1
|
Moll G, Beilhack A. Editorial: Methods in alloimmunity and transplantation: 2023. Front Immunol 2024; 15:1516554. [PMID: 39588366 PMCID: PMC11586340 DOI: 10.3389/fimmu.2024.1516554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Affiliation(s)
- Guido Moll
- BIH Center for Regenerative Therapies (BCRT)
- Berlin-Brandenburg School for Regenerative Therapies (BSRT)
- Julius Wolff Institute (JWI) for Musculoskeletal Research
- Department of Nephrology and Internal Intensive Care Medicine, all three part of Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Andreas Beilhack
- Experimental Stem Cell Transplantation Group, Departments of Internal Medicine II and Department of Pediatrics, University Hospital Würzburg, Center of Experimental Molecular Medicine, Würzburg, Germany
| |
Collapse
|
2
|
Moll G, Lim WH, Penack O. Editorial: Emerging talents in alloimmunity and transplantation: 2022. Front Immunol 2024; 15:1393026. [PMID: 38558808 PMCID: PMC10978591 DOI: 10.3389/fimmu.2024.1393026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Guido Moll
- BIH Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Wai H. Lim
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Olaf Penack
- Department of Hematology, Oncology and Tumorimmunology, Charité Universitätsmedizin Berlin, Berlin, Germany
- BIH Biomedical Innovation Academy, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Khorki ME, Shi T, Cianciolo EE, Burg AR, Chukwuma PC, Picarsic JL, Morrice MK, Woodle ES, Maltzman JS, Ferguson A, Katz JD, Baker BM, Hildeman DA. Prior viral infection primes cross-reactive CD8+ T cells that respond to mouse heart allografts. Front Immunol 2023; 14:1287546. [PMID: 38143762 PMCID: PMC10748599 DOI: 10.3389/fimmu.2023.1287546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Significant evidence suggests a connection between transplant rejection and the presence of high levels of pre-existing memory T cells. Viral infection can elicit viral-specific memory T cells that cross-react with allo-MHC capable of driving allograft rejection in mice. Despite these advances, and despite their critical role in transplant rejection, a systematic study of allo-reactive memory T cells, their specificities, and the role of cross-reactivity with viral antigens has not been performed. Methods Here, we established a model to identify, isolate, and characterize cross-reactive T cells using Nur77 reporter mice (C57BL/6 background), which transiently express GFP exclusively upon TCR engagement. We infected Nur77 mice with lymphocytic choriomeningitis virus (LCMV-Armstrong) to generate a robust memory compartment, where quiescent LCMV-specific memory CD8+ T cells could be readily tracked with MHC tetramer staining. Then, we transplanted LCMV immune mice with allogeneic hearts and monitored expression of GFP within MHC-tetramer defined viral-specific T cells as an indicator of their ability to cross-react with alloantigens. Results Strikingly, prior LCMV infection significantly increased the kinetics and magnitude of rejection as well as CD8+ T cell recruitment into allogeneic, but not syngeneic, transplanted hearts, relative to non-infected controls. Interestingly, as early as day 1 after allogeneic heart transplant an average of ~8% of MHC-tetramer+ CD8+ T cells expressed GFP, in contrast to syngeneic heart transplants, where the frequency of viral-specific CD8+ T cells that were GFP+ was <1%. These data show that a significant percentage of viral-specific memory CD8+ T cells expressed T cell receptors that also recognized alloantigens in vivo. Notably, the frequency of cross-reactive CD8+ T cells differed depending upon the viral epitope. Further, TCR sequences derived from cross-reactive T cells harbored distinctive motifs that may provide insight into cross-reactivity and allo-specificity. Discussion In sum, we have established a mouse model to track viral-specific, allo-specific, and cross-reactive T cells; revealing that prior infection elicits substantial numbers of viral-specific T cells that cross-react to alloantigen, respond very early after transplant, and may promote rapid rejection.
