1
|
Will I, Stevens EJ, Belcher T, King KC. 'Re-Wilding' an Animal Model With Microbiota Shifts Immunity and Stress Gene Expression During Infection. Mol Ecol 2025; 34:e17586. [PMID: 39529601 DOI: 10.1111/mec.17586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The frequency of emerging disease is growing with ongoing human activity facilitating new host-pathogen interactions. Novel infection outcomes can also be shaped by the host microbiota. Caenorhabditis elegans nematodes experimentally colonised by a wild microbiota community and infected by the widespread animal pathogen, Staphylococcus aureus, have been shown to suffer higher mortality than those infected by the pathogen alone. Understanding the host responses to such microbiota-pathogen ecological interactions is key to pinpointing the mechanism underlying severe infection outcomes. We conducted transcriptomic analyses of C. elegans colonised by its native microbiota, S. aureus and both in combination. Correlations between altered collagen gene expression and heightened mortality in co-colonised hosts suggest the microbiota modified host resistance to infection. Furthermore, microbiota colonised hosts showed increased expression of immunity genes and variable expression of stress response genes during infection. Changes in host immunity and stress response could encompass both causes and effects of severe infection outcomes. 'Re-wilding' this model nematode host with its native microbiota indicated that typically commensal microbes can mediate molecular changes in the host that are costly when challenged by a novel emerging pathogen.
Collapse
Affiliation(s)
- Ian Will
- Department of Biology, University of Oxford, Oxford, UK
| | - Emily J Stevens
- Department of Biology, University of Oxford, Oxford, UK
- School of Life Sciences, Keele University, Newcastle-under-Lyme, UK
| | | | - Kayla C King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Sauers LA, Bassingthwaite T, Sierra-Rivera B, Hampton KJ, Duffield KR, Gore H, Ramirez JL, Sadd BM. Membership robustness but structural change of the native gut microbiota of bumble bees upon systemic immune induction. Microbiol Spectr 2024; 12:e0086124. [PMID: 39373496 PMCID: PMC11536996 DOI: 10.1128/spectrum.00861-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024] Open
Abstract
Understanding factors influencing the composition and maintenance of beneficial host-associated microbial communities is central to understanding their ecological, evolutionary, and health consequences for hosts. Host immunity is often implicated as a regulator of these microbiota, but immunity may also play a disruptive role, with responses to infection perturbing beneficial communities. Such effects may be more prominent from innate immune responses, with more rapid-acting and often non-specific components, compared to adaptive responses. We investigated how upregulation of antibacterial immunity in the bumble bee Bombus impatiens affects its core gut microbiota, testing the hypothesis that immunity-induced perturbation impacts the microbiota structure. Freshly emerged adult bees were fed a microbiota inoculum before receiving a non-pathogenic immune stimulation injection. We quantified microbial communities using 16S rRNA amplicon sequencing and targeted quantitative PCR. Coarse community membership shows apparent robustness, but we find that immune stimulation alters the abundance of two core community members, Gilliamella and Snodgrassella. Moreover, a positive association in communities between these bacteria is perturbed following a Gram-negative challenge. The observed changes in the gut microbial community are suggestive of immune response-induced dysbiosis, linking ecological interactions across levels between hosts, their pathogens, and their beneficial gut microbiota. The potential for collateral perturbation of the natural gut microbiota following an innate immune response may contribute to immune costs, shaping the evolutionary optimization of immune investment depending on the ecological context. IMPORTANCE Our work demonstrates how innate immunity may influence the host-associated microbiota. While previous work has demonstrated the role of adaptive immunity in regulating the microbiota, we show that stimulation of an innate immune response in bumble bees may disrupt the native gut microbial community by shifting individual abundances of some members and pairwise associations. This work builds upon previous work in bumble bees demonstrating factors determining microbe colonization of hosts and microbiota membership, implicating immune response-induced changes as a factor shaping these important gut communities. While some microbiota members appear unaffected, changes in others and the community overall suggests that collateral perturbation of the native gut microbiota upon an innate immune response may serve as an additional selective pressure that shapes the evolution of host innate immunity.
Collapse
Affiliation(s)
- Logan A. Sauers
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Toby Bassingthwaite
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Bryan Sierra-Rivera
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Kylie J. Hampton
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Kristin R. Duffield
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Haley Gore
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - José L. Ramirez
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| |
Collapse
|
3
|
Chen Y, Chen Y, Li Y, Du E, Sun Z, Lu Z, Gui F. Comparative study of the gut microbial community structure of Spodoptera frugiperda and Spodoptera literal (Lepidoptera). PeerJ 2024; 12:e17450. [PMID: 38860210 PMCID: PMC11164061 DOI: 10.7717/peerj.17450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Background Spodoptera frugiperda, the fall armyworm is a destructive invasive pest, and S. litura the tobacco cutworm, is a native species closely related to S. frugiperda. The gut microbiota plays a vital role in insect growth, development, metabolism and immune system. Research on the competition between invasive species and closely related native species has focused on differences in the adaptability of insects to the environment. Little is known about gut symbiotic microbe composition and its role in influencing competitive differences between these two insects. Methods We used a culture-independent approach targeting the 16S rRNA gene of gut bacteria of 5th instar larvae of S. frugiperda and S. litura. Larvae were reared continuously on maize leaves for five generations. We analyzed the composition, abundance, diversity, and metabolic function of gut microbiomes of S. frugiperda and S. litura larvae. Results Firmicutes, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in both species. Enterococcus, ZOR0006, Escherichia, Bacteroides, and Lactobacillus were the genera with the highest abundance in S. frugiperda. Enterococcus, Erysipelatoclostridium, ZOR0006, Enterobacter, and Bacteroides had the highest abundance in S. litura. According to α-diversity analysis, the gut bacterial diversity of S. frugiperda was significantly higher than that of S. litura. KEGG analysis showed 15 significant differences in metabolic pathways between S. frugiperda and S. litura gut bacteria, including transcription, cell growth and death, excretory system and circulatory system pathways. Conclusion In the same habitat, the larvae of S. frugiperda and S. litura showed significant differences in gut bacterial diversity and community composition. Regarding the composition and function of gut bacteria, the invasive species S. frugiperda may have a competitive advantage over S. litura. This study provides a foundation for developing control strategies for S. frugiperda and S. litura.
Collapse
Affiