1
|
Liu D, Cui J, Liu Y, Niu M, Wang F, Zhao Q, Cai B, Zhang H, Wei J. Ultraconserved elements from transcriptome and genome data provide insight into the phylogenomics of Sternorrhyncha (Insecta: Hemiptera). Cladistics 2024; 40:496-509. [PMID: 38808591 DOI: 10.1111/cla.12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Sternorrhyncha, one of the four major suborders of Hemiptera, is a phytophagous taxon inclusive of nearly 18 000 described species. The phylogenetic relationships within the taxon and the earliest-branching lineage of its infraorders remain incompletely understood. This study attempted to illuminate the phylogenetic relationships within Sternorrhyncha through the use of maximum likelihood, Bayesian inference and maximum parsimony analyses, employing ultraconserved element (UCE) data from 39 genomic and 62 transcriptomic datasets and thereby representing most families within the taxon. The probe set Hemiptera 2.7Kv1 was used to recover a total of 2731 UCE loci: from 547 to 1699 (with an average of 1084) across all genomic datasets and from 108 to 849 (with an average of 329) across all transcriptomic datasets. All three types of phylogenetic analyses employed in this study produced robust statistical support for Sternorrhyncha being a monophyletic group. The different methods of phylogenetic analysis produced inconsistent descriptions of topological structure at the infraorder level: while maximum likelihood and Bayesian inference analyses produced strong statistical evidence (100%) indicating the clade Psylloidea + Aleyrodoidea to be a sister of the clade Aphidoidea (Aphidomorpha) + Coccoidea (Coccomorpha), the maximum parsimony analysis failed to recover a similar result. Our results also provide detail on the phylogenetic relationships within each infraorder. This study presents the first use of UCE data to investigate the phylogeny of Sternorrhyncha. It also shows the viability of amalgamating genomic and transcriptomic data in studies of phylogenetic relationships, potentially highlighting a resource-efficient approach for future inquiries into diverse taxa through the integration of varied data sources.
Collapse
Affiliation(s)
- Dajun Liu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
- Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| | - Jinyu Cui
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Yubo Liu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Minmin Niu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Fang Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Qing Zhao
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Bo Cai
- Post-Entry Quarantine Station for Tropical Plant, Haikou Customs District, No. 9 West Haixiu Road, Haikou, 570311, China
| | - Hufang Zhang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
- Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| | - Jiufeng Wei
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| |
Collapse
|
2
|
Sromek L, Johnson KP, Kunnasranta M, Ylinen E, Virrueta Herrera S, Andrievskaya E, Alexeev V, Rusinek O, Rosing-Asvid A, Nyman T. Population genomics of seal lice provides insights into the postglacial history of northern European seals. Mol Ecol 2024; 33:e17523. [PMID: 39248016 DOI: 10.1111/mec.17523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Genetic analyses of host-specific parasites can elucidate the evolutionary histories and biological features of their hosts. Here, we used population-genomic analyses of ectoparasitic seal lice (Echinophthirius horridus) to shed light on the postglacial history of seals in the Arctic Ocean and the Baltic Sea region. One key question was the enigmatic origin of relict landlocked ringed seal populations in lakes Saimaa and Ladoga in northern Europe. We found that that lice of four postglacially diverged subspecies of the ringed seal (Pusa hispida) and Baltic gray seal (Halichoerus grypus), like their hosts, form genetically differentiated entities. Using coalescent-based demographic inference, we show that the sequence of divergences of the louse populations is consistent with the geological history of lake formation. In addition, local effective population sizes of the lice are generally proportional to the census sizes of their respective seal host populations. Genome-based reconstructions of long-term effective population sizes revealed clear differences among louse populations associated with gray versus ringed seals, with apparent links to Pleistocene and Holocene climatic variation as well as to the isolation histories of ringed seal subspecies. Interestingly, our analyses also revealed ancient gene flow between the lice of Baltic gray and ringed seals, suggesting that the distributions of Baltic seals overlapped to a greater extent in the past than is the case today. Taken together, our results demonstrate how genomic information from specialized parasites with higher mutation and substitution rates than their hosts can potentially illuminate finer scale population genetic patterns than similar data from their hosts.
