1
|
Nabisubi P, Kanyerezi S, Kebirungi G, Sserwadda I, Nsubuga M, Kisitu G, Nahirya PN, Mulindwa B, Akabwai GP, Nantongo S, Kekitiinwa A, Kigozi E, Luutu NM, Katabazi FA, Kalema L, Katabalwa A, Jjingo D, Mboowa G. Beyond the fever: shotgun metagenomic sequencing of stool unveils pathogenic players in HIV-infected children with non-malarial febrile illness. BMC Infect Dis 2025; 25:96. [PMID: 39838275 PMCID: PMC11752807 DOI: 10.1186/s12879-025-10517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/16/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Non-malarial febrile illnesses (NMFI) pose significant challenges in HIV-infected children, often leading to severe complications and increased morbidity. While traditional diagnostic approaches focus on specific pathogens, shotgun metagenomic sequencing offers a comprehensive tool to explore the microbial landscape underlying NMFI in this vulnerable population ensuring effective management. METHODS In this study, we employed shotgun metagenomics to analyse stool samples from HIV-infected children at the Baylor Children's Clinic Uganda presenting with non-malarial febrile illness. Samples were collected and subjected to DNA extraction at the Molecular and Genomics Laboratory, Makerere University followed by shotgun metagenomics sequencing at the Chan Zuckerberg Biohub San Francisco. Bioinformatics analysis was conducted to identify and characterise the microbial composition and potential pathogenic taxa associated with NMFI using the CZID pipeline. RESULTS Our findings reveal a diverse array of microbial taxa in the stool samples of HIV-infected children with NMFI. Importantly, shotgun metagenomics revealed potentially pathogenic players including Trichomonas vaginalis, Candida albicans, Giardia, and Bacteroides in stool from this patient population. This sheds light on the complexities of microbial interactions that potentially underpin non-malarial febrile illness in this group. Taxonomic profiling identified recognised pathogens and comorbidities and revealed possible new correlations with NMFI, shedding light on the pathophysiology of fever in HIV-infected children. CONCLUSION Shotgun metagenomics is a valuable method for understanding the gut microbial landscape of NMFI in HIV-infected children, providing a comprehensive approach to pathogen identification and characterisation. By revealing potential pathogenic actors beyond the fever, this work demonstrates how metagenomic sequencing may improve our knowledge of infectious illnesses in vulnerable groups and inspire targeted therapies for better clinical care and outcomes.
Collapse
Affiliation(s)
- Patricia Nabisubi
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda
- The Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Stephen Kanyerezi
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda
- The Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
- Africa Centres for Disease Control and Prevention, African Union Commission, Roosevelt Street, P.O. Box 3243, Addis Ababa, W21 K19, Ethiopia
- National Health Laboratories and Diagnostics Services, Central Public Health Laboratories, Ministry of Health, P.O Box 7272, Kampala, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Grace Kebirungi
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda
- The Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
| | - Ivan Sserwadda
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda
- The Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Mike Nsubuga
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda
| | - Grace Kisitu
- Baylor College of Medicine Children's Foundation, Mulago Hospital, Kampala, Uganda
| | | | - Bonny Mulindwa
- Baylor College of Medicine Children's Foundation, Mulago Hospital, Kampala, Uganda
| | - George P Akabwai
- Baylor College of Medicine Children's Foundation, Mulago Hospital, Kampala, Uganda
| | - Sylvia Nantongo
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda
| | - Adeodata Kekitiinwa
- Baylor College of Medicine Children's Foundation, Mulago Hospital, Kampala, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Nsubuga Moses Luutu
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Fred Ashaba Katabazi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Leymon Kalema
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Andrew Katabalwa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Daudi Jjingo
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda
- The Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Gerald Mboowa
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda.
- The Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda.
- National Health Laboratories and Diagnostics Services, Central Public Health Laboratories, Ministry of Health, P.O Box 7272, Kampala, Uganda.