Collapse
Affiliation(s)
- M. Eyad Khorki
- Division of Nephrology & Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tiffany Shi
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Eileen E. Cianciolo
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ashley R. Burg
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - P. Chukwunalu Chukwuma
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - Jennifer L. Picarsic
- Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mary K. Morrice
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - E. Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jonathan S. Maltzman
- Department of Medicine, Stanford University, Palo Alto, CA, United States
- Geriatric Research and Education Clinical Center, Veterans Affairs (VA) Palo Alto Health Care System, Palo Alto, CA, United States
| | - Autumn Ferguson
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brian M. Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - David A. Hildeman
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
4
|
Samojlik MM, Stabler CL. Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes. Acta Biomater 2021; 133:87-101. [PMID: 34102338 PMCID: PMC9148663 DOI: 10.1016/j.actbio.2021.05.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
The effective suppression of adaptive immune responses is essential for the success of allogeneic cell therapies. In islet transplantation for Type 1 Diabetes, pre-existing autoimmunity provides an additional hurdle, as memory autoimmune T cells mediate both an autoantigen-specific attack on the donor beta cells and an alloantigen-specific attack on the donor graft cells. Immunosuppressive agents used for islet transplantation are generally successful in suppressing alloimmune responses, but dramatically hinder the widespread adoption of this therapeutic approach and fail to control memory T cell populations, which leaves the graft vulnerable to destruction. In this review, we highlight the capacity of biomaterials to provide local and nuanced instruction to suppress or alter immune pathways activated in response to an allogeneic islet transplant. Biomaterial immunoisolation is a common approach employed to block direct antigen recognition and downstream cell-mediated graft destruction; however, immunoisolation alone still permits shed donor antigens to escape into the host environment, resulting in indirect antigen recognition, immune cell activation, and the creation of a toxic graft site. Designing materials to decrease antigen escape, improve cell viability, and increase material compatibility are all approaches that can decrease the local release of antigen and danger signals into the implant microenvironment. Implant materials can be further enhanced through the local delivery of anti-inflammatory, suppressive, chemotactic, and/or tolerogenic agents, which serve to control both the innate and adaptive immune responses to the implant with a benefit of reduced systemic effects. Lessons learned from understanding how to manipulate allogeneic and autogenic immune responses to pancreatic islets can also be applied to other cell therapies to improve their efficacy and duration. STATEMENT OF SIGNIFICANCE: This review explores key immunologic concepts and critical pathways mediating graft rejection in Type 1 Diabetes, which can instruct the future purposeful design of immunomodulatory biomaterials for cell therapy. A summary of immunological pathways initiated following cellular implantation, as well as current systemic immunomodulatory agents used, is provided. We then outline the potential of biomaterials to modulate these responses. The capacity of polymeric encapsulation to block some powerful rejection pathways is covered. We also highlight the role of cellular health and biocompatibility in mitigating immune responses. Finally, we review the use of bioactive materials to proactively modulate local immune responses, focusing on key concepts of anti-inflammatory, suppressive, and tolerogenic agents.
Collapse
Affiliation(s)
- Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Burrack AL, Landry LG, Siebert J, Coulombe M, Gill RG, Nakayama M. Simultaneous Recognition of Allogeneic MHC and Cognate Autoantigen by Autoreactive T Cells in Transplant Rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1504-1512. [PMID: 29311365 PMCID: PMC5809255 DOI: 10.4049/jimmunol.1700856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022]
Abstract
The autoimmune condition is a primary obstacle to inducing tolerance in type 1 diabetes patients receiving allogeneic pancreas transplants. It is unknown how autoreactive T cells that recognize self-MHC molecules contribute to MHC-disparate allograft rejection. In this report, we show the presence and accumulation of dual-reactive, that is autoreactive and alloreactive, T cells in C3H islet allografts that were transplanted into autoimmune diabetic NOD mice. Using high-throughput sequencing, we discovered that T cells prevalent in allografts share identical TCRs with autoreactive T cells present in pancreatic islets. T cells expressing TCRs that are enriched in allograft lesions recognized C3H MHC molecules, and five of six cell lines expressing these TCRs were also reactive to NOD islet cells. These results reveal the presence of autoreactive T cells that mediate cross-reactive alloreactivity, and indicate a requirement for regulating such dual-reactive T cells in tissue replacement therapies given to autoimmune individuals.
Collapse
Affiliation(s)
- Adam L Burrack
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Laurie G Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045; and
| | | | - Marilyne Coulombe
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
| | - Ronald G Gill
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045;
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045; and
| |
Collapse
|
6
|
How an alloreactive T-cell receptor achieves peptide and MHC specificity. Proc Natl Acad Sci U S A 2017; 114:E4792-E4801. [PMID: 28572406 DOI: 10.1073/pnas.1700459114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
T-cell receptor (TCR) allorecognition is often presumed to be relatively nonspecific, attributable to either a TCR focus on exposed major histocompatibility complex (MHC) polymorphisms or the degenerate recognition of allopeptides. However, paradoxically, alloreactivity can proceed with high peptide and MHC specificity. Although the underlying mechanisms remain unclear, the existence of highly specific alloreactive TCRs has led to their use as immunotherapeutics that can circumvent central tolerance and limit graft-versus-host disease. Here, we show how an alloreactive TCR achieves peptide and MHC specificity. The HCV1406 TCR was cloned from T cells that expanded when a hepatitis C virus (HCV)-infected HLA-A2- individual received an HLA-A2+ liver allograft. HCV1406 was subsequently shown to recognize the HCV nonstructural protein 3 (NS3):1406-1415 epitope with high specificity when presented by HLA-A2. We show that NS3/HLA-A2 recognition by the HCV1406 TCR is critically dependent on features unique to both the allo-MHC and the NS3 epitope. We also find cooperativity between structural mimicry and a crucial peptide "hot spot" and demonstrate its role, along with the MHC, in directing the specificity of allorecognition. Our results help explain the paradox of specificity in alloreactive TCRs and have implications for their use in immunotherapy and related efforts to manipulate TCR recognition, as well as alloreactivity in general.
