patient's heart and directly reflects the changes in it. In this paper, a deep learning-based diagnosis system is presented for the early detection of heart failure particularly in elderly patients. For this purpose, we have used two datasets, Physio-Bank and MIMIC-III, which are publicly available, to extract ECG signals and thoroughly examine heart failure. Initially, a heart failure diagnosis model which is based on attention convolutional neural network (CBAM-CNN) is proposed to automatically extract features. Additionally, attention module adaptively learns the characteristics of local features and efficiently extracts the complex features of the ECG signal to perform classification diagnosis. To verify the exceptional performance of the proposed network model, various experiments were carried out in the realistic environment of hospitals. Influence of signal preprocessing on the performance of model is also discussed. These results show that the proposed CBAM-CNN model performance is better for both classifications of ECG signals. Likewise, the CBAM-CNN model is sensitive to noise, and its accuracy is effectively improved as soon as signal is refined.
Collapse
Affiliation(s)
- Lian Chen
- Wuhan University of Science & Technology, Hanyang Hospital, Department of Cardiology, Wuhan 430050, China
| | - Huiping Yu
- Wuhan University of Science & Technology, Hanyang Hospital, Department of Cardiology, Wuhan 430050, China
| | - Yupeng Huang
- Wuhan University of Science & Technology, Hanyang Hospital, Department of Cardiology, Wuhan 430050, China
| | - Hongyan Jin
- Wuhan University of Science & Technology, Hanyang Hospital, Department of Cardiology, Wuhan 430050, China
| |
Collapse
|
12
|
Zeng W, Yuan C. ECG arrhythmia classification based on variational mode decomposition, Shannon energy envelope and deterministic learning. INT J MACH LEARN CYB 2021. [DOI: 10.1007/s13042-021-01389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Zeng W, Yuan J, Yuan C, Wang Q, Liu F, Wang Y. A novel technique for the detection of myocardial dysfunction using ECG signals based on hybrid signal processing and neural networks. Soft comput 2021. [DOI: 10.1007/s00500-020-05465-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Song W, Wang W, Jiang F. Intelligent Diagnosis Method Based on 2DECG Model. INT J PATTERN RECOGN 2021. [DOI: 10.1142/s0218001421590072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electrophysiological signals can effectively reflect various physiological states of human body, and provide favorable basis for medical diagnosis. However, the correct analysis of electrophysiological signals requires professional medical diagnosis experience. With the rapid development of artificial intelligence, intelligent diagnosis methods based on deep learning are gradually applied in the medical field in order to reduce the dependence of diagnosis results on medical experience. Deep learning has made remarkable achievements in the field of image processing, through which deeper information can be extracted than through time-series signals. Therefore, this paper proposes a method of 2DECG diagnosis based on Faster R-CNN (Faster Region-based Convolutional Neural Network). First, the time-series ECG signal is transformed into two-dimensional curve. Then, the Faster R-CNN model based on beat is obtained by using dataset training. Finally, three kinds of ECG diseases are diagnosed by the Faster R-CNN model. The test results show that compared with the effect of one-dimensional CNN, the method proposed in this paper has high diagnosis accuracy and can help doctors to diagnose diseases more intuitively.
Collapse
Affiliation(s)
- Weibo Song
- School of Control Science and Engineering, Dalian University of Technology, Dalian, Liaoning, P. R. China
- College of Information Engineering, Dalian Ocean University, Dalian, Liaoning, P. R. China
| | - Wei Wang
- School of Control Science and Engineering, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Fengjiao Jiang
- College of Information Engineering, Dalian Ocean University, Dalian, Liaoning, P. R. China
| |
Collapse
|
15
|
Sharma M, Acharya UR. Automated detection of schizophrenia using optimal wavelet-based l 1 norm features extracted from single-channel EEG. Cogn Neurodyn 2021; 15:661-674. [PMID: 34367367 DOI: 10.1007/s11571-020-09655-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022] Open
Abstract
Schizophrenia (SZ) is a mental disorder, which affects the ability of human thinking, memory, and way of living. Manual screening of SZ patients is tedious, laborious and prone to human errors. Hence, we developed a computer-aided diagnosis (CAD) system to diagnose SZ patients accurately using single-channel electroencephalogram (EEG) signals. The EEG signals are nonlinear and non-stationary. Hence, we have used wavelet-based features to capture the hidden non-stationary nature present in the signal. First, the EEG signals are subjected to the the wavelet decomposition through six iterations, which yields seven sub-bands. The l 1 norm is computed for each sub-band. The extracted norm features are disseminated to various classification algorithms. We have obtained the highest accuracy of 99.21% and 97.2% using K-nearest neighbor classifiers with ten-fold and leave-one-subject-out cross-validations. The developed single-channel EEG wavelet-based CAD model can help the clinicians to confirm the outcome of their manual screening and obtain an accurate diagnosis.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad, India
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore.,Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan, ROC
| |
Collapse
|
16
|
Classification of Congestive Heart Failure from ECG Segments with a Multi-Scale Residual Network. Symmetry (Basel) 2020. [DOI: 10.3390/sym12122019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Congestive heart failure (CHF) poses a serious threat to human health. Once the diagnosis of CHF is established, clinical experts need to assess the severity of CHF in a timely manner. It is proved that electrocardiogram (ECG) signals are useful for assessing the severity of CHF. However, since the ECG perturbations are subtle, it is difficult for doctors to detect the differences of ECGs. In order to help doctors to make an accurate diagnosis, we proposed a novel multi-scale residual network (ResNet) to automatically classify CHF into four classifications according to the New York Heart Association (NYHA) functional classification system. Furthermore, in order to make the reported results more realistic, we used an inter-patient paradigm to divide the dataset, and segmented the ECG signals into two different intervals. The experimental results show that the proposed multi-scale ResNet-34 has achieved an average positive predictive value, sensitivity and accuracy of 93.49%, 93.44% and 93.60% respectively for two seconds of ECG segments. We have also obtained an average positive predictive value, sensitivity and accuracy of 94.16%, 93.79% and 94.29% respectively for five seconds of ECG segments. The proposed method can be used as an auxiliary tool to help doctors to classify CHF.
Collapse
|
17
|
A New Method for Refined Recognition for Heart Disease Diagnosis Based on Deep Learning. INFORMATION 2020. [DOI: 10.3390/info11120556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The proper evaluation of heart health requires professional medical experience. Therefore, in clinical diagnosis practice, the development direction is to reduce the high dependence of the diagnosis process on medical experience and to more effectively improve the diagnosis efficiency and accuracy. Deep learning has made remarkable achievements in intelligent image analysis technology involved in the medical process. From the aspect of cardiac diagnosis, image analysis can extract more profound and abundant information than sequential electrocardiogram (ECG) signals. Therefore, a new region recognition and diagnosis method model of a two-dimensional ECG (2D-ECG) signal based on an image format is proposed. This method can identify and diagnose each refined waveform in the cardiac conduction cycle reflected in the image format ECG signal, so as to realize the rapid and accurate positioning and visualization of the target recognition area and finally get the analysis results of specific diseases. The test results show that compared with the results obtained by a one-dimensional sequential ECG signal, the proposed model has higher average diagnostic accuracy (98.94%) and can assist doctors in disease diagnosis with better visualization effect.