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda.
| |
Collapse
|
2
|
Suárez Vázquez TA, López López N, Salinas Carmona MC. MASTer cell: chief immune modulator and inductor of antimicrobial immune response. Front Immunol 2024; 15:1360296. [PMID: 38638437 PMCID: PMC11024470 DOI: 10.3389/fimmu.2024.1360296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024] Open
Abstract
Mast cells have long been recognized for their involvement in allergic pathology through the immunoglobulin E (IgE)-mediated degranulation mechanism. However, there is growing evidence of other "non-canonical" degranulation mechanisms activated by certain pathogen recognition receptors. Mast cells release several mediators, including histamine, cytokines, chemokines, prostaglandins, and leukotrienes, to initiate and enhance inflammation. The chemical nature of activating stimuli influences receptors, triggering mechanisms for the secretion of formed and new synthesized mediators. Mast cells have more than 30 known surface receptors that activate different pathways for direct and indirect activation by microbes. Different bacterial strains stimulate mast cells through various ligands, initiating the innate immune response, which aids in clearing the bacterial burden. Mast cell interactions with adaptative immune cells also play a crucial role in infections. Recent publications revealed another "non-canonical" degranulation mechanism present in tryptase and chymase mast cells in humans and connective tissue mast cells in mice, occurring through the activation of the Mas-related G protein-coupled receptor (MRGPRX2/b2). This receptor represents a new therapeutic target alongside antibiotic therapy. There is an urgent need to reconsider and redefine the biological role of these MASTer cells of innate immunity, extending beyond their involvement in allergic pathology.
Collapse
Affiliation(s)
| | | | - Mario César Salinas Carmona
- Department of Immunology, School of Medicine and Dr. Jose Eleuterio Gonzalez University Hospital, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
3
|
Charles N, Kortekaas-Krohn I, Kocaturk E, Scheffel J, Altrichter S, Steinert C, Xiang YK, Gutermuth J, Reber LL, Maurer M. Autoreactive IgE: Pathogenic role and therapeutic target in autoimmune diseases. Allergy 2023; 78:3118-3135. [PMID: 37555488 DOI: 10.1111/all.15843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Autoimmunity is the break of tolerance to self-antigens that leads to organ-specific or systemic diseases often characterized by the presence of pathogenic autoreactive antibodies (AAb) produced by plasmablast and/or plasma cells. AAb are prevalent in the general population and not systematically associated with clinical symptoms. In contrast, in some individuals, these AAb are pathogenic and drive the development of signs and symptoms of antibody-mediated autoimmune diseases (AbAID). AAb production, isotype profiles, and glycosylations are promoted by pro-inflammatory triggers linked to genetic, environmental, and hormonal parameters. Recent evidence supports a role for pathogenic AAb of the IgE isotype in a number of AbAID. Autoreactive IgE can drive the activation of mast cells, basophils, and other types of FcεRI-bearing cells and may play a role in promoting autoantibody production and other pro-inflammatory pathways. In this review, we discuss the current knowledge on the pathogenicity of autoreactive IgE in AbAID and their status as therapeutic targets. We also highlight unresolved issues including the need for assays that reproducibly quantify IgE AAbs, to validate their diagnostic and prognostic value, and to further study their pathophysiological contributions to AbAID.
Collapse
Affiliation(s)
- Nicolas Charles
- Faculté de Médecine site Bichat, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Inge Kortekaas-Krohn
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Department of Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Emek Kocaturk
- Department of Dermatology, Koç University School of Medicine, Istanbul, Turkey
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Sabine Altrichter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- Departement of Dermatology and Venerology, Kepler University Hospital, Linz, Austria
| | - Carolin Steinert
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Yi-Kui Xiang
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Department of Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| |
Collapse
|
4
|
Poto R, Gambardella AR, Marone G, Schroeder JT, Mattei F, Schiavoni G, Varricchi G. Basophils from allergy to cancer. Front Immunol 2022; 13:1056838. [PMID: 36578500 PMCID: PMC9791102 DOI: 10.3389/fimmu.2022.1056838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Human basophils, first identified over 140 years ago, account for just 0.5-1% of circulating leukocytes. While this scarcity long hampered basophil studies, innovations during the past 30 years, beginning with their isolation and more recently in the development of mouse models, have markedly advanced our understanding of these cells. Although dissimilarities between human and mouse basophils persist, the overall findings highlight the growing importance of these cells in health and disease. Indeed, studies continue to support basophils as key participants in IgE-mediated reactions, where they infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine, leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the pathogenesis of allergic diseases. Studies now report basophils infiltrating various human cancers where they play diverse roles, either promoting or hampering tumorigenesis. Likewise, this activity bears remarkable similarity to the mounting evidence that basophils facilitate wound healing. In fact, both activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with these cytokines polarizing macrophages toward the M2 phenotype. Basophils also secrete several angiogenic factors (vascular endothelial growth factor: VEGF-A, amphiregulin) consistent with these activities. In this review, we feature these newfound properties with the goal of unraveling the increasing importance of basophils in these diverse pathobiological processes.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Adriana Rosa Gambardella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - John T. Schroeder
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| |
Collapse
|
5
|
Does TLS Exist in Canine Mammary Gland Tumours? Preliminary Results in Simple Carcinomas. Vet Sci 2022; 9:vetsci9110628. [DOI: 10.3390/vetsci9110628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Neoplastic progression is influenced by the expression of tumour antigens that activate an anti-tumour immune response. Human medical studies show that this body defence is carried out in secondary lymphoid organs (SLOs) but also directly in the tumour through organized cellular aggregates that are called tertiary lymphoid structures (TLSs). However, their occurrence has different meanings in different tumour types. For example, the presence of TLSs in breast cancer is associated with the most aggressive subtypes. This paper aimed to study TLSs in canine mammary simple carcinomas. A morphological assessment of the inflammatory infiltrate was performed on H&E sections of fifty cases. Immunohistochemistry was then carried out to typify the inflammatory cells in the tumour microenvironment. Results showed that, sometimes, inflammatory infiltrates were organized in follicles close to high-grade carcinomas, simulating a lymphoid organization, as in breast cancer. Therefore, we can assume that even in canine mammary tumours, TLSs exist and they are entities to consider due to their presence in the most aggressive histotypes or tumours with a high degree of malignancy.
Collapse
|
6
|
Clinical and Translational Significance of Basophils in Patients with Cancer. Cells 2022; 11:cells11030438. [PMID: 35159247 PMCID: PMC8833920 DOI: 10.3390/cells11030438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Despite comprising a very small proportion of circulating blood leukocytes, basophils are potent immune effector cells. The high-affinity receptor for IgE (FcɛRI) is expressed on the basophil cell surface and powerful inflammatory mediators such as histamine, granzyme B, and cytokines are stored in dense cytoplasmic granules, ready to be secreted in response to a range of immune stimuli. Basophils play key roles in eliciting potent effector functions in allergic diseases and type 1 hypersensitivity. Beyond allergies, basophils can be recruited to tissues in chronic and autoimmune inflammation, and in response to parasitic, bacterial, and viral infections. While their activation states and functions can be influenced by Th2-biased inflammatory signals, which are also known features of several tumor types, basophils have received little attention in cancer. Here, we discuss the presence and functional significance of basophils in the circulation of cancer patients and in the tumor microenvironment (TME). Interrogating publicly available datasets, we conduct gene expression analyses to explore basophil signatures and associations with clinical outcomes in several cancers. Furthermore, we assess how basophils can be harnessed to predict hypersensitivity to cancer treatments and to monitor the desensitization of patients to oncology drugs, using assays such as the basophil activation test (BAT).
Collapse
|
7
|
Immune Cells and Immunoglobulin Expression in the Mammary Gland Tumors of Dog. Animals (Basel) 2021; 11:ani11051189. [PMID: 33919282 PMCID: PMC8143349 DOI: 10.3390/ani11051189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 01/21/2023] Open
Abstract
Inflammatory cells have a role in tumor progression and have prognostic and therapeutic potential. The immunohistochemical expression for Mast Cell Tryptase, Macrophage Marker, CD79a, IgA, IgM and IgG on 43 cases of canine mammary gland lesions was analyzed. In hyperplasia, a few B cells (BCs) and Tumor-Associated Macrophages (TAMs) were observed, while the number of Tumor-Associated Mast Cells (TAMCs) was the highest. In the peritumoral stroma of malignant lesions, low number of TAMCs and a high number of TAMAs and BCs were present. Immune cells of each type were always lower in the intratumoral than peritumoral stroma. Positivity to CD79a was also detected in the epithelial cells of simple and micropapillay carcinomas. Immunoglobulin reactivity was mainly located in the epithelial cells where an intense positivity to IgA and IgG and a weak positivity for IgM were detectable. On the basis of our preliminary results and literature data, we suggest that such cells and molecules could be directly involved in the biology of canine mammary gland tumors. In breast cancer, stromal inflammatory cells and cancer derived immunoglobulins have been correlated with the progression, malignancy and poor prognosis of the tumor. The results herein reported show that the dog's mammary gland epithelium also expresses immunoglobulins, and they mostly show a direct relationship with the infiltration of macrophages. In addition, this study shows that the infiltration of mast cells, B-cells and macrophages varies depending on the degree of malignancy of neoplasia.