Collapse
Affiliation(s)
- Ludmila Sromek
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, USA
| | - Mervi Kunnasranta
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
- Natural Resources Institute Finland, Joensuu, Finland
| | - Eeva Ylinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | | | | | | | - Olga Rusinek
- Baikal Museum of the Siberian Branch of the Russian Academy of Sciences, Listvyanka, Russia
| | | | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| |
Collapse
|
3
|
Shin S, Baker AJ, Enk J, McKenna DD, Foquet B, Vandergast AG, Weissman DB, Song H. Orthoptera-specific target enrichment (OR-TE) probes resolve relationships over broad phylogenetic scales. Sci Rep 2024; 14:21377. [PMID: 39271747 PMCID: PMC11399444 DOI: 10.1038/s41598-024-72622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Phylogenomic data are revolutionizing the field of insect phylogenetics. One of the most tenable and cost-effective methods of generating phylogenomic data is target enrichment, which has resulted in novel phylogenetic hypotheses and revealed new insights into insect evolution. Orthoptera is the most diverse insect order within polyneoptera and includes many evolutionarily and ecologically interesting species. Still, the order as a whole has lagged behind other major insect orders in terms of transitioning to phylogenomics. In this study, we developed an Orthoptera-specific target enrichment (OR-TE) probe set from 80 transcriptomes across Orthoptera. The probe set targets 1828 loci from genes exhibiting a wide range of evolutionary rates. The utility of this new probe set was validated by generating phylogenomic data from 36 orthopteran species that had not previously been subjected to phylogenomic studies. The OR-TE probe set captured an average of 1037 loci across the tested taxa, resolving relationships across broad phylogenetic scales. Our detailed documentation of the probe design and bioinformatics process is intended to facilitate the widespread adoption of this tool.
Collapse
Affiliation(s)
- Seunggwan Shin
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biological Sciences, Center for Biodiversity Research, University of Memphis, Memphis, TN, USA
| | - Austin J Baker
- Department of Biological Sciences, Center for Biodiversity Research, University of Memphis, Memphis, TN, USA
- Entomology Department, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Jacob Enk
- Daicel Arbor Biosciences, Ann Arbor, MI, USA
| | - Duane D McKenna
- Department of Biological Sciences, Center for Biodiversity Research, University of Memphis, Memphis, TN, USA
| | - Bert Foquet
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Amy G Vandergast
- San Diego Field Station, Western Ecological Research Center, U.S. Geological Survey, San Diego, CA, USA
| | - David B Weissman
- Department of Entomology, California Academy of Sciences, Golden Gate Park, San Francisco, CA, USA
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Xi BX, Cui XN, Shang SQ, Li GW, Dewer Y, Li CN, Hu GX, Wang Y. Antennal Transcriptome Evaluation and Analysis for Odorant-Binding Proteins, Chemosensory Proteins, and Suitable Reference Genes in the Leaf Beetle Pest Diorhabda rybakowi Weise (Coleoptera: Chrysomelidae). INSECTS 2024; 15:251. [PMID: 38667381 PMCID: PMC11050234 DOI: 10.3390/insects15040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Diorhabda rybakowi Weise is one of the dominant pests feeding on Nitraria spp., a pioneer plant used for windbreaking and sand fixation purposes, and poses a threat to local livestock and ecosystems. To clarify the key olfactory genes of D. rybakowi and provide a theoretical basis for attractant and repellent development, the optimal reference genes under two different conditions (tissue and sex) were identified, and the bioinformatics and characterization of the tissue expression profiles of two categories of soluble olfactory proteins (OBPs and CSPs) were investigated. The results showed that the best reference genes were RPL13a and RPS18 for comparison among tissues, and RPL19 and RPS18 for comparison between sexes. Strong expressions of DrybOBP3, DrybOBP6, DrybOBP7, DrybOBP10, DrybOBP11, DrybCSP2, and DrybCSP5 were found in antennae, the most important olfactory organ for D. rybakowi. These findings not only provide a basis for further in-depth research on the olfactory molecular mechanisms of host-specialized pests but also provide a theoretical basis for the future development of new chemical attractants or repellents using volatiles to control D. rybakowi.
