1
|
Contreras AV, Wiest DL. Development of γδ T Cells: Soldiers on the Front Lines of Immune Battles. Methods Mol Biol 2023; 2580:71-88. [PMID: 36374451 DOI: 10.1007/978-1-0716-2740-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While the functions of αβ T cells in host resistance to pathogen infection are understood in far more detail than those of γδ lineage T cells, γδ T cells perform critical, essential functions during immune responses that cannot be compensated for by αβ T cells. Accordingly, it is critical to understand how the development of γδ T cells is controlled so that their generation and function might be manipulated in future for therapeutic benefit. This introductory chapter will focus primarily on the basic processes that underlie γδ T cell development in the thymus, as well as the current understanding of how they are controlled.
Collapse
Affiliation(s)
- Alejandra V Contreras
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Shahverdi M, Masoumi J, Ghorbaninezhad F, Shajari N, Hajizadeh F, Hassanian H, Alizadeh N, Jafarlou M, Baradaran B. The modulatory role of dendritic cell-T cell cross-talk in breast cancer: Challenges and prospects. Adv Med Sci 2022; 67:353-363. [PMID: 36116207 DOI: 10.1016/j.advms.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/05/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Antigen recognition and presentation are highlighted as the first steps in developing specialized antigen responses. Dendritic cells (DCs) are outstanding professional antigen-presenting cells (APCs) responsible for priming cellular immunity in pathological states, including cancer. However, the diminished or repressed function of DCs is thought to be a substantial mechanism through which tumors escape from the immune system. In this regard, DCs obtained from breast cancer (BC) patients represent a notably weakened potency to encourage specific T-cell responses. Additionally, impaired DC-T-cell cross-talk in BC facilitates the immune evade of cancer cells and is connected with tumor advancement, immune tolerance, and adverse prognosis for patients. In this review we aim to highlight the available knowledge on DC-T-cell interactions in BC aggressiveness and show its therapeutic potential in BC treatment.
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Department of Medical Biotechnology, Arak University of Medical Sciences, Arak, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Frascoli M, Reboldi A, Kang J. Dietary Cholesterol Metabolite Regulation of Tissue Immune Cell Development and Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:645-653. [PMID: 35961669 PMCID: PMC10215006 DOI: 10.4049/jimmunol.2200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023]
Abstract
Obesity is considered the primary environmental factor associated with morbidity and severity of wide-ranging inflammatory disorders. The molecular mechanism linking high-fat or cholesterol diet to imbalances in immune responses, beyond the increased production of generic inflammatory factors, is just beginning to emerge. Diet cholesterol by-products are now known to regulate function and migration of diverse immune cell subsets in tissues. The hydroxylated metabolites of cholesterol oxysterols as central regulators of immune cell positioning in lymphoid and mucocutaneous tissues is the focus of this review. Dedicated immunocyte cell surface receptors sense spatially distributed oxysterol tissue depots to tune cell metabolism and function, to achieve the "right place at the right time" axiom of efficient tissue immunity.
Collapse
Affiliation(s)
- Michela Frascoli
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Joonsoo Kang
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
4
|
Harly C, Robert J, Legoux F, Lantz O. γδ T, NKT, and MAIT Cells During Evolution: Redundancy or Specialized Functions? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:217-225. [PMID: 35821101 PMCID: PMC7613099 DOI: 10.4049/jimmunol.2200105] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 01/17/2023]
Abstract
Innate-like T cells display characteristics of both innate lymphoid cells (ILCs) and mainstream αβ T cells, leading to overlapping functions of innate-like T cells with both subsets. In this review, we show that although innate-like T cells are probably present in all vertebrates, their main characteristics are much better known in amphibians and mammals. Innate-like T cells encompass both γδ and αβ T cells. In mammals, γδ TCRs likely coevolved with molecules of the butyrophilin family they interact with, whereas the semi-invariant TCRs of iNKT and mucosal-associated invariant T cells are evolutionarily locked with their restricting MH1b molecules, CD1d and MR1, respectively. The strong conservation of the Ag recognition systems of innate-like T cell subsets despite similar effector potentialities supports that each one fulfills nonredundant roles related to their Ag specificity.
