1
|
The transcription factor E2A can bind to and cleave single-stranded immunoglobulin heavy chain locus DNA. Mol Immunol 2023; 153:51-59. [PMID: 36434987 DOI: 10.1016/j.molimm.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Class switch recombination (CSR) changes the constant region of the immunoglobulin heavy chain (IgH), and somatic hypermutation (SH) introduces point mutations in the variable regions of the antibody genes. Both these processes that optimize antibody responses of B lymphocytes are initiated by the enzyme Activation Induced cytidine Deaminase (AID). Here we have searched for CSR or SH coupled activities of the transcription factor E2A, since E2A is in a complex with AID and the transcription factors PAX5, ETS1 and IRF4 on key sequences of the Igh locus in B lymphocytes activated to CSR and SH. We report that E2A in contrast to other described transcription factors binds sequence specifically also to single-stranded DNA. The binding of E2A to single-stranded DNA has a strong sequence preference for one strand of a site in the intronic enhancer of the Igh locus. Furthermore, E2A was also found to cleave single-stranded DNA. The sequence profile of substrates cleaved by E2A is coupled to the sequences of substrates and products of AID, suggesting that E2A has a role not only in targeting of AID to switch regions and SH parts of antibody genes but also in cleavage of DNA at these sites.
Collapse
|
2
|
Activation-induced cytidine deaminase: in sickness and in health. J Cancer Res Clin Oncol 2020; 146:2721-2730. [PMID: 32772231 DOI: 10.1007/s00432-020-03348-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Activation Induced cytidine Deaminase (AID) is an essential enzyme of the adaptive immune system. Its canonical activity is restricted to B lymphocytes, playing an essential role in the diversification of antibodies by enhancing specificity and changing affinity. This is possible through its DNA deaminase function, leading to mutations in DNA. In the last decade, AID has been assigned an additional function: that of a powerful DNA demethylator. Adverse cellular conditions such as chronic inflammation can lead to its deregulation and overexpression. It is an important driver of B-cell lymphoma due to its natural ability to modify DNA through deamination, leading to mutations and epigenetic changes. However, the deregulation of AID is not restricted to lymphoid cells. Recent findings have provided new insights into the role that this protein plays in the development of non-lymphoid cancers, with some research shedding light on novel AID-driven mechanisms of cellular transformation. In this review, we provide an updated narrative of the normal physiological functions of AID. Additionally, we review and discuss the recent research studies that have implicated AID in carcinogenesis in varying tissue types including lymphoid and non-lymphoid cancers. We review the mechanisms, whereby AID promotes carcinogenesis and highlight important areas of future research.
Collapse
|
3
|
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) by converting deoxycytidines (dC) to deoxyuracils (dU) which then can induce other mutations, and plays a central role in introducing diversification of the antibody repertoire in B cells. Ectopic expression of AID in bacteria and non-B cells can also lead to frequent mutations in highly expressed genes. Taking advantage of this feature of AID, in recent years, systems coupling in vitro somatic hypermutation and mammalian cell surface display have been developed, with unique benefits in antibody discovery and optimization in vitro. Here, we provide a protocol for AID mediated in vitro protein evolution. A CHO cell clone bearing a single gene expression cassette has been constructed. The gene of an interested protein for in vitro evolution can be easily inserted into the cassette by dual recombinase-mediated cassette exchange (RMCE) and constantly expressed at high levels. Here, we matured an anti-TNFα antibody as an example. Firstly, we obtained a CHO cell clone highly displaying the antibody by dual RMCE. Then, the plasmid expressing AID is transfected into the CHO cells. After a few rounds of cell sorting-cell proliferation, mutant antibodies with improved features can be generated. This protocol can be applied for improving protein features based on displaying levels on cell surface and protein-protein interaction, and thus is able to enhance affinity, specificity, and stability besides others.