Collapse
Affiliation(s)
- Bo-Xin Xi
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (B.-X.X.); (Y.W.)
| | - Xiao-Ning Cui
- Key Laboratory for Grassland Ecosystem of Education Ministry, College of Pratacultural, Gansu Agricultural University, Lanzhou 730070, China; (C.-N.L.); (G.-X.H.)
| | - Su-Qin Shang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (B.-X.X.); (Y.W.)
| | - Guang-Wei Li
- College of Life Science, Yan’an University, Yan’an 716000, China;
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Giza 12618, Egypt;
| | - Chang-Ning Li
- Key Laboratory for Grassland Ecosystem of Education Ministry, College of Pratacultural, Gansu Agricultural University, Lanzhou 730070, China; (C.-N.L.); (G.-X.H.)
| | - Gui-Xin Hu
- Key Laboratory for Grassland Ecosystem of Education Ministry, College of Pratacultural, Gansu Agricultural University, Lanzhou 730070, China; (C.-N.L.); (G.-X.H.)
| | - Yan Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (B.-X.X.); (Y.W.)
| |
Collapse
|
5
|
Shao S, Yang L, Hu G, Li L, Wang Y, Tao L. Application of omics techniques in forensic entomology research. Acta Trop 2023; 246:106985. [PMID: 37473953 DOI: 10.1016/j.actatropica.2023.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
With the advent of the post-genome era, omics technologies have developed rapidly and are widely used, including in genomics, transcriptomics, proteomics, metabolomics, and microbiome research. These omics techniques are often based on comprehensive and systematic analysis of biological samples using high-throughput analysis methods and bioinformatics, to provide new insights into biological phenomena. Currently, omics techniques are gradually being applied to forensic entomology research and are useful in species identification, phylogenetics, screening for developmentally relevant differentially expressed genes, and the interpretation of behavioral characteristics of forensic-related species at the genetic level. These all provide valuable information for estimating the postmortem interval (PMI). This review mainly discusses the available omics techniques, summarizes the application of omics techniques in forensic entomology, and their future in the field.
Collapse
Affiliation(s)
- Shipeng Shao
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| | - Lijun Yang
- Criminal Police Branch, Suzhou Public Security Bureau, Renmin Road, Suzhou, China
| | - Gengwang Hu
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| | - Liangliang Li
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| | - Yu Wang
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China.
| | - Luyang Tao
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| |
Collapse
|
6
|
Cao ML, Nie Y, Fu YT, Li R, Yi XL, Xiong J, Liu GH. Characterization of the complete mitochondrial genomes of five hard ticks and phylogenetic implications. Parasitol Res 2023:10.1007/s00436-023-07891-7. [PMID: 37329345 DOI: 10.1007/s00436-023-07891-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/27/2023] [Indexed: 06/19/2023]
Abstract
Ticks are blood-sucking ectoparasites with significant medical and veterinary importance, capable of transmitting bacteria, protozoa, fungi, and viruses that cause a variety of human and animal diseases worldwide. In the present study, we sequenced the complete mitochondrial (mt) genomes of five hard tick species and analyzed features of their gene contents and genome organizations. The complete mt genomes of Haemaphysalis verticalis, H. flava, H. longicornis, Rhipicephalus sanguineus and Hyalomma asiaticum were 14855 bp, 14689 bp, 14693 bp, 14715 bp and 14722 bp in size, respectively. Their gene contents and arrangements are the same as those of most species of metastriate Ixodida, but distinct from species of genus Ixodes. Phylogenetic analyses using concatenated amino acid sequences of 13 protein-coding genes with two different computational algorithms (Bayesian inference and maximum likelihood) revealed the monophylies of the genera Rhipicephalus, Ixodes and Amblyomma, however, rejected the monophyly of the genus Haemaphysalis. To our knowledge, this is the first report of the complete mt genome of H. verticalis. These datasets provide useful mtDNA markers for further studies of the identification and classification of hard ticks.