Collapse
|
8
|
Autoimmunity, IgE and FcεRI-bearing cells. Curr Opin Immunol 2021; 72:43-50. [PMID: 33819742 DOI: 10.1016/j.coi.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Antibody-mediated autoimmune diseases (AAID) involve several isotypes of autoreactive antibodies. In a growing number of AAID, autoreactive IgE are present with a significant prevalence and are often associated with the presence of IgG anti-IgE and/or anti-FcεRIα (high affinity IgE receptor α chain). FcεRI-bearing cells, such as basophils or mast cells, are key players in some of these AAID. Recent advances in the pathophysiology of these diseases led to the passed or current development of anti-IgE strategies that showed very potent effects in some of them. The present review centralizes the information on the relevance of autoreactive IgE and FcεRI-bearing cells in the pathophysiology of different AAID and the ones where the anti-IgE therapeutic strategy shows or may show some benefits for the patients.
Collapse
|
9
|
Kanagaratham C, El Ansari YS, Lewis OL, Oettgen HC. IgE and IgG Antibodies as Regulators of Mast Cell and Basophil Functions in Food Allergy. Front Immunol 2020; 11:603050. [PMID: 33362785 PMCID: PMC7759531 DOI: 10.3389/fimmu.2020.603050] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Food allergy is a major health issue, affecting the lives of 8% of U.S. children and their families. There is an urgent need to identify the environmental and endogenous signals that induce and sustain allergic responses to ingested allergens. Acute reactions to foods are triggered by the activation of mast cells and basophils, both of which release inflammatory mediators that lead to a range of clinical manifestations, including gastrointestinal, cutaneous, and respiratory reactions as well as systemic anaphylaxis. Both of these innate effector cell types express the high affinity IgE receptor, FcϵRI, on their surface and are armed for adaptive antigen recognition by very-tightly bound IgE antibodies which, when cross-linked by polyvalent allergen, trigger degranulation. These cells also express inhibitory receptors, including the IgG Fc receptor, FcγRIIb, that suppress their IgE-mediated activation. Recent studies have shown that natural resolution of food allergies is associated with increasing food-specific IgG levels. Furthermore, oral immunotherapy, the sequential administration of incrementally increasing doses of food allergen, is accompanied by the strong induction of allergen-specific IgG antibodies in both human subjects and murine models. These can deliver inhibitory signals via FcγRIIb that block IgE-induced immediate food reactions. In addition to their role in mediating immediate hypersensitivity reactions, mast cells and basophils serve separate but critical functions as adjuvants for type 2 immunity in food allergy. Mast cells and basophils, activated by IgE, are key sources of IL-4 that tilts the immune balance away from tolerance and towards type 2 immunity by promoting the induction of Th2 cells along with the innate effectors of type 2 immunity, ILC2s, while suppressing the development of regulatory T cells and driving their subversion to a pathogenic pro-Th2 phenotype. This adjuvant effect of mast cells and basophils is suppressed when inhibitory signals are delivered by IgG antibodies signaling via FcγRIIb. This review summarizes current understanding of the immunoregulatory effects of mast cells and basophils and how these functions are modulated by IgE and IgG antibodies. Understanding these pathways could provide important insights into innovative strategies for preventing and/or reversing food allergy in patients.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Owen L. Lewis
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Marone G, Schroeder JT, Mattei F, Loffredo S, Gambardella AR, Poto R, de Paulis A, Schiavoni G, Varricchi G. Is There a Role for Basophils in Cancer? Front Immunol 2020; 11:2103. [PMID: 33013885 PMCID: PMC7505934 DOI: 10.3389/fimmu.2020.02103] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Basophils were identified in human peripheral blood by Paul Ehrlich over 140 years ago. Human basophils represent <1% of peripheral blood leukocytes. During the last decades, basophils have been described also in mice, guinea pigs, rabbits, and monkeys. There are many similarities, but also several immunological differences between human and mouse basophils. There are currently several strains of mice with profound constitutive or inducible basophil deficiency useful to prove that these cells have specific roles in vivo. However, none of these mice