Collapse
|
4
|
Grundström C, Kumar A, Priya A, Negi N, Grundström T. ETS1 and PAX5 transcription factors recruit AID to Igh DNA. Eur J Immunol 2018; 48:1687-1697. [PMID: 30089192 DOI: 10.1002/eji.201847625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/12/2018] [Accepted: 08/07/2018] [Indexed: 01/25/2023]
Abstract
B lymphocytes optimize antibody responses by class switch recombination (CSR), which changes the expressed constant region exon of the immunoglobulin heavy chain (IgH), and by somatic hypermutation (SH) that introduces point mutations in the variable regions of the antibody genes. Activation-induced cytidine deaminase (AID) is the key mutagenic enzyme that initiates both these antibody diversification processes by deaminating cytosine to uracil. Here we asked the question if transcription factors can mediate the specific targeting of the antibody diversification by recruiting AID. We have recently reported that AID is together with the transcription factors E2A, PAX5 and IRF4 in a complex on key sequences of the Igh locus. Here we report that also ETS1 is together with AID in this complex on key sequences of the Igh locus in splenic B cells of mice. Furthermore, we show that both ETS1 and PAX5 can directly recruit AID to DNA sequences from the Igh locus with the specific binding site for the transcription factor. Taken together, our findings support the notion of a targeting mechanism for the selective diversification of antibody genes with limited genome wide mutagenesis by recruitment of AID by PAX5 and ETS1 in a transcription factor complex.
Collapse
Affiliation(s)
| | - Anjani Kumar
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Anshu Priya
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Neema Negi
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
5
|
Kumar A, Priya A, Ahmed T, Grundström C, Negi N, Grundström T. Regulation of the DNA Repair Complex during Somatic Hypermutation and Class-Switch Recombination. THE JOURNAL OF IMMUNOLOGY 2018; 200:4146-4156. [PMID: 29728513 DOI: 10.4049/jimmunol.1701586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
B lymphocytes optimize Ab responses by somatic hypermutation (SH), which introduces point mutations in the variable regions of the Ab genes and by class-switch recombination (CSR), which changes the expressed C region exon of the IgH. These Ab diversification processes are initiated by the deaminating enzyme activation-induced cytidine deaminase followed by many DNA repair enzymes, ultimately leading to deletions and a high mutation rate in the Ab genes, whereas DNA lesions made by activation-induced cytidine deaminase are repaired with low error rate on most other genes. This indicates an advanced regulation of DNA repair. In this study, we show that initiation of Ab diversification in B lymphocytes of mouse spleen leads to formation of a complex between many proteins in DNA repair. We show also that BCR activation, which signals the end of successful SH, reduces interactions between some proteins in the complex and increases other interactions in the complex with varying kinetics. Furthermore, we show increased localization of SH- and CSR-coupled proteins on switch regions of the Igh locus upon initiation of SH/CSR and differential changes in the localization upon BCR signaling, which terminates SH. These findings provide early evidence for a DNA repair complex or complexes that may be of functional significance for carrying out essential roles in SH and/or CSR in B cells.
Collapse
Affiliation(s)
- Anjani Kumar
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Anshu Priya
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Tanzeel Ahmed
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Neema Negi
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Thomas Grundström
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
6
|
Shimizu T, Tateishi S, Tanoue Y, Azuma T, Ohmori H. Somatic hypermutation of immunoglobulin genes in Rad18 knockout mice. DNA Repair (Amst) 2016; 50:54-60. [PMID: 28082021 DOI: 10.1016/j.dnarep.2016.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is triggered by the activity of activation-induced cytidine deaminase (AID). AID induces DNA lesions in variable regions of Ig genes, and error-prone DNA repair mechanisms initiated in response to these lesions introduce the mutations that characterize SHM. Error-prone DNA repair in SHM is proposed to be mediated by low-fidelity DNA polymerases such as those that mediate trans-lesion synthesis (TLS); however, the mechanism by which these enzymes are recruited to AID-induced lesions remains unclear. Proliferating cell nuclear antigen (PCNA), the sliding clamp for multiple DNA polymerases, undergoes Rad6/Rad18-dependent ubiquitination in response to DNA damage. Ubiquitinated PCNA promotes the replacement of the replicative DNA polymerase stalled at the site of a DNA lesion with a TLS polymerase. To examine the potential role of Rad18-dependent PCNA ubiquitination in SHM, we analyzed Ig gene mutations in Rad18 knockout (KO) mice immunized with T cell-dependent antigens. We found that SHM in Rad18 KO mice was similar to wild-type mice, suggesting that Rad18 is dispensable for SHM. However, residual levels of ubiquitinated PCNA were observed in Rad18 KO cells, indicating that Rad18-independent PCNA ubiquitination might play a role in SHM.