Collapse
|
18
|
Zeng W, Yuan J, Yuan C, Wang Q, Liu F, Wang Y. Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks. Artif Intell Med 2020; 106:101848. [PMID: 32593387 DOI: 10.1016/j.artmed.2020.101848] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/16/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases (CVD) is the leading cause of human mortality and morbidity around the world, in which myocardial infarction (MI) is a silent condition that irreversibly damages the heart muscles. Currently, electrocardiogram (ECG) is widely used by the clinicians to diagnose MI patients due to its inexpensiveness and non-invasive nature. Pathological alterations provoked by MI cause slow conduction by increasing axial resistance on coupling between cells. This issue may cause abnormal patterns in the dynamics of the tip of the cardiac vector in the ECG signals. However, manual interpretation of the pathological alternations induced by MI is a time-consuming, tedious and subjective task. To overcome such disadvantages, computer-aided diagnosis techniques including signal processing and artificial intelligence tools have been developed. In this study we propose a novel technique for automatic detection of MI based on hybrid feature extraction and artificial intelligence tools. Tunable quality factor (Q-factor) wavelet transform (TQWT), variational mode decomposition (VMD) and phase space reconstruction (PSR) are utilized to extract representative features to form cardiac vectors with synthesis of the standard 12-lead and Frank XYZ leads. They are combined with neural networks to model, identify and detect abnormal patterns in the dynamics of cardiac system caused by MI. First, 12-lead ECG signals are reduced to 3-dimensional VCG signals, which are synthesized with Frank XYZ leads to build a hybrid 4-dimensional cardiac vector. Second, this vector is decomposed into a set of frequency subbands with a number of decomposition levels by using the TQWT method. Third, VMD is employed to decompose the subband of the 4-dimensional cardiac vector into different intrinsic modes, in which the first intrinsic mode contains the majority of the cardiac vector's energy and is considered to be the predominant intrinsic mode. It is selected to construct the reference variable for analysis. Fourth, phase space of the reference variable is reconstructed, in which the properties associated with the nonlinear cardiac system dynamics are preserved. Three-dimensional (3D) PSR together with Euclidean distance (ED) has been utilized to derive features, which demonstrate significant difference in cardiac system dynamics between normal (healthy) and MI cardiac vector signals. Fifth, cardiac system dynamics can be modeled and identified using neural networks, which employ the ED of 3D PSR of the reference variable as the input features. The difference of cardiac system dynamics between healthy control and MI cardiac vector is computed and used for the detection of MI based on a bank of estimators. Finally, data sets, which include conventional 12-lead and Frank XYZ leads ECG signal fragments from 148 patients with MI and 52 healthy controls from PTB diagnostic ECG database, are used for evaluation. By using the 10-fold cross-validation style, the achieved average classification accuracy is reported to be 97.98%. Currently, ST segment evaluation is one of the major and traditional ways for the MI detection. However, there exist weak or even undetectable ST segments in many ECG signals. Since the proposed method does not rely on the information of ST waves, it can serve as a complementary MI detection algorithm in the intensive care unit (ICU) of hospitals to assist the clinicians in confirming their diagnosis. Overall, our results verify that the proposed features may satisfactorily reflect cardiac system dynamics, and are complementary to the existing ECG features for automatic cardiac function analysis.
Collapse
Affiliation(s)
- Wei Zeng
- School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan 364012, PR China.
| | - Jian Yuan
- School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan 364012, PR China
| | - Chengzhi Yuan
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Qinghui Wang
- School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan 364012, PR China
| | - Fenglin Liu
- School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan 364012, PR China
| | - Ying Wang
- School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan 364012, PR China
| |
Collapse
|
19
|
|
20
|
Lih OS, Jahmunah V, San TR, Ciaccio EJ, Yamakawa T, Tanabe M, Kobayashi M, Faust O, Acharya UR. Comprehensive electrocardiographic diagnosis based on deep learning. Artif Intell Med 2020; 103:101789. [PMID: 32143796 DOI: 10.1016/j.artmed.2019.101789] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 12/31/2019] [Indexed: 11/15/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and coronary artery disease (CAD) is a major contributor. Early-stage CAD can progress if undiagnosed and left untreated, leading to myocardial infarction (MI) that may induce irreversible heart muscle damage, resulting in heart chamber remodeling and eventual congestive heart failure (CHF). Electrocardiography (ECG) signals can be useful to detect established MI, and may also be helpful for early diagnosis of CAD. For the latter especially, the ECG perturbations can be subtle and potentially misclassified during manual interpretation and/or when analyzed by traditional algorithms found in ECG instrumentation. For automated diagnostic systems (ADS), deep learning techniques are favored over conventional machine learning techniques, due to the automatic feature extraction and selection processes involved. This paper highlights various deep learning algorithms exploited for the classification of ECG signals into CAD, MI, and CHF conditions. The Convolutional Neural Network (CNN), followed by combined CNN and Long Short-Term Memory (LSTM) models, appear to be the most useful architectures for classification. A 16-layer LSTM model was developed in our study and validated using 10-fold cross-validation. A classification accuracy of 98.5% was achieved. Our proposed model has the potential to be a useful diagnostic tool in hospitals for the classification of abnormal ECG signals.