are solely and completely devoid of all basophils. Therefore, the relevance of these findings to humans remains to be established. It has been known for some time that basophils have the propensity to migrate into the site of inflammation. Recent observations indicate that tissue resident basophils contribute to lung development and locally promote M2 polarization of macrophages. Moreover, there is increasing evidence that lung-resident basophils exhibit a specific phenotype, different from circulating basophils. Activated human and mouse basophils synthesize restricted and distinct profiles of cytokines. Human basophils produce several canonical (e.g., VEGFs, angiopoietin 1) and non-canonical (i.e., cysteinyl leukotriene C4) angiogenic factors. Activated human and mouse basophils release extracellular DNA traps that may have multiple effects in cancer. Hyperresponsiveness of basophils has been demonstrated in patients with JAK2V617F-positive polycythemia vera. Basophils are present in the immune landscape of human lung adenocarcinoma and pancreatic cancer and can promote inflammation-driven skin tumor growth. The few studies conducted thus far using different models of basophil-deficient mice have provided informative results on the roles of these cells in tumorigenesis. Much more remains to be discovered before we unravel the hitherto mysterious roles of basophils in human and experimental cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - John T Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | | | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
11
|
Renga G, Moretti S, Oikonomou V, Borghi M, Zelante T, Paolicelli G, Costantini C, De Zuani M, Villella VR, Raia V, Del Sordo R, Bartoli A, Baldoni M, Renauld JC, Sidoni A, Garaci E, Maiuri L, Pucillo C, Romani L. IL-9 and Mast Cells Are Key Players of Candida albicans Commensalism and Pathogenesis in the Gut. Cell Rep 2019; 23:1767-1778. [PMID: 29742432 PMCID: PMC5976578 DOI: 10.1016/j.celrep.2018.04.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 02/14/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Candida albicans is implicated in intestinal diseases. Identifying host signatures that discriminate between the pathogenic versus commensal nature of this human commensal is clinically relevant. In the present study, we identify IL-9 and mast cells (MCs) as key players of Candida commensalism and pathogenicity. By inducing TGF-β in stromal MCs, IL-9 pivotally contributes to mucosal immune tolerance via the indoleamine 2,3-dioxygenase enzyme. However, Candida-driven IL-9 and mucosal MCs also contribute to barrier function loss, dissemination, and inflammation in experimental leaky gut models and are upregulated in patients with celiac disease. Inflammatory dysbiosis occurs with IL-9 and MC deficiency, indicating that the activity of IL-9 and MCs may go beyond host immunity to include regulation of the microbiota. Thus, the output of the IL-9/MC axis is highly contextual during Candida colonization and reveals how host immunity and the microbiota finely tune Candida behavior in the gut. IL-9/IL-9R signaling affects MC function in mucosal candidiasis IL-9 and mucosal MCs contribute to barrier function loss in leaky gut models IL-9 and stromal MCs induce local protective tolerance in infection via IDO1 IL-9 and mucosal MCs expand and IDO1 decreases in human celiac disease
Collapse
Affiliation(s)
- Giorgia Renga
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Silvia Moretti
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Vasilis Oikonomou
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Monica Borghi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Giuseppe Paolicelli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Claudio Costantini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Marco De Zuani
- Department of Medical and Biological Science, University of Udine, 33100 Udine, Italy
| | - Valeria Rachela Villella
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valeria Raia
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University Naples, 80131 Naples, Italy
| | - Rachele Del Sordo
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Andrea Bartoli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Monia Baldoni
- Department of Medicine, University of Perugia, 06132 Perugia, Italy
| | | | - Angelo Sidoni
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Enrico Garaci
- San Raffaele Pisana, IRCCS, Telematic University and University of Tor Vergata, 00163 Rome, Italy
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy; Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Carlo Pucillo