Collapse
Affiliation(s)
- Christelle Harly
- Nantes Université, Institut National de la Santé et de la Recherche Médicale UMR1307, Centre National de la Recherche Scientifique UMR6075, Université d'Angers, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers CRCI2NA, Nantes, France;
- LabEx Immunotherapy, Graft, Oncology, Nantes, France
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Francois Legoux
- INSERM U932, Paris Sciences et Lettres Université, Institut Curie, Paris, France
| | - Olivier Lantz
- INSERM U932, Paris Sciences et Lettres Université, Institut Curie, Paris, France;
- Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France; and
- Centre d'Investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| |
Collapse
|
5
|
Shin SB, McNagny KM. ILC-You in the Thymus: A Fresh Look at Innate Lymphoid Cell Development. Front Immunol 2021; 12:681110. [PMID: 34025680 PMCID: PMC8136430 DOI: 10.3389/fimmu.2021.681110] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/20/2021] [Indexed: 01/20/2023] Open
Abstract
The discovery of innate lymphoid cells (ILCs) has revolutionized our understanding of innate immunity and immune cell interactions at epithelial barrier sites. Their presence and maintenance are critical for modulating immune homeostasis, responding to injury or infection, and repairing damaged tissues. To date, ILCs have been defined by a set of transcription factors, surface antigens and cytokines, and their functions resemble those of three major classes of helper T cell subsets, Th1, Th2 and Th17. Despite this, the lack of antigen-specific surface receptors and the notion that ILCs can develop in the absence of the thymic niche have clearly set them apart from the T-cell lineage and promulgated a dogma that ILCs develop directly from progenitors in the bone marrow. Interestingly however, emerging studies have challenged the BM-centric view of adult ILC development and suggest that ILCs could arise neonatally from developing T cell progenitors. In this review, we discuss ILC development in parallel to T-cell development and summarize key findings that support a T-cell-centric view of ILC ontogeny.
Collapse
Affiliation(s)
- Samuel B Shin
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Park JH, Lee HK. Function of γδ T cells in tumor immunology and their application to cancer therapy. Exp Mol Med 2021; 53:318-327. [PMID: 33707742 PMCID: PMC8080836 DOI: 10.1038/s12276-021-00576-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
T cells of the γδ lineage are unconventional T cells with functions not restricted to MHC-mediated antigen presentation. Because of their broad antigen specificity and NK-like cytotoxicity, γδ T-cell importance in tumor immunology has been emphasized. However, some γδ T-cell subsets, especially those expressing IL-17, are immunosuppressive or tumor-promoting cells. Their cytokine profile and cytotoxicity are seemingly determined by cross-talk with microenvironment components, not by the γδTCR chain. Furthermore, much about the TCR antigen of γδ T cells remains unknown compared with the extreme diversity of their TCR chain pairs. Thus, the investigation and application of γδ T cells have been relatively difficult. Nevertheless, γδ T cells remain attractive targets for antitumor therapy because of their independence from MHC molecules. Because tumor cells have the ability to evade the immune system through MHC shedding, heterogeneous antigens, and low antigen spreading, MHC-independent γδ T cells represent good alternative targets for immunotherapy. Therefore, many approaches to using γδ T cells for antitumor therapy have been attempted, including induction of endogenous γδ T cell activation, adoptive transfer of expanded cells ex vivo, and utilization of chimeric antigen receptor (CAR)-T cells. Here, we discuss the function of γδ T cells in tumor immunology and their application to cancer therapy.