Collapse
Affiliation(s)
- Oh Shu Lih
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | - V Jahmunah
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | | | | | - Toshitaka Yamakawa
- Department of Computer Science and Electrical Engineering, Kumamoto University, Japan
| | - Masayuki Tanabe
- Department of Computer Science and Electrical Engineering, Kumamoto University, Japan; International Research Organization for Advanced Science and Technology (IROAST) Kumamoto University, Kumamoto, Japan
| | - Makiko Kobayashi
- Department of Computer Science and Electrical Engineering, Kumamoto University, Japan
| | - Oliver Faust
- Department of Engineering and Mathematics, Sheffield Hallam University, United Kingdom
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan; International Research Organization for Advanced Science and Technology (IROAST) Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
21
|
Tuncer T, Dogan S, Pławiak P, Rajendra Acharya U. Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals. Knowl Based Syst 2019. [DOI: 10.1016/j.knosys.2019.104923] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Sharma M, Patel S, Choudhary S, Acharya UR. Automated Detection of Sleep Stages Using Energy-Localized Orthogonal Wavelet Filter Banks. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-04197-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Rajput JS, Sharma M, Acharya UR. Hypertension Diagnosis Index for Discrimination of High-Risk Hypertension ECG Signals Using Optimal Orthogonal Wavelet Filter Bank. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4068. [PMID: 31652712 PMCID: PMC6861956 DOI: 10.3390/ijerph16214068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
Hypertension (HT) is an extreme increment in blood pressure that can prompt a stroke, kidney disease, and heart attack. HT does not show any symptoms at the early stage, but can lead to various cardiovascular diseases. Hence, it is essential to identify it at the beginning stages. It is tedious to analyze electrocardiogram (ECG) signals visually due to their low amplitude and small bandwidth. Hence, to avoid possible human errors in the diagnosis of HT patients, an automated ECG-based system is developed. This paper proposes the computerized segregation of low-risk hypertension (LRHT) and high-risk hypertension (HRHT) using ECG signals with an optimal orthogonal wavelet filter bank (OWFB) system. The HRHT class is comprised of patients with myocardial infarction, stroke, and syncope ECG signals. The ECG-data are acquired from physionet's smart health for accessing risk via ECG event (SHAREE) database, which contains recordings of a total 139 subjects. First, ECG signals are segmented into epochs of 5 min. The segmented epochs are then decomposed into six wavelet sub-bands (WSBs) using OWFB. We extract the signal fractional dimension (SFD) and log-energy (LOGE) features from all six WSBs. Using Student's t-test ranking, we choose the high ranked WSBs of LOGE and SFD features. We develop a novel hypertension diagnosis index (HDI) using two features (SFD and LOGE) to discriminate LRHT and HRHT classes using a single numeric value. The performance of our developed system is found to be encouraging, and we believe that it can be employed in intensive care units to monitor the abrupt rise in blood pressure while screening the ECG signals, provided this is tested with an extensive independent database.
Collapse
Affiliation(s)
- Jaypal Singh Rajput
- Department of Electrical Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad 380026, India.
| | - Manish Sharma
- Department of Electrical Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad 380026, India.
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489 Singapore, Singapore.
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, 599494 Singapore, Singapore.