Collapse
|
7
|
Iida S, Tsuda H, Tanaka T, Kish DD, Abe T, Su CA, Abe R, Tanabe K, Valujskikh A, Baldwin WM, Fairchild RL. IL-1 Receptor Signaling on Graft Parenchymal Cells Regulates Memory and De Novo Donor-Reactive CD8 T Cell Responses to Cardiac Allografts. THE JOURNAL OF IMMUNOLOGY 2016; 196:2827-37. [PMID: 26856697 DOI: 10.4049/jimmunol.1500876] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 01/04/2016] [Indexed: 01/03/2023]
Abstract
Reperfusion of organ allografts induces a potent inflammatory response that directs rapid memory T cell, neutrophil, and macrophage graft infiltration and their activation to express functions mediating graft tissue injury. The role of cardiac allograft IL-1 receptor (IL-1R) signaling in this early inflammation and the downstream primary alloimmune response was investigated. When compared with complete MHC-mismatched wild-type cardiac allografts, IL-1R(-/-) allografts had marked decreases in endogenous memory CD8 T cell and neutrophil infiltration and expression of proinflammatory mediators at early times after transplant, whereas endogenous memory CD4 T cell and macrophage infiltration was not decreased. IL-1R(-/-) allograft recipients also had marked decreases in de novo donor-reactive CD8, but not CD4, T cell development to IFN-γ-producing cells. CD8 T cell-mediated rejection of IL-1R(-/-) cardiac allografts took 3 wk longer than wild-type allografts. Cardiac allografts from reciprocal bone marrow reconstituted IL-1R(-/-)/wild-type chimeric donors indicated that IL-1R signaling on graft nonhematopoietic-derived, but not bone marrow-derived, cells is required for the potent donor-reactive memory and primary CD8 T cell alloimmune responses observed in response to wild-type allografts. These studies implicate IL-1R-mediated signals by allograft parenchymal cells in generating the stimuli-provoking development and elicitation of optimal alloimmune responses to the grafts.
Collapse
Affiliation(s)
- Shoichi Iida
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195; Division of Immunobiology, Research Institute for Biological Science, Science University of Tokyo, Chiba 278-8510, Japan; Department of Urology, Tokyo Women's Medical University, Tokyo 162-0054, Japan
| | - Hidetoshi Tsuda
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195; Department of Urology, Osaka University School of Medicine, Osaka 565-0871, Japan; and
| | - Toshiaki Tanaka
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195
| | - Danielle D Kish
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195
| | - Toyofumi Abe
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195; Department of Urology, Osaka University School of Medicine, Osaka 565-0871, Japan; and
| | - Charles A Su
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biological Science, Science University of Tokyo, Chiba 278-8510, Japan; Department of Urology, Tokyo Women's Medical University, Tokyo 162-0054, Japan
| | - Kazunari Tanabe
- Division of Immunobiology, Research Institute for Biological Science, Science University of Tokyo, Chiba 278-8510, Japan; Department of Urology, Tokyo Women's Medical University, Tokyo 162-0054, Japan
| | - Anna Valujskikh
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195
| | - William M Baldwin
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Robert L Fairchild
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
8
|
He L, De Groot AS, Bailey-Kellogg C. Hit-and-run, hit-and-stay, and commensal bacteria present different peptide content when viewed from the perspective of the T cell. Vaccine 2015; 33:6922-9. [PMID: 26428457 DOI: 10.1016/j.vaccine.2015.08.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/10/2015] [Accepted: 08/24/2015] [Indexed: 01/02/2023]
Abstract
Different types of bacteria face different pressures from the immune system, with those that persist ("hit-and-stay") potentially having to adapt more in order to escape than those prone to short-lived infection ("hit-and-run"), and with commensal bacteria potentially different from both due to additional physical mechanisms for avoiding immune detection. The Janus Immunogenicity Score (JIS) was recently developed to assess the likelihood of T cell recognition of an antigen, using an analysis that considers both binding of a peptide within the antigen by major histocompatability complex (MHC) and recognition of the peptide:MHC complex by cognate T cell receptor (TCR). This score was shown to be predictive of T effector vs. T regulatory or null responses in experimental data, as well as to distinguish viruses representative of the hit-and-stay vs. hit-and-run phenotypes. Here, JIS-based analyses were conducted in order to characterize the extent to which the pressure to avoid T cell recognition is manifested in genomic differences among representative hit-and-run, hit-and-stay, and commensal bacteria. Overall, extracellular proteins were found to have different JIS profiles from cytoplasmic ones. Contrasting the bacterial groups, extracellular proteins were shown to be quite different across the groups, much more so than intracellular proteins. The differences were evident even at the level of corresponding peptides in homologous protein pairs from hit-and-run and hit-and-stay bacteria. The multi-level analysis of patterns of immunogenicity across different groups of bacteria provides a new way to approach questions of bacterial immune camouflage or escape, as well as to approach the selection and optimization of candidates for vaccine design.
Collapse
Affiliation(s)
- Lu He
- Dartmouth Computer Science, Hanover, NH 03755, United States
| | - Anne S De Groot
- EpiVax, Inc., Providence, RI 02903, United States; Institute for Immunology and Informatics, University of Rhode Island, Providence, RI 02903, United States
| | | |
Collapse
|
9
|
Attaf M, Legut M, Cole DK, Sewell AK. The T cell antigen receptor: the Swiss army knife of the immune system. Clin Exp Immunol 2015; 181:1-18. [PMID: 25753381 PMCID: PMC4469151 DOI: 10.1111/cei.12622] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 01/01/2023] Open
Abstract
The mammalian T cell receptor (TCR) orchestrates immunity by responding to many billions of different ligands that it has never encountered before and cannot adapt to at the protein sequence level. This remarkable receptor exists in two main heterodimeric isoforms: αβ TCR and γδ TCR. The αβ TCR is expressed on the majority of peripheral T cells. Most αβ T cells recognize peptides, derived from degraded proteins, presented at the cell surface in molecular cradles called major histocompatibility complex (MHC) molecules. Recent reports have described other αβ T cell subsets. These 'unconventional' T cells bear TCRs that are capable of recognizing lipid ligands presented in the context of the MHC-like CD1 protein family or bacterial metabolites bound to the MHC-related protein 1 (MR1). γδ T cells constitute a minority of the T cell pool in human blood, but can represent up to half of total T cells in tissues such as the gut and skin. The identity of the preferred ligands for γδ T cells remains obscure, but it is now known that this receptor can also functionally engage CD1-lipid, or immunoglobulin (Ig) superfamily proteins called butyrophilins in the presence of pyrophosphate intermediates of bacterial lipid biosynthesis. Interactions between TCRs and these ligands allow the host to discriminate between self and non-self and co-ordinate an attack on the latter. Here, we describe how cells of the T lymphocyte lineage and their antigen receptors are generated and discuss the various modes of antigen recognition by these extraordinarily versatile receptors.