Collapse
Affiliation(s)
- Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
7
|
Anderson MK, Selvaratnam JS. Interaction between γδTCR signaling and the E protein-Id axis in γδ T cell development. Immunol Rev 2020; 298:181-197. [PMID: 33058287 DOI: 10.1111/imr.12924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
γδ T cells acquire their functional properties in the thymus, enabling them to exert rapid innate-like responses. To understand how distinct γδ T cell subsets are generated, we have developed a Two-Stage model for γδ T cell development. This model is predicated on the finding that γδTCR signal strength impacts E protein activity through graded upregulation of Id3. Our model proposes that cells enter Stage 1 in response to a γδTCR signaling event in the cortex that activates a γδ T cell-specific gene network. Part of this program includes the upregulation of chemokine receptors that guide them to the medulla. In the medulla, Stage 1 cells receive distinct combinations of γδTCR, cytokine, and/co-stimulatory signals that induce their transit into Stage 2, either toward the γδT1 or the γδT17 lineage. The intersection between γδTCR and cytokine signals can tune Id3 expression, leading to different outcomes even in the presence of strong γδTCR signals. The thymic signaling niches required for γδT17 development are segregated in time and space, providing transient windows of opportunity during ontogeny. Understanding the regulatory context in which E proteins operate at different stages will be key in defining how their activity levels impose functional outcomes.
Collapse
Affiliation(s)
- Michele K Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Johanna S Selvaratnam
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Inhibition of the activation of γδT17 cells through PPARγ-PTEN/Akt/GSK3β/NFAT pathway contributes to the anti-colitis effect of madecassic acid. Cell Death Dis 2020; 11:752. [PMID: 32929062 PMCID: PMC7490397 DOI: 10.1038/s41419-020-02969-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
Type-17 immune response, mediated mainly by IL-17, plays a critical role in ulcerative colitis. Previously, we showed that madecassic acid (MA), the main active ingredient of Centella asiatica herbs for anti-colitis effect, ameliorated dextran sulfate sodium (DSS)-induced mouse colitis through reducing the level of IL-17. Here, we explore the effect of MA on the activation of γδT17 cells, an alternative source of IL-17 in colitis. In DSS-induced colitis mice, oral administration of MA decreased the number of γδT17 cells and attenuated the inflammation in the colon, and the anti-colitis effect of MA was significantly counteracted by redundant γδT17 cells, suggesting that the decrease in γδT17 cells is important for the anti-colitis effect of MA. In vitro, MA could inhibit the activation but not the proliferation of γδT17 cells at concentrations without evident cytotoxicity. Antibody microarray profiling showed that the inhibition of MA on the activation of γδT17 cells involved PPARγ–PTEN/Akt/GSK3β/NFAT signals. In γδT17 cells, MA could reduce the nuclear localization of NFATc1 through inhibiting Akt phosphorylation to promote GSK3β activation. Moreover, it was confirmed that MA inhibited the Akt/GSK3β/NFATc1 pathway and the activation of γδT17 cells through activating PPARγ to increase PTEN expression and phosphorylation. The correlation between activation of PPARγ, decrease in γδT17 cell number, and amelioration of colitis by MA was validated in mice with DSS-induced colitis. In summary, these findings reveal that MA inhibits the activation of γδT17 cells through PPARγ–PTEN/Akt/GSK3β/NFAT pathway, which contributes to the amelioration of colitis.