Collapse
Affiliation(s)
- Mei-Ling Cao
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Yu Nie
- College of Biotechnology, Hunan University of Environment and Biology, Hengyang, 421001, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Rong Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Xi-Long Yi
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Jun Xiong
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China.
| |
Collapse
|
7
|
Michell CT, Wagner N, Mutanen M, Lee KM, Nyman T. Genomic evidence for contrasting patterns of host-associated genetic differentiation across shared host-plant species in leaf- and bud-galling sawflies. Mol Ecol 2023; 32:1791-1809. [PMID: 36626108 DOI: 10.1111/mec.16844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Resource specialization and ecological speciation arising through host-associated genetic differentiation (HAD) are frequently invoked as an explanation for the high diversity of plant-feeding insects and other organisms with a parasitic lifestyle. While genetic studies have demonstrated numerous examples of HAD in insect herbivores, the rarity of comparative studies means that we still lack an understanding of how deterministic HAD is, and whether patterns of host shifts can be predicted over evolutionary timescales. We applied genome-wide single nucleotide polymorphism and mitochondrial DNA sequence data obtained through genome resequencing to define species limits and to compare host-plant use in population samples of leaf- and bud-galling sawflies (Hymenoptera: Tenthredinidae: Nematinae) collected from seven shared willow (Salicaceae: Salix) host species. To infer the repeatability of long-term cophylogenetic patterns, we also contrasted the phylogenies of the two galler groups with each other as well as with the phylogeny of their Salix hosts estimated based on RADseq data. We found clear evidence for host specialization and HAD in both of the focal galler groups, but also that leaf gallers are more specialized to single host species compared with most bud gallers. In contrast to bud gallers, leaf gallers also exhibited statistically significant cophylogenetic signal with their Salix hosts. The observed discordant patterns of resource specialization and host shifts in two related galler groups that have radiated in parallel across a shared resource base indicate a lack of evolutionary repeatability in the focal system, and suggest that short- and long-term host use and ecological diversification in plant-feeding insects are dominated by stochasticity and/or lineage-specific effects.
Collapse
Affiliation(s)
- Craig T Michell
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Natascha Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Kyung Min Lee
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| |
Collapse
|
8
|
Liu D, Niu M, Lu Y, Wei J, Zhang H. Taxon-specific ultraconserved element probe design for phylogenetic analyses of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.984396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Scale insects (Coccoidea) are morphologically specialized members of the order Hemiptera, with 56 families recognized to date. However, the phylogenetic relationships within and among families are poorly resolved. In this study, to further characterize the phylogenetic relationships among scale insects, an ultraconserved element (UCE) probe set was designed specifically for Coccoidea based on three low-coverage whole genome sequences along with three publicly available genomes. An in silico test including eight additional genomes was performed to evaluate the effectiveness of the probe set. Most scale insect lineages were recovered by the phylogenetic analysis. This study recovered the monophyly of neococcoids. The newly developed UCE probe set has the potential to reshape and improve our understanding of the phylogenetic relationships within and among families of scale insects at the genome level.
Collapse
|
9
|
Johnson KP. Genomic Approaches to Uncovering the Coevolutionary History of Parasitic Lice. Life (Basel) 2022; 12:life12091442. [PMID: 36143478 PMCID: PMC9501036 DOI: 10.3390/life12091442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary New sequencing technologies have now made it possible to sequence entire genomes for a diversity of life on earth. Parasites comprise nearly half of all species. Lice are one important group of parasites of birds and mammals, including humans. Genome sequencing approaches have been applied to this group of parasites to uncover patterns of diversification. These patterns can be compared to the patterns of diversification in their hosts. Key findings from these studies have revealed that parasitic lice likely originated on birds and then switched to mammals multiple times. Within groups of birds and mammals, the evolutionary trees of lice match those for mammal hosts more than those for birds. Genomic approaches have also revealed that individual birds and mammals harbor distinct populations of lice. Thus, these new techniques allow for the study of patterns of diversification at a wide variety of scales. Abstract Next-generation sequencing technologies are revolutionizing the fields of genomics, phylogenetics, and population genetics. These new genomic approaches have been extensively applied to a major group of parasites, the lice (Insecta: Phthiraptera) of birds and mammals. Two louse genomes have been assembled and annotated to date, and these have opened up new resources for the study of louse biology. Whole genome sequencing has been used to assemble large phylogenomic datasets for lice, incorporating sequences of thousands of genes. These datasets have provided highly supported trees at all taxonomic levels, ranging from relationships among the major groups of lice to those among closely related species. Such approaches have also been applied at the population scale in lice, revealing patterns of population subdivision and inbreeding. Finally, whole genome sequence datasets can also be used for additional study beyond that of the louse nuclear genome, such as in the study of mitochondrial genome fragmentation or endosymbiont function.