Collapse
Affiliation(s)
- M Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - M Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - D K Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - A K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
10
|
Defining the alloreactive T cell repertoire using high-throughput sequencing of mixed lymphocyte reaction culture. PLoS One 2014; 9:e111943. [PMID: 25365040 PMCID: PMC4218856 DOI: 10.1371/journal.pone.0111943] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/02/2014] [Indexed: 12/20/2022] Open
Abstract
The cellular immune response is the most important mediator of allograft rejection and is a major barrier to transplant tolerance. Delineation of the depth and breadth of the alloreactive T cell repertoire and subsequent application of the technology to the clinic may improve patient outcomes. As a first step toward this, we have used MLR and high-throughput sequencing to characterize the alloreactive T cell repertoire in healthy adults at baseline and 3 months later. Our results demonstrate that thousands of T cell clones proliferate in MLR, and that the alloreactive repertoire is dominated by relatively high-abundance T cell clones. This clonal make up is consistently reproducible across replicates and across a span of three months. These results indicate that our technology is sensitive and that the alloreactive TCR repertoire is broad and stable over time. We anticipate that application of this approach to track donor-reactive clones may positively impact clinical management of transplant patients.
Collapse
|
11
|
Pierce BG, Weng Z. A flexible docking approach for prediction of T cell receptor-peptide-MHC complexes. Protein Sci 2014; 22:35-46. [PMID: 23109003 DOI: 10.1002/pro.2181] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/15/2012] [Indexed: 11/10/2022]
Abstract
T cell receptors (TCRs) are immune proteins that specifically bind to antigenic molecules, which are often foreign peptides presented by major histocompatibility complex proteins (pMHCs), playing a key role in the cellular immune response. To advance our understanding and modeling of this dynamic immunological event, we assembled a protein-protein docking benchmark consisting of 20 structures of crystallized TCR/pMHC complexes for which unbound structures exist for both TCR and pMHC. We used our benchmark to compare predictive performance using several flexible and rigid backbone TCR/pMHC docking protocols. Our flexible TCR docking algorithm, TCRFlexDock, improved predictive success over the fixed backbone protocol, leading to near-native predictions for 80% of the TCR/pMHC cases among the top 10 models, and 100% of the cases in the top 30 models. We then applied TCRFlexDock to predict the two distinct docking modes recently described for a single TCR bound to two different antigens, and tested several protein modeling scoring functions for prediction of TCR/pMHC binding affinities. This algorithm and benchmark should enable future efforts to predict, and design of uncharacterized TCR/pMHC complexes.
Collapse
Affiliation(s)
- Brian G Pierce
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
12
|
He L, De Groot AS, Gutierrez AH, Martin WD, Moise L, Bailey-Kellogg C. Integrated assessment of predicted MHC binding and cross-conservation with self reveals patterns of viral camouflage. BMC Bioinformatics 2014; 15 Suppl 4:S1. [PMID: 25104221 PMCID: PMC4094998 DOI: 10.1186/1471-2105-15-s4-s1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Immune recognition of foreign proteins by T cells hinges on the formation of a ternary complex sandwiching a constituent peptide of the protein between a major histocompatibility complex (MHC) molecule and a T cell receptor (TCR). Viruses have evolved means of "camouflaging" themselves, avoiding immune recognition by reducing the MHC and/or TCR binding of their constituent peptides. Computer-driven T cell epitope mapping tools have been used to evaluate the degree to which particular viruses have used this means of avoiding immune response, but most such analyses focus on MHC-facing 'agretopes'. Here we set out a new means of evaluating the TCR faces of viral peptides in addition to their agretopes, integrating evaluations of both sides of the ternary complex in a single analysis. Methods This paper develops what we call the Janus Immunogenicity Score (JIS), bringing together a well-established method for predicting MHC binding, with a novel assessment of the potential for TCR binding based on similarity with self. Intuitively, both good MHC binding and poor self-similarity are required for high immunogenicity (i.e., a robust T effector response). Results Focusing on the class II antigen-processing pathway, we show that the JIS of T effector epitopes and null or regulatory epitopes deposited in a large database of epitopes (Immune Epitope Database) are significantly different. We then show that different types of viruses display significantly different patterns of scores over their constituent peptides, with viruses causing chronic infection (Epstein-Barr and cytomegalovirus) strongly shifted to lower scores relative to those causing acute infection (Ebola and Marburg). Similarly we find distinct patterns among influenza proteins in H1N1 (a strain against which human populations rapidly developed immunity) and H5N1 and H7N9 (highly pathogenic avian flu strains, with significantly greater case mortality rates). Conclusion The Janus Immunogenicity Score, which integrates MHC binding and TCR cross-reactivity, provides a new tool for studying immunogenicity of pathogens and may improve the selection and optimization of antigenic elements for vaccine design.
