1
|
Wang Y, Seliger B. Identification of RNA-binding protein hnRNP C targeting the 3'UTR of the TAP-associated glycoprotein tapasin in melanoma. Oncoimmunology 2024; 13:2370928. [PMID: 38948930 PMCID: PMC11212565 DOI: 10.1080/2162402x.2024.2370928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
Deregulation or loss of the human leukocyte antigen class I (HLA-I) molecules on tumor cells leading to inhibition of CD8+ T cell recognition is an important tumor immune escape strategy, which could be caused by a posttranscriptional control of molecules in the HLA-I pathway mediated by RNA-binding proteins (RBPs). So far, there exists only limited information about the interaction of RBPs with HLA-I-associated molecules, but own work demonstrated a binding of the heterogeneous ribonucleoprotein C (hnRNP C) to the 3' untranslated region (UTR) of the TAP-associated glycoprotein tapasin (tpn). In this study, in silico analysis of pan-cancer TCGA datasets revealed that hnRNP C is higher expressed in tumor specimens compared to corresponding normal tissues, which is negatively correlated to tpn expression, T cell infiltration and the overall survival of tumor patients. Functional analysis demonstrated an upregulation of tpn expression upon siRNA-mediated downregulation of hnRNP C, which is accompanied by an increased HLA-I surface expression. Thus, hnRNP C has been identified to target tpn and its inhibition could improve the HLA-I surface expression on melanoma cells suggesting its use as a possible biomarker for T-cell-based tumor immunotherapies.
Collapse
Affiliation(s)
- Yuan Wang
- Institute for Medical Immunology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- Institute of Translational Immunology, Medical School “Theodor Fontane”, Brandenburg an der Havel, Germany
| |
Collapse
|
2
|
de la Visitación N, Chen W, Krishnan J, Van Beusecum JP, Amarnath V, Hennen EM, Zhao S, Saleem M, Ao M, Dikalov SI, Dikalova AE, Harrison DG, Patrick DM. Immunoproteasomal Processing of IsoLG-Adducted Proteins Is Essential for Hypertension. Circ Res 2024; 134:1276-1291. [PMID: 38623763 PMCID: PMC11081850 DOI: 10.1161/circresaha.124.324068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Hypertension is characterized by CD8+ (cluster differentiation 8) T cell activation and infiltration into peripheral tissues. CD8+ T cell activation requires proteasomal processing of antigenic proteins. It has become clear that isoLG (isolevuglandin)-adduced peptides are antigenic in hypertension; however, IsoLGs inhibit the constitutive proteasome. We hypothesized that immunoproteasomal processing of isoLG-adducts is essential for CD8+ T cell activation and inflammation in hypertension. METHODS IsoLG adduct processing was studied in murine dendritic cells (DCs), endothelial cells (ECs), and B8 fibroblasts. The role of the proteasome and the immunoproteasome in Ang II (angiotensin II)-induced hypertension was studied in C57BL/6 mice treated with bortezomib or the immunoproteasome inhibitor PR-957 and by studying mice lacking 3 critical immunoproteasome subunits (triple knockout mouse). We also examined hypertension in mice lacking the critical immunoproteasome subunit LMP7 (large multifunctional peptidase 7) specifically in either DCs or ECs. RESULTS We found that oxidant stress increases the presence of isoLG adducts within MHC-I (class I major histocompatibility complex), and immunoproteasome overexpression augments this. Pharmacological or genetic inhibition of the immunoproteasome attenuated hypertension and tissue inflammation. Conditional deletion of LMP7 in either DCs or ECs attenuated hypertension and vascular inflammation. Finally, we defined the role of the innate immune receptors STING (stimulator of interferon genes) and TLR7/8 (toll-like receptor 7/8) as drivers of LMP7 expression in ECs. CONCLUSIONS These studies define a previously unknown role of the immunoproteasome in DCs and ECs in CD8+ T cell activation. The immunoproteasome in DCs and ECs is critical for isoLG-adduct presentation to CD8+ T cells, and in the endothelium, this guides homing and infiltration of T cells to specific tissues.