Collapse
Affiliation(s)
- Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA
| |
Collapse
|
10
|
Virrueta Herrera S, Johnson KP, Sweet AD, Ylinen E, Kunnasranta M, Nyman T. High levels of inbreeding with spatial and host-associated structure in lice of an endangered freshwater seal. Mol Ecol 2022; 31:4593-4606. [PMID: 35726520 PMCID: PMC9544963 DOI: 10.1111/mec.16569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 02/02/2023]
Abstract
Host-specialist parasites of endangered large vertebrates are in many cases more endangered than their hosts. In particular, low host population densities and reduced among-host transmission rates are expected to lead to inbreeding within parasite infrapopulations living on single host individuals. Furthermore, spatial population structures of directly-transmitted parasites should be concordant with those of their hosts. Using population genomic approaches, we investigated inbreeding and population structure in a host-specialist seal louse (Echinophthirius horridus) infesting the Saimaa ringed seal (Phoca hispida saimensis), which is endemic to Lake Saimaa in Finland, and is one of the most endangered pinnipeds in the world. We conducted genome resequencing of pairs of lice collected from 18 individual Saimaa ringed seals throughout the Lake Saimaa complex. Our analyses showed high genetic similarity and inbreeding between lice inhabiting the same individual seal host, indicating low among-host transmission rates. Across the lake, genetic differentiation among individual lice was correlated with their geographic distance, and assignment analyses revealed a marked break in the genetic variation of the lice in the middle of the lake, indicating substantial population structure. These findings indicate that movements of Saimaa ringed seals across the main breeding areas of the fragmented Lake Saimaa complex may in fact be more restricted than suggested by previous population-genetic analyses of the seals themselves.
Collapse
Affiliation(s)
- Stephany Virrueta Herrera
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, USA.,Program in Ecology, Evolution, and Conservation, University of Illinois, Urbana, Illinois, USA
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, USA
| | - Andrew D Sweet
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Eeva Ylinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Mervi Kunnasranta
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.,Natural Resources Institute Finland, Joensuu, Finland
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| |
Collapse
|
11
|
Dong X, Wang K, Tang Z, Zhang Y, Yi W, Xue H, Zheng C, Bu W. Phylogeny of Coreoidea based on mitochondrial genomes show the paraphyly of Coreidae and Alydidae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21878. [PMID: 35181948 DOI: 10.1002/arch.21878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Coreoidea (Insecta: Hemiptera: Heteroptera) is a widely distributed and agriculturally important bugs. However, the phylogeny of Coreoidea lacked consensus on higher-level relationships and several studies by comparative morphological characters and molecular data suggested the non-monophyly of two families: Coreidae and Alydidae. The mitochondrial genome (mitogenome) has long been thought to be a significant marker to understand phylogenetic relationships, but the mitogenome in Alydidae is scarce to date. In the present study, we gathered the mitogenomes of 28 species from four families of Coreoidea excluding Hyocephalidae (Alydidae, Coreidae, Rhopalidae, and Stenocephalidae), including four newly sequenced mitogenomes of Alydidae, and conducted mitogenomic organization and phylogenetic studies. We used maximum likelihood and Bayesian inference methods to infer the higher-level phylogeny from the perspective of mitogenomes, primarily to investigate the phylogenetic relationship betweeen Coreidae and Alydidae. We add evidence that neither Alydidae nor Coreidae are monophyletic based on mitogenomes. Newly sequenced mitogenomes of Alydidae have traditional gene structure and gene rearrangement was not found. Alydinae was always recovered as closely related to Pseudophloeinae of the coreid subfamily with high support. The placement of the coreid subfamily Hydarinae and alydid subfamily Micrelytrinae are unstable depending on approach used. In terms of the length and nucleotide composition of the protein coding genes in mitogenomes, Pseudophloeinae and Hydarinae of coreid were more similar to Alydidae. The unsettled classification issues of Coreidae and Alydidae by mitogenomes were demonstrated in this work, indicating that further study is needed.