Collapse
|
13
|
Bhati M, Cole DK, McCluskey J, Sewell AK, Rossjohn J. The versatility of the αβ T-cell antigen receptor. Protein Sci 2014; 23:260-72. [PMID: 24375592 DOI: 10.1002/pro.2412] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 02/06/2023]
Abstract
The T-cell antigen receptor is a heterodimeric αβ protein (TCR) expressed on the surface of T-lymphocytes, with each chain of the TCR comprising three complementarity-determining regions (CDRs) that collectively form the antigen-binding site. Unlike antibodies, which are closely related proteins that recognize intact protein antigens, TCRs classically bind, via their CDR loops, to peptides (p) that are presented by molecules of the major histocompatibility complex (MHC). This TCR-pMHC interaction is crucially important in cell-mediated immunity, with the specificity in the cellular immune response being attributable to MHC polymorphism, an extensive TCR repertoire and a variable peptide cargo. The ensuing structural and biophysical studies within the TCR-pMHC axis have been highly informative in understanding the fundamental events that underpin protective immunity and dysfunctional T-cell responses that occur during autoimmunity. In addition, TCRs can recognize the CD1 family, a family of MHC-related molecules that instead of presenting peptides are ideally suited to bind lipid-based antigens. Structural studies within the CD1-lipid antigen system are beginning to inform us how lipid antigens are specifically presented by CD1, and how such CD1-lipid antigen complexes are recognized by the TCR. Moreover, it has recently been shown that certain TCRs can bind to vitamin B based metabolites that are bound to an MHC-like molecule termed MR1. Thus, TCRs can recognize peptides, lipids, and small molecule metabolites, and here we review the basic principles underpinning this versatile and fascinating receptor recognition system that is vital to a host's survival.
Collapse
Affiliation(s)
- Mugdha Bhati
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | | | | | | | | |
Collapse
|
14
|
Predisposed αβ T cell antigen receptor recognition of MHC and MHC-I like molecules? Curr Opin Immunol 2013; 25:653-9. [PMID: 23993410 DOI: 10.1016/j.coi.2013.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 12/11/2022]
Abstract
The diverse αβ T cell receptor (TCR) repertoire exhibits versatility in its ability to generate antigen (Ag) receptors capable of interacting with polymorphic Major Histocompatibility Complex (MHC) molecules and monomorphic MHC-I like molecules, including the CD1 and MR1 families. Collectively, these evolutionarily related Ag-presenting molecules present peptides, lipids and vitamin B metabolites for T cell surveillance. Interestingly, whilst common TCR gene usage can underpin recognition of these distinct classes of Ags, it is unclear whether the 'rules' that govern αβTCR-Ag MHC interactions are shared. We highlight recent observations in the context of TCR biases towards MHC and MHC-I like molecules.
Collapse
|
15
|
Burrows SR, Miles JJ. Immune parameters to consider when choosing T-cell receptors for therapy. Front Immunol 2013; 4:229. [PMID: 23935599 PMCID: PMC3733007 DOI: 10.3389/fimmu.2013.00229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/22/2013] [Indexed: 11/13/2022] Open
Abstract
T-cell receptor (TCR) therapy has arrived as a realistic treatment option for many human diseases. TCR gene therapy allows for the mass redirection of T-cells against a defined antigen while high affinity TCR engineering allows for the creation of a new class of soluble drugs. However, deciding which TCR blueprint to take forward for gene therapy or engineering is difficult. More than one quintillion TCR combinations can be generated by somatic recombination and we are only now beginning to appreciate that not all are functionally equal. TCRs can exhibit high or low degrees of HLA-restricted cross-reactivity and alloreact against one or a combination of HLA alleles. Identifying TCR candidates with high specificity and minimal cross-reactivity/alloreactivity footprints before engineering is obviously highly desirable. Here we will summarize what we currently know about TCR biology with regard to immunoengineering.