Collapse
Affiliation(s)
- Néstor de la Visitación
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wei Chen
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jaya Krishnan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin P. Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Charleston South Carolina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Venkataraman Amarnath
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Shilin Zhao
- Vanderbilt Center for Quantitative Science, Vanderbilt University Medical Center
| | - Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mingfang Ao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergey I. Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna E. Dikalova
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
- Department of Veterans Affairs, Nashville, Tennessee
| |
Collapse
|
3
|
Yang K, Zhang Y, Ding J, Li Z, Zhang H, Zou F. Autoimmune CD8+ T cells in type 1 diabetes: from single-cell RNA sequencing to T-cell receptor redirection. Front Endocrinol (Lausanne) 2024; 15:1377322. [PMID: 38800484 PMCID: PMC11116783 DOI: 10.3389/fendo.2024.1377322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by pancreatic β cell destruction and mediated primarily by autoreactive CD8+ T cells. It has been shown that only a small number of stem cell-like β cell-specific CD8+ T cells are needed to convert normal mice into T1D mice; thus, it is likely that T1D can be cured or significantly improved by modulating or altering self-reactive CD8+ T cells. However, stem cell-type, effector and exhausted CD8+ T cells play intricate and important roles in T1D. The highly diverse T-cell receptors (TCRs) also make precise and stable targeted therapy more difficult. Therefore, this review will investigate the mechanisms of autoimmune CD8+ T cells and TCRs in T1D, as well as the related single-cell RNA sequencing (ScRNA-Seq), CRISPR/Cas9, chimeric antigen receptor T-cell (CAR-T) and T-cell receptor-gene engineered T cells (TCR-T), for a detailed and clear overview. This review highlights that targeting CD8+ T cells and their TCRs may be a potential strategy for predicting or treating T1D.
Collapse
Affiliation(s)
- Kangping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yihan Zhang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Hejin Zhang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Liu X, Liu H, Wang L, Han Y, Kong L, Zhang X. Killing capacity analysis of tumor-infiltrating cytotoxic lymphocytes and impact on lymph node metastasis in differentiated papillary carcinoma of thyroid with the BRAF V600E mutation. Diagn Pathol 2024; 19:29. [PMID: 38341587 PMCID: PMC10858496 DOI: 10.1186/s13000-024-01454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Cytotoxic lymphocytes (CLs) express potent toxins, including perforin (P) and granzyme-B (G), which brings about target cell death. The purpose of this study was to evaluate the killing capacity of tumor-infiltrating CLs by means of P and G analysis, and explore the association with lymph node metastasis in papillary carcinoma of thyroid (PTC) without Hashimoto's thyroiditis (HT). METHODS Infiltration of lymphocytes in PTC was observed in frozen sections. Both fresh tumor tissues and paracancerous tissues with lymphocyte infiltration were collected and prepared into a single cell suspension. Flow cytometry was used to detect the percentages of CD3+P+, CD3+G+, CD8+P+, and CD8+G+ T lymphocytes (TLs) and CD16-CD56+P+ and CD16-CD56+G+ natural killer (NK) cells. Finally, we investigated differential expression of P and G in NK cells and cytotoxic T lymphocytes (CTLs) in paired tumor tissues (group T, n = 44) and paracancerous tissues (group N, n = 44) from patients with PTC with the BRAF V600E mutation. Furthermore, patients were divided into two groups according to whether cervical central lymph node metastasis (CCLNM) existed: group A (with lymph node metastases, n = 27) and group B (with nonlymph node metastases, n = 17). Patients were also divided into three groups according to the total number of positive CCLNM: group B, group C (with low-level lymph node metastases, less than 5, n = 17) and group D (with high-level lymph node metastases, no less than 5, n = 10). RESULTS The percentage of CD3+P+ CTLs was significantly higher in group N than in group T (P < 0.05). The percentage of CD8+G+ CTLs was significantly higher in group T than in group N (P < 0.05). The percentages of CD3+G+, CD16-CD56+P+and CD16-CD56+G+ NK cells showed no significant difference in either group T or group N (P > 0.05). The percentages of CD3+P+ CTLs in group A and group C were significantly higher in the paracancerous tissue than in the tumor tissue (P < 0.05). The percentages of CD8+G+ CTLs in group A and group C were significantly higher in the tumor tissues than in the paracancerous tissues (P < 0.05). The percentage of CD16-CD56+G+ NK cells in group D was significantly higher in the tumor tissues than in the paracancerous tissues (P < 0.05). CONCLUSIONS The killing capacity of infiltrating CLs in PTC differed between tumor tissues and paracancerous tissues. In cases with CCLNM, higher expression of CD16-CD56+G+ NK cells in tumor tissues may be associated with a high risk of lymph node metastasis.