Collapse
Affiliation(s)
- Takeyuki Shimizu
- Department of Immunology, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi 783-8505, Japan.
| | - Satoshi Tateishi
- Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| | - Yuki Tanoue
- Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takachika Azuma
- Research Institute for Biological Sciences (RIBS), Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Haruo Ohmori
- Departments of Gene Information Analysis, Institute for Virus Research, Kyoto University, Shogoin Kawara-cho 53, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
7
|
Hauser J, Grundström C, Kumar R, Grundström T. Regulated localization of an AID complex with E2A, PAX5 and IRF4 at the Igh locus. Mol Immunol 2016; 80:78-90. [DOI: 10.1016/j.molimm.2016.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
|
8
|
Bak ST, Sakellariou D, Pena-Diaz J. The dual nature of mismatch repair as antimutator and mutator: for better or for worse. Front Genet 2014; 5:287. [PMID: 25191341 PMCID: PMC4139959 DOI: 10.3389/fgene.2014.00287] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/04/2014] [Indexed: 01/19/2023] Open
Abstract
DNA is constantly under attack by a number of both exogenous and endogenous agents that challenge its integrity. Among the mechanisms that have evolved to counteract this deleterious action, mismatch repair (MMR) has specialized in removing DNA biosynthetic errors that occur when replicating the genome. Malfunction or inactivation of this system results in an increase in spontaneous mutability and a strong predisposition to tumor development. Besides this key corrective role, MMR proteins are involved in other pathways of DNA metabolism such as mitotic and meiotic recombination and processing of oxidative damage. Surprisingly, MMR is also required for certain mutagenic processes. The mutagenic MMR has beneficial consequences contributing to the generation of a vast repertoire of antibodies through class switch recombination and somatic hypermutation processes. However, this non-canonical mutagenic MMR also has detrimental effects; it promotes repeat expansions associated with neuromuscular and neurodegenerative diseases and may contribute to cancer/disease-related aberrant mutations and translocations. The reaction responsible for replication error correction has been the most thoroughly studied and it is the subject to numerous reviews. This review describes briefly the biochemistry of MMR and focuses primarily on the non-canonical MMR activities described in mammals as well as emerging research implicating interplay of MMR and chromatin.
Collapse
Affiliation(s)
- Sara Thornby Bak
- Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen Copenhagen, Denmark
| | - Despoina Sakellariou
- Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen Copenhagen, Denmark
| | - Javier Pena-Diaz
- Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
9
|
Sanchez MI, Grichnik JM. Melanoma's high C>T mutation rate: is deamination playing a role? Exp Dermatol 2014; 23:551-2. [PMID: 24815223 DOI: 10.1111/exd.12436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2014] [Indexed: 11/28/2022]
Abstract
The majority of melanoma mutations are C>T transitions, and most bear UV signatures. However, other process may contribute to the high C>T mutation rate. Okura et al., have demonstrated immunohistochemical evidence of deaminating enzymes, activation-induced cytidine deaminase (AID) and apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3B (APOBEC3B) in melanoma. Both have been implicated in cancer. While further validation is necessary, these findings warrant consideration of a role for deamination in melanomagenesis. Deamination primarily drives C>T transitions. Compared with trunk/extremity melanomas, acral melanomas display a significantly higher percentage of 'spontaneous' and 'AID' mutation signature events suggesting deamination may be particularly important in this subgroup.
Collapse
Affiliation(s)
- Margaret I Sanchez
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|