Collapse
Affiliation(s)
- Scott R Burrows
- Human Immunity Laboratory and Cellular Immunology Laboratory, Queensland Institute of Medical Research , Brisbane, QLD , Australia ; School of Medicine, The University of Queensland , Brisbane, QLD , Australia
| | | |
Collapse
|
16
|
Gras S, Burrows SR, Turner SJ, Sewell AK, McCluskey J, Rossjohn J. A structural voyage toward an understanding of the MHC-I-restricted immune response: lessons learned and much to be learned. Immunol Rev 2012; 250:61-81. [DOI: 10.1111/j.1600-065x.2012.01159.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephanie Gras
- Department of Biochemistry and Molecular Biology; School of Biomedical Sciences; Monash University; Clayton; Australia
| | - Scott R. Burrows
- Queensland Institute of Medical Research and Australian Centre for Vaccine Development; Brisbane; Australia
| | - Stephen J. Turner
- Department of Microbiology and Immunology; University of Melbourne; Parkville; Australia
| | - Andrew K. Sewell
- Institute of Infection and Immunity; Cardiff University School of Medicine; Cardiff; UK
| | - James McCluskey
- Department of Microbiology and Immunology; University of Melbourne; Parkville; Australia
| | | |
Collapse
|
17
|
Jöris MM, van Rood JJ, Roelen DL, Oudshoorn M, Claas FHJ. A Proposed Algorithm Predictive for Cytotoxic T Cell Alloreactivity. THE JOURNAL OF IMMUNOLOGY 2012; 188:1868-73. [DOI: 10.4049/jimmunol.1102086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
D'Orsogna LJ, Roelen DL, Doxiadis IIN, Claas FHJ. TCR cross-reactivity and allorecognition: new insights into the immunogenetics of allorecognition. Immunogenetics 2011; 64:77-85. [PMID: 22146829 PMCID: PMC3253994 DOI: 10.1007/s00251-011-0590-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/11/2011] [Indexed: 12/25/2022]
Abstract
Alloreactive T cells are core mediators of graft rejection and are a potent barrier to transplantation tolerance. It was previously unclear how T cells educated in the recipient thymus could recognize allogeneic HLA molecules. Recently it was shown that both naïve and memory CD4+ and CD8+ T cells are frequently cross-reactive against allogeneic HLA molecules and that this allorecognition exhibits exquisite peptide and HLA specificity and is dependent on both public and private specificities of the T cell receptor. In this review we highlight new insights gained into the immunogenetics of allorecognition, with particular emphasis on how viral infection and vaccination may specifically activate allo-HLA reactive T cells. We also briefly discuss the potential for virus-specific T cell infusions to produce GvHD. The progress made in understanding the molecular basis of allograft rejection will hopefully be translated into improved allograft function and/or survival, and eventually tolerance induction.
Collapse
Affiliation(s)
- L J D'Orsogna
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, PO Box 9600, 2300RC Leiden, the Netherlands.
| | | | | | | |
Collapse
|
19
|
Zhang S, Liu J, Cheng H, Tan S, Qi J, Yan J, Gao GF. Structural basis of cross-allele presentation by HLA-A*0301 and HLA-A*1101 revealed by two HIV-derived peptide complexes. Mol Immunol 2011; 49:395-401. [DOI: 10.1016/j.molimm.2011.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/20/2011] [Accepted: 08/21/2011] [Indexed: 11/27/2022]
|
20
|
Duffy MM, Pindjakova J, Hanley SA, McCarthy C, Weidhofer GA, Sweeney EM, English K, Shaw G, Murphy JM, Barry FP, Mahon BP, Belton O, Ceredig R, Griffin MD. Mesenchymal stem cell inhibition of T-helper 17 cell- differentiation is triggered by cell-cell contact and mediated by prostaglandin E2 via the EP4 receptor. Eur J Immunol 2011; 41:2840-51. [PMID: 21710489 DOI: 10.1002/eji.201141499] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/30/2011] [Accepted: 06/21/2011] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) inhibit T-cell activation and proliferation but their effects on individual T-cell-effector pathways and on memory versus naïve T cells remain unclear. MSC influence on the differentiation of naïve and memory CD4(+) T cells toward the Th17 phenotype was examined. CD4(+) T cells exposed to Th17-skewing conditions exhibited reduced CD25 and IL-17A expression following MSC co-culture. Inhibition of IL-17A production persisted upon re-stimulation in the absence of MSCs. These effects were attenuated when cell-cell contact was prevented. Th17 cultures from highly purified naïve- and memory-phenotype responders were similarly inhibited. Th17 inhibition by MSCs was reversed by indomethacin and a selective COX-2 inhibitor. Media from MSC/Th17 co-cultures contained increased prostaglandin E2 (PGE2) levels and potently suppressed Th17 differentiation in fresh cultures. MSC-mediated Th17 inhibition was reversed by a selective EP4 antagonist and was mimicked by synthetic PGE2 and a selective EP4 agonist. Activation-induced IL-17A secretion by naturally occurring, effector-memory Th17 cells from a urinary obstruction model was also inhibited by MSC co-culture in a COX-dependent manner. Overall, MSCs potently inhibit Th17 differentiation from naïve and memory T-cell precursors and inhibit naturally-occurring Th17 cells derived from a site of inflammation. Suppression entails cell-contact-dependent COX-2 induction resulting in direct Th17 inhibition by PGE2 via EP4.
Collapse
Affiliation(s)
- Michelle M Duffy
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yuan T, Zhang L, Feng L, Fan H, Zhang X. Chondrogenic differentiation and immunological properties of mesenchymal stem cells in collagen type I hydrogel. Biotechnol Prog 2011; 26:1749-58. [PMID: 20865774 DOI: 10.1002/btpr.484] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Allogeneic mesenchymal stem cells (MSCs) are regarded as promising seed cells for engineering cartilage. However, few researches have covered the immune properties of seeded MSCs. Collagen has been considered as good scaffold, whether it has inherent chondrogenic inducibility for MSCs is still in debate. In this study, engineering grafts are constructed by neonatal rabbit MSCs and collagen Type I hydrogel. After periods of culture, the appearance of chondroid tissue in the grafts and the cartilage matrix-specific genes expressions of seeded cells prove the inducibility of collagen hydrogel, even if the growth factors are absence. With the differentiation, immunological properties of MSCs are changing. The expressions of main histocompatibility complex (MHC) molecules increase and the ability to inhibit the proliferation of activated lymphocytes may be declined. But to a large extent, it keeps the low stimulating to allogeneic lymphocytes and the small absolute value of MHCs. The changes are adverse for avoiding inflammation and rejection. Therefore, suitable scaffold and engineering strategies should be selected. For the grafts based on Collagen I hydrogel and MSCs, a longer culture period might not be necessary. To maintain the immune regulation, a higher initial MSCs density in engineering grafts may be more meaningful.