Collapse
Affiliation(s)
- Xiaogang Liu
- Department of Pathology, Beijing Tongren Hospital, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Capital Medical University, Beijing, 100730, China
- Department of Pathology, Beijing Chuiyangliu Hospital, Beijing, 100022, China
| | - Honggang Liu
- Department of Pathology, Beijing Tongren Hospital, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Capital Medical University, Beijing, 100730, China.
| | - Lu Wang
- Department of Pathology, Beijing Chuiyangliu Hospital, Beijing, 100022, China
| | - Yubing Han
- Department of Pathology, Beijing Chuiyangliu Hospital, Beijing, 100022, China
| | - Linghong Kong
- Department of Pathology, Beijing Chuiyangliu Hospital, Beijing, 100022, China
| | - Xinpeng Zhang
- Department of Pathology, Beijing Chuiyangliu Hospital, Beijing, 100022, China
| |
Collapse
|
5
|
Yuan W, Xu Y, Wu Z, Huang Y, Meng L, Dai S, Ying S, Chen Z, Xu A. Cellular senescence-related genes: predicting prognosis in hepatocellular carcinoma. BMC Cancer 2023; 23:1001. [PMID: 37853322 PMCID: PMC10585749 DOI: 10.1186/s12885-023-11288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/10/2023] [Indexed: 10/20/2023] Open
Abstract
Recent studies have shown that the high incidence and low cure rate of hepatocellular carcinoma (HCC) have not improved significantly. Surgery and liver transplantation are the mainstays of prolonging the survival of HCC patients. However, the surgical resection rate of HCC patients is very low, and even after radical surgical resection, the recurrence rate at 5 years postoperatively remains high and the prognosis is very poor, so more treatment options are urgently needed. Increasing evidence suggests that cellular senescence is not only related to cancer development but may also be one of its primary driving factors. We aimed to establish a prognostic signature of senescence-associated genes to predict the prognosis and therapeutic response of HCC patients. The aim of this study was to develop a risk model associated with cellular senescence and to search for potential strategies to treat HCC. We divided HCC patients into two clusters and identified differentially expressed genes (DEGs) between clusters. In this study, low-risk patients had a better prognosis, higher levels of immune cell infiltration, and better efficacy to fluorouracil, Paclitaxel and Cytarabine chemotherapy compared to high-risk patients. To further identify potential biomarkers for HCC, we further validated the expression levels of the four signature genes in HCC and neighbouring normal tissues by in vitro experiments. In conclusion, we identified and constructed a relevant prognostic signature, which performed well in predicting the survival and treatment response of HCC patients. This helps to differentiate between low-score and high-risk HCC, and the results may contribute to precise treatment protocols in clinical practice.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of General Surgery, Anhui Public Health Clinical Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, China
| | - Yuanmin Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhiheng Wu
- Department of General Surgery, Anhui Public Health Clinical Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, China
| | - Yang Huang
- Department of General Surgery, Anhui Public Health Clinical Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, China
| | - Lei Meng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shiping Dai
- Department of General Surgery, Wuwei City People's Hospital, Wuhu, 241000, China
| | - Songcheng Ying
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Zhangming Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Aman Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
6
|
Immunotherapeutic Strategies for Head and Neck Squamous Cell Carcinoma (HNSCC): Current Perspectives and Future Prospects. Vaccines (Basel) 2022; 10:vaccines10081272. [PMID: 36016159 PMCID: PMC9416402 DOI: 10.3390/vaccines10081272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Neoantigens are abnormal proteins produced by genetic mutations in somatic cells. Because tumour neoantigens are expressed only in tumour cells and have immunogenicity, they may represent specific targets for precision immunotherapy. With the reduction in sequencing cost, continuous advances in artificial intelligence technology and an increased understanding of tumour immunity, neoantigen vaccines and adoptive cell therapy (ACT) targeting neoantigens have become research hotspots. Approximately 900,000 patients worldwide are diagnosed with head and neck squamous cell carcinoma (HNSCC) each year. Due to its high mutagenicity and abundant lymphocyte infiltration, HNSCC naturally generates a variety of potential new antigen targets that may be used for HNSCC immunotherapies. Currently, the main immunotherapy for HNSCC is use of immune checkpoint inhibitors(ICIs). Neoantigen vaccines and adoptive cell therapy targeting neoantigens are extensions of immunotherapy for HNSCC, and a large number of early clinical trials are underway in combination with immune checkpoint inhibitors for the treatment of recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC). In this paper, we review recent neoantigen vaccine trials related to the treatment of HNSCC, introduce adoptive cell therapy targeting neoantigens, and propose a potential treatment for HNSCC. The clinical application of immune checkpoint inhibitor therapy and its combination with neoantigen vaccines in the treatment of HNSCC are summarized, and the prospect of using neoantigen to treat HNSCC is discussed and proposed.
Collapse
|