Collapse
Affiliation(s)
- Xue Dong
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Kaibin Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zechen Tang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaoyao Zhang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenbo Yi
- Department of Biology, Xinzhou Teachers University, Xinzhou, Shanxi, China
| | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenguang Zheng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Dong X, Yi W, Zheng C, Zhu X, Wang S, Xue H, Ye Z, Bu W. Species delimitation of rice seed bugs complex: Insights from mitochondrial genomes and ddRAD‐seq data. ZOOL SCR 2021. [DOI: 10.1111/zsc.12523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Dong
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Wenbo Yi
- Department of Biology Xinzhou Teachers University Xinzhou China
| | - Chenguang Zheng
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Xiuxiu Zhu
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Shujing Wang
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Huaijun Xue
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Zhen Ye
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Wenjun Bu
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| |
Collapse
|
13
|
Tihelka E, Cai C, Giacomelli M, Lozano-Fernandez J, Rota-Stabelli O, Huang D, Engel MS, Donoghue PCJ, Pisani D. The evolution of insect biodiversity. Curr Biol 2021; 31:R1299-R1311. [PMID: 34637741 DOI: 10.1016/j.cub.2021.08.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Insects comprise over half of all described animal species. Together with the Protura (coneheads), Collembola (springtails) and Diplura (two-pronged bristletails), insects form the Hexapoda, a terrestrial arthropod lineage characterised by possessing six legs. Exponential growth of genome-scale data for the hexapods has substantially altered our understanding of the origin and evolution of insect biodiversity. Phylogenomics has provided a new framework for reconstructing insect evolutionary history, resolving their position among the arthropods and some long-standing internal controversies such as the placement of the termites, twisted-winged insects, lice and fleas. However, despite the greatly increased size of phylogenomic datasets, contentious relationships among key insect clades remain unresolved. Further advances in insect phylogeny cannot rely on increased depth and breadth of genome and taxon sequencing. Improved modelling of the substitution process is fundamental to countering tree-reconstruction artefacts, while gene content, modelling of duplications and deletions, and comparative morphology all provide complementary lines of evidence to test hypotheses emerging from the analysis of sequence data. Finally, the integration of molecular and morphological data is key to the incorporation of fossil species within insect phylogeny. The emerging integrated framework of insect evolution will help explain the origins of insect megadiversity in terms of the evolution of their body plan, species diversity and ecology. Future studies of insect phylogeny should build upon an experimental, hypothesis-driven approach where the robustness of hypotheses generated is tested against increasingly realistic evolutionary models as well as complementary sources of phylogenetic evidence.