Collapse
Affiliation(s)
- Tun Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
22
|
The structural bases of direct T‐cell allorecognition: implications for T‐cell‐mediated transplant rejection. Immunol Cell Biol 2011; 89:388-95. [DOI: 10.1038/icb.2010.150] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Yin Y, Li Y, Kerzic MC, Martin R, Mariuzza RA. Structure of a TCR with high affinity for self-antigen reveals basis for escape from negative selection. EMBO J 2011; 30:1137-48. [PMID: 21297580 DOI: 10.1038/emboj.2011.21] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/10/2011] [Indexed: 11/10/2022] Open
Abstract
The failure to eliminate self-reactive T cells during negative selection is a prerequisite for autoimmunity. To escape deletion, autoreactive T-cell receptors (TCRs) may form unstable complexes with self-peptide-MHC by adopting suboptimal binding topologies compared with anti-microbial TCRs. Alternatively, escape can occur by weak binding between self-peptides and MHC. We determined the structure of a human autoimmune TCR (MS2-3C8) bound to a self-peptide from myelin basic protein (MBP) and the multiple sclerosis-associated MHC molecule HLA-DR4. MBP is loosely accommodated in the HLA-DR4-binding groove, accounting for its low affinity. Conversely, MS2-3C8 binds MBP-DR4 as tightly as the most avid anti-microbial TCRs. MS2-3C8 engages self-antigen via a docking mode that resembles the optimal topology of anti-foreign TCRs, but is distinct from that of other autoreactive TCRs. Combined with a unique CDR3β conformation, this docking mode compensates for the weak binding of MBP to HLA-DR4 by maximizing interactions between MS2-3C8 and MBP. Thus, the MS2-3C8-MBP-DR4 complex reveals the basis for an alternative strategy whereby autoreactive T cells escape negative selection, yet retain the ability to initiate autoimmunity.
Collapse
Affiliation(s)
- Yiyuan Yin
- Institute for Bioscience and Biotechnology Research, University of Maryland, WM Keck Laboratory for Structural Biology, Rockville, MD, USA
| | | | | | | | | |
Collapse
|
24
|
Skelton TS, Kloc M, Ghobrial RM. Molecular and cellular pathways involved in the therapeutic functions of MHC molecules; a novel approach for mitigation of chronic rejection. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/oji.2011.12003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Affiliation(s)
- Brian J Nankivell
- Department of Renal Medicine, Westmead Hospital, Westmead, NSW 2145, Australia.
| | | |
Collapse
|
26
|
Abstract
For several decades, allograft rejection was believed to be mediated almost exclusively by cellular immune responses, but it is now realized that humoral responses also play a major role. Although directed typically against donor human leukocyte antigen, it is becoming increasingly evident that the antibody response can also target autoantigens that are shared between donor and recipient and that this autoantibody may contribute to graft rejection. Many aspects of transplant-induced humoral autoimmunity remain poorly understood and key questions persist; not least what triggers the response and how autoantibody causes graft damage. Here, we collate results from recent clinical and experimental studies in transplantation and autoimmune diseases to propose answers to these questions.
Collapse
|
27
|
Sagoo P, Perucha E, Sawitzki B, Tomiuk S, Stephens DA, Miqueu P, Chapman S, Craciun L, Sergeant R, Brouard S, Rovis F, Jimenez E, Ballow A, Giral M, Rebollo-Mesa I, Le Moine A, Braudeau C, Hilton R, Gerstmayer B, Bourcier K, Sharif A, Krajewska M, Lord GM, Roberts I, Goldman M, Wood KJ, Newell K, Seyfert-Margolis V, Warrens AN, Janssen U, Volk HD, Soulillou JP, Hernandez-Fuentes MP, Lechler RI. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J Clin Invest 2010; 120:1848-61. [PMID: 20501943 DOI: 10.1172/jci39922] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 03/16/2010] [Indexed: 12/13/2022] Open
Abstract
Identifying transplant recipients in whom immunological tolerance is established or is developing would allow an individually tailored approach to their posttransplantation management. In this study, we aimed to develop reliable and reproducible in vitro assays capable of detecting tolerance in renal transplant recipients. Several biomarkers and bioassays were screened on a training set that included 11 operationally tolerant renal transplant recipients, recipient groups following different immunosuppressive regimes, recipients undergoing chronic rejection, and healthy controls. Highly predictive assays were repeated on an independent test set that included 24 tolerant renal transplant recipients. Tolerant patients displayed an expansion of peripheral blood B and NK lymphocytes, fewer activated CD4+ T cells, a lack of donor-specific antibodies, donor-specific hyporesponsiveness of CD4+ T cells, and a high ratio of forkhead box P3 to alpha-1,2-mannosidase gene expression. Microarray analysis further revealed in tolerant recipients a bias toward differential expression of B cell-related genes and their associated molecular pathways. By combining these indices of tolerance as a cross-platform biomarker signature, we were able to identify tolerant recipients in both the training set and the test set. This study provides an immunological profile of the tolerant state that, with further validation, should inform and shape drug-weaning protocols in renal transplant recipients.