Collapse
|
9
|
Lee M, Lee E, Han SK, Choi YH, Kwon DI, Choi H, Lee K, Park ES, Rha MS, Joo DJ, Shin EC, Kim S, Kim JK, Lee YJ. Single-cell RNA sequencing identifies shared differentiation paths of mouse thymic innate T cells. Nat Commun 2020; 11:4367. [PMID: 32868763 PMCID: PMC7459300 DOI: 10.1038/s41467-020-18155-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/09/2020] [Indexed: 12/19/2022] Open
Abstract
Invariant natural killer T (iNKT), mucosal-associated invariant T (MAIT), and γδ T cells are innate T cells that acquire memory phenotype in the thymus and share similar biological characteristics. However, how their effector differentiation is developmentally regulated is still unclear. Here, we identify analogous effector subsets of these three innate T cell types in the thymus that share transcriptional profiles. Using single-cell RNA sequencing, we show that iNKT, MAIT and γδ T cells mature via shared, branched differentiation rather than linear maturation or TCR-mediated instruction. Simultaneous TCR clonotyping analysis reveals that thymic maturation of all three types is accompanied by clonal selection and expansion. Analyses of mice deficient of TBET, GATA3 or RORγt and additional in vivo experiments corroborate the predicted differentiation paths, while human innate T cells from liver samples display similar features. Collectively, our data indicate that innate T cells share effector differentiation processes in the thymus. Innate T cells such as iNKT, MAIT and γδ T cells all develop in the thymus, but their differentiation paths are still unclear. Here, the authors show, using single-cell RNA sequencing, that all three cell types develop via shared and branched differentiation paths that are corroborated by additional results from gene-deficient mice and human liver T cells.
Collapse
Affiliation(s)
- Minji Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Eunmin Lee
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Seong Kyu Han
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yoon Ha Choi
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Dong-Il Kwon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyobeen Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kwanghwan Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Eun Seo Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Min-Seok Rha
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Dong Jin Joo
- Department of Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea.,The Research Institute for Transplantation, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| | - You Jeong Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
10
|
Spidale NA, Malhotra N, Frascoli M, Sylvia K, Miu B, Freeman C, Stadinski BD, Huseby E, Kang J. Neonatal-derived IL-17 producing dermal γδ T cells are required to prevent spontaneous atopic dermatitis. eLife 2020; 9:e51188. [PMID: 32065580 PMCID: PMC7025821 DOI: 10.7554/elife.51188] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/11/2020] [Indexed: 01/01/2023] Open
Abstract
Atopic Dermatitis (AD) is a T cell-mediated chronic skin disease and is associated with altered skin barrier integrity. Infants with mutations in genes involved in tissue barrier fitness are predisposed towards inflammatory diseases, but most do not develop or sustain the diseases, suggesting that there exist regulatory immune mechanisms to prevent aberrant inflammation. The absence of one single murine dermal cell type, the innate neonatal-derived IL-17 producing γδ T (Tγδ17) cells, from birth resulted in spontaneous, highly penetrant AD with many of the major hallmarks of human AD. In Tγδ17 cell-deficient mice, basal keratinocyte transcriptome was altered months in advance of AD induction. Tγδ17 cells respond to skin commensal bacteria and the fulminant disease in their absence was driven by skin commensal bacteria dysbiosis. AD in this model was characterized by highly expanded dermal αβ T clonotypes that produce the type three cytokines, IL-17 and IL-22. These results demonstrate that neonatal Tγδ17 cells are innate skin regulatory T cells that are critical for skin homeostasis, and that IL-17 has dual homeostatic and inflammatory function in the skin.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Autoantigens/genetics
- Cell Differentiation
- Dermatitis, Atopic/genetics
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/prevention & control
- Disease Models, Animal
- Gene Expression
- Interleukin-17/biosynthesis
- Interleukins/biosynthesis
- Keratinocytes/cytology
- Keratinocytes/metabolism
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Skin/metabolism
- Skin/microbiology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Nicholas A Spidale
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Nidhi Malhotra
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Michela Frascoli
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Katelyn Sylvia
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Bing Miu
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Coral Freeman
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Brian D Stadinski
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Eric Huseby
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Joonsoo Kang
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| |
Collapse
|
11
|
Rudensky AY. Editorial overview: The value of commitment in the lymphocyte world. Curr Opin Immunol 2019; 58:v-vii. [PMID: 31279359 DOI: 10.1016/j.coi.2019.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program at Sloan Kettering Institute, and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|