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
24
|
Sharma M, Singh S, Kumar A, San Tan R, Acharya UR. Automated detection of shockable and non-shockable arrhythmia using novel wavelet-based ECG features. Comput Biol Med 2019; 115:103446. [PMID: 31627019 DOI: 10.1016/j.compbiomed.2019.103446] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 02/01/2023]
Abstract
Malignant arrhythmia can lead to sudden cardiac death (SCD). Shockable arrhythmia can be terminated with device electrical shock therapies. Ventricular-tachycardia (VT) and ventricular fibrillation (VF) are responsive to electrical anti-tachycardia pacing therapy and defibrillation which help to restore normal electrical and mechanical function of the heart. In contrast, non-shockable arrhythmia like asystole and bradycardia are not responsive to electric shock therapy. Distinguishing between shockable and non-shockable arrhythmia is an important diagnostic challenge that has practical clinical relevance. It is difficult to accurately differentiate between these two types of arrhythmia by manual inspection of electrocardiogram (ECG) segments within the short time duration before triggering the device for electrical therapy. Automated defibrillators are equipped with automatic shockable arrhythmia detection algorithms based on ECG morphological features, which may possess variable diagnostic performance depending on machine models. In our work, we have designed a robust system using wavelet decomposition filter banks for extraction of features from the ECG signal and then classifying the features. We believe this method will improve the accuracy of discriminating between shockable and non-shockable arrhythmia compared with existing conventional algorithms. We used a novel three channel orthogonal wavelet filter bank, which extracted features from ECG epochs of duration 2 s to distinguish between shockable and non-shockable arrhythmia. The fuzzy, Renyi and sample entropies are extracted from the various wavelet coefficients and fed to support vector machine (SVM) classifier for automated classification. We have obtained an accuracy of 98.9%, sensitivity and specificity of 99.08% and 97.11.9%, respectively, using 10-fold cross validation. The area under the receiver operating characteristic has been found to be 0.99 with F1-score of 0.994. The system developed is more accurate than the existing algorithms. Hence, the proposed system can be employed in automated defibrillators inside and outside hospitals for emergency revival of patients suffering from SCD. These automated defibrillators can also be implanted inside the human body for automatic detection of potentially fatal shockable arrhythmia and to deliver an appropriate electric shock to the heart.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad, India.
| | - Swapnil Singh
- Department of Project Management, National Institute of Industrial Engineering, Mumbai, India
| | - Abhishek Kumar
- Department of Civil Engineering, Indian Institute of Technology, Madras, India
| | - Ru San Tan
- Department of Cardiology, National Heart Care Centre Singapore, Singapore.
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS, Singapore; International Research Organization for Advanced Science and Technology (IROAST) Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
25
|
Sharma M, Rajendra Acharya U. A new method to identify coronary artery disease with ECG signals and time-Frequency concentrated antisymmetric biorthogonal wavelet filter bank. Pattern Recognit Lett 2019. [DOI: 10.1016/j.patrec.2019.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Jahmunah V, Oh SL, Wei JKE, Ciaccio EJ, Chua K, San TR, Acharya UR. Computer-aided diagnosis of congestive heart failure using ECG signals - A review. Phys Med 2019; 62:95-104. [PMID: 31153403 DOI: 10.1016/j.ejmp.2019.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 12/16/2022] Open
Abstract
The heart muscle pumps blood to vital organs, which is indispensable for human life. Congestive heart failure (CHF) is characterized by the inability of the heart to pump blood adequately throughout the body without an increase in intracardiac pressure. The symptoms include lung and peripheral congestion, leading to breathing difficulty and swollen limbs, dizziness from reduced delivery of blood to the brain, as well as arrhythmia. Coronary artery disease, myocardial infarction, and medical co-morbidities such as kidney disease, diabetes, and high blood pressure all take a toll on the heart and can impair myocardial function. CHF prevalence is growing worldwide. It afflicts millions of people globally, and is a leading cause of death. Hence, proper diagnosis, monitoring and management are imperative. The importance of an objective CHF diagnostic tool cannot be overemphasized. Standard diagnostic tests for CHF include chest X-ray, magnetic resonance imaging (MRI), nuclear imaging, echocardiography, and invasive angiography. However, these methods are costly, time-consuming, and they can be operator-dependent. Electrocardiography (ECG) is inexpensive and widely accessible, but ECG changes are typically not specific for CHF diagnosis. A properly designed computer-aided detection (CAD) system for CHF, based on the ECG, would potentially reduce subjectivity and provide quantitative assessment for informed decision-making. Herein, we review existing CAD for automatic CHF diagnosis, and highlight the development of an ECG-based CAD diagnostic system that employs deep learning algorithms to automatically detect CHF.
Collapse
Affiliation(s)
- V Jahmunah
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore.
| | - Shu Lih Oh
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | - Joel Koh En Wei
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | | | - Kuang Chua
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | | | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Malaysia.
| |
Collapse
|
27
|
Sharma M, Raval M, Acharya UR. A new approach to identify obstructive sleep apnea using an optimal orthogonal wavelet filter bank with ECG signals. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.100170] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|