Collapse
Affiliation(s)
- Pervinder Sagoo
- MRC Centre for Transplantation, King's College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bronchiolitis obliterans syndrome after allogeneic hematopoietic stem cell transplantation-an increasingly recognized manifestation of chronic graft-versus-host disease. Biol Blood Marrow Transplant 2009; 16:S106-14. [PMID: 19896545 DOI: 10.1016/j.bbmt.2009.11.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bronchiolitis obliterans syndrome (BOS) is a progressive, insidious, and often fatal lung alloreaction that can occur following allogeneic hematopoietic stem cell transplantation (HSCT) or allogeneic lung transplantation. Current estimates in the literature suggest that approximately 2% to 3% of all allogeneic HSCT recipients and 6% of patients who develop chronic graft-versus-host disease (cGVHD) will develop this syndrome. However, based on newer data it is likely that the true incidence of BOS is higher. Unfortunately, the survival and treatment of patients with BOS after HSCT has not improved over the last 20 years. Attempts at clinical trials have been hindered by the lack of uniform diagnostic criteria and inability to detect the syndrome at a reversible stage in its natural history. Recently, the National Institutes of Health (NIH) consensus project for criteria in cGVHD has made recommendations regarding the diagnosis of BOS and monitoring of lung disease among long-term survivors. Although a rare and poorly understood manifestation of cGVHD, BOS occurs commonly after lung transplantation and is similar in pathology, clinical presentation, radiographic presentation, and presumed immunologic pathogenesis. This review describes the current understanding of the epidemiology and pathogenesis of BOS and presents information on evaluations and therapies for patients with BOS after HSCT.
Collapse
|
29
|
Macedo C, Orkis EA, Popescu I, Elinoff BD, Zeevi A, Shapiro R, Lakkis FG, Metes D. Contribution of naïve and memory T-cell populations to the human alloimmune response. Am J Transplant 2009; 9:2057-66. [PMID: 19624567 DOI: 10.1111/j.1600-6143.2009.02742.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
T-cell alloimmunity plays a dominant role in allograft rejection. The precise contribution of naïve and memory T cells to this response however remains unclear. To address this question, we established an ex vivo flow-cytometric assay that simultaneously measures proliferation, precursor frequency and effector molecule (IFNgamma, granzyme B/perforin) production of alloreactive T cells. By applying this assay to peripheral blood mononuclear cells from healthy volunteers, we demonstrate that the CD4+ and CD8+ populations mount similar proliferative responses and contain comparable frequencies of alloreactive precursors. Effector molecule expression, however, was significantly higher among CD8+ T cells. Analysis of sorted naïve and memory T cells showed that alloreactive precursors were equally present in both populations. The CD8+ effector and terminally differentiated effector memory subsets contained the highest proportion of granzyme B/perforin after allostimulation, suggesting that these cells present a significant threat to transplanted organs. Finally, we demonstrate that virus-specific lymphocytes contribute significantly to the alloresponse in certain responder-stimulator HLA combinations, underscoring the importance of T-cell cross-reactivity in alloimmunity. These results provide a quantitative assessment of the roles of naïve and memory T-cell subsets in the normal human alloimmune response and establish a platform for measuring T-cell alloreactivity pre- and posttransplantation.
Collapse
Affiliation(s)
- C Macedo
- Human Immunology Program, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Raˇdulescu A. A multi-etiology model of systemic degeneration in schizophrenia. J Theor Biol 2009; 259:269-79. [DOI: 10.1016/j.jtbi.2009.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 03/08/2009] [Accepted: 03/11/2009] [Indexed: 01/14/2023]
|
31
|
Zein HS, da Silva JAT, Miyatake K. Monoclonal antibodies specific to Cucumber mosaic virus coat protein possess DNA-hydrolyzing activity. Mol Immunol 2009; 46:1527-33. [PMID: 19187964 DOI: 10.1016/j.molimm.2008.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 12/21/2008] [Accepted: 12/24/2008] [Indexed: 11/21/2022]
Abstract
Monoclonal antibodies (mAbs) specific to Cucumber mosaic virus coat protein (CMV-CP) were designed from cDNA and deduced amino acid sequences of the light chain genes of 10 out of 14 different hybridoma cell lines. Ten of these mAbs revealed a very restricted germline family VkappaII, within which gene bd2 has identical amino acid sequences with VIPase and an i41SL 1-2 catalytic antibody light chain, both of which possess peptidase activity. Four out of the 14 mAbs illustrated another germline family VkappaIA, within which gene bb1.1 had high homology with BV04-01 light chain mAb, which hydrolyses ssDNA. Interestingly, our mAbs showed DNA-hydrolytic activity at an optimum pH of 4-5, which is a typical pattern of autoimmune diseases in which autoantibodies hydrolyze supercoiled plasmid DNA. This is the first evidence ever that CMV-CP could stimulate catalytic antibodies, which have an identical sequence homology with autoantibodies. Furthermore, the CMV-CP-specific mAbs will be important for isolating antibodies specific to the CPs of bacteria, viruses, cancer cells, etc. that could be used for medical therapy.
Collapse
Affiliation(s)
- Haggag S Zein
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza 121613, Egypt.
| | | | | |
Collapse
|