Collapse
Affiliation(s)
- Erik Tihelka
- School of Earth Sciences, University of Bristol, Bristol, UK; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
| | - Chenyang Cai
- School of Earth Sciences, University of Bristol, Bristol, UK; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
| | | | - Jesus Lozano-Fernandez
- School of Biological Sciences, University of Bristol, Bristol, UK; Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Omar Rota-Stabelli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all Adige, Italy; Center Agriculture Food Environment, University of Trento, 38010 San Michele all Adige, Italy
| | - Diying Huang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Michael S Engel
- Division of Entomology, Natural History Museum, University of Kansas, Lawrence, KS, USA; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | | | - Davide Pisani
- School of Earth Sciences, University of Bristol, Bristol, UK; School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
14
|
Marinotti O. Anopheles darlingi versus Nyssorhynchus darlingi, response to the discussion. Trends Parasitol 2021; 37:849. [PMID: 34420867 DOI: 10.1016/j.pt.2021.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/21/2023]
|
15
|
de Moya RS, Yoshizawa K, Walden KKO, Sweet AD, Dietrich CH, Kevin P J. Phylogenomics of Parasitic and Nonparasitic Lice (Insecta: Psocodea): Combining Sequence Data and Exploring Compositional Bias Solutions in Next Generation Data Sets. Syst Biol 2020; 70:719-738. [PMID: 32979270 DOI: 10.1093/sysbio/syaa075] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/13/2022] Open
Abstract
The insect order Psocodea is a diverse lineage comprising both parasitic (Phthiraptera) and nonparasitic members (Psocoptera). The extreme age and ecological diversity of the group may be associated with major genomic changes, such as base compositional biases expected to affect phylogenetic inference. Divergent morphology between parasitic and nonparasitic members has also obscured the origins of parasitism within the order. We conducted a phylogenomic analysis on the order Psocodea utilizing both transcriptome and genome sequencing to obtain a data set of 2370 orthologous genes. All phylogenomic analyses, including both concatenated and coalescent methods suggest a single origin of parasitism within the order Psocodea, resolving conflicting results from previous studies. This phylogeny allows us to propose a stable ordinal level classification scheme that retains significant taxonomic names present in historical scientific literature and reflects the evolution of the group as a whole. A dating analysis, with internal nodes calibrated by fossil evidence, suggests an origin of parasitism that predates the K-Pg boundary. Nucleotide compositional biases are detected in third and first codon positions and result in the anomalous placement of the Amphientometae as sister to Psocomorpha when all nucleotide sites are analyzed. Likelihood-mapping and quartet sampling methods demonstrate that base compositional biases can also have an effect on quartet-based methods.[Illumina; Phthiraptera; Psocoptera; quartet sampling; recoding methods.].
Collapse
Affiliation(s)
- Robert S de Moya
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL 61801, USA.,Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Kazunori Yoshizawa
- Systematic Entomology, School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Andrew D Sweet
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN 47907, USA
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Johnson Kevin P
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| |
Collapse
|
16
|
Cai C, Tihelka E, Pisani D, Donoghue PCJ. Data curation and modeling of compositional heterogeneity in insect phylogenomics: A case study of the phylogeny of Dytiscoidea (Coleoptera: Adephaga). Mol Phylogenet Evol 2020; 147:106782. [PMID: 32147574 DOI: 10.1016/j.ympev.2020.106782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
Diving beetles and their allies are an almost ubiquitous group of freshwater predators. Knowledge of the phylogeny of the adephagan superfamily Dytiscoidea has significantly improved since the advent of molecular phylogenetics. However, despite recent comprehensive phylogenomic studies, some phylogenetic relationships among the constituent families remain elusive. In particular, the position of the family Hygrobiidae remains uncertain. We address these issues by re-analyzing recently published phylogenomic datasets for Dytiscoidea, using approaches to reduce compositional heterogeneity and adopting a site-heterogeneous mixture model. We obtained a consistent, well-resolved, and strongly supported tree. Consistent with previous studies, our analyses support Aspidytidae as the monophyletic sister group of Amphizoidae, and more importantly, Hygrobiidae as the sister of the diverse Dytiscidae, in agreement with morphology-based phylogenies. Our analyses provide a backbone phylogeny of Dytiscoidea, which lays the foundation for better understanding the evolution of morphological characters, life habits, and feeding behaviors of dytiscoid beetles.
Collapse
Affiliation(s)
- Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Erik Tihelka
- Department of Animal Science, Hartpury College, Hartpury GL19 3BE, UK
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
17
|
Clark RM, Ragland GJ. Editorial overview: Tapping arthropod diversity to elaborate the genotype-to-phenotype map. CURRENT OPINION IN INSECT SCIENCE 2019; 36:v-viii. [PMID: 31732447 DOI: 10.1016/j.cois.2019.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217, USA
| |
Collapse
|