- Department of Medical and Biological Science, University of Udine, 33100 Udine, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| |
Collapse
|
12
|
Gomez C, Carsin A, Gouitaa M, Reynaud-Gaubert M, Dubus JC, Mège JL, Ranque S, Vitte J. Mast cell tryptase changes with Aspergillus fumigatus – Host crosstalk in cystic fibrosis patients. J Cyst Fibros 2018; 17:631-635. [DOI: 10.1016/j.jcf.2018.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/23/2022]
|
13
|
Burton OT, Epp A, Fanny ME, Miller SJ, Stranks AJ, Teague JE, Clark RA, van de Rijn M, Oettgen HC. Tissue-Specific Expression of the Low-Affinity IgG Receptor, FcγRIIb, on Human Mast Cells. Front Immunol 2018; 9:1244. [PMID: 29928276 PMCID: PMC5997819 DOI: 10.3389/fimmu.2018.01244] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/17/2018] [Indexed: 11/13/2022] Open
Abstract
Immediate hypersensitivity reactions are induced by the interaction of allergens with specific IgE antibodies bound via FcεRI to mast cells and basophils. While these specific IgE antibodies are needed to trigger such reactions, not all individuals harboring IgE exhibit symptoms of allergy. The lack of responsiveness seen in some subjects correlates with the presence of IgG antibodies of the same specificity. In cell culture studies and in vivo animal models of food allergy and anaphylaxis such IgG antibodies have been shown to exert suppression via FcγRIIb. However, the reported absence of this inhibitory receptor on primary mast cells derived from human skin has raised questions about the role of IgG-mediated inhibition of immediate hypersensitivity in human subjects. Here, we tested the hypothesis that mast cell FcγRIIb expression might be tissue specific. Utilizing a combination of flow cytometry, quantitative PCR, and immunofluorescence staining of mast cells derived from the tissues of humanized mice, human skin, or in fixed paraffin-embedded sections of human tissues, we confirm that FcγRIIb is absent from dermal mast cells but is expressed by mast cells throughout the gastrointestinal tract. IgE-induced systemic anaphylaxis in humanized mice is strongly inhibited by antigen-specific IgG. These findings support the concept that IgG, signaling via FcγRIIb, plays a physiological role in suppressing hypersensitivity reactions.
Collapse
Affiliation(s)
- Oliver T Burton
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alexandra Epp
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Manoussa E Fanny
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Samuel J Miller
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Amanda J Stranks
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jessica E Teague
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Matt van de Rijn
- Department of Pathology, Stanford University Medical Center, Palo Alto, CA, United States
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
New roles and controls of mast cells. Curr Opin Immunol 2018; 50:39-47. [DOI: 10.1016/j.coi.2017.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/13/2017] [Accepted: 10/28/2017] [Indexed: 12/14/2022]
|
15
|
Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Marone G, Granata F. Are Mast Cells MASTers in Cancer? Front Immunol 2017; 8:424. [PMID: 28446910 PMCID: PMC5388770 DOI: 10.3389/fimmu.2017.00424] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin's lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Monaldi Hospital Pharmacy, Naples, Italy
| | - Raffaella Iannone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
The Evolution of Human Basophil Biology from Neglect towards Understanding of Their Immune Functions. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8232830. [PMID: 28078302 PMCID: PMC5204076 DOI: 10.1155/2016/8232830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/16/2016] [Indexed: 12/03/2022]
Abstract
Being discovered long ago basophils have been neglected for more than a century. During the past decade evidence emerged that basophils share features of innate and adaptive immunity. Nowadays, basophils are best known for their striking effector role in the allergic reaction. They hence have been used for establishing new diagnostic tests and therapeutic approaches and for characterizing natural and recombinant allergens as well as hypoallergens, which display lower or diminished IgE-binding activity. However, it was a long way from discovery in 1879 until identification of their function in hypersensitivity reactions, including adverse drug reactions. Starting with a historical background, this review highlights the modern view on basophil biology.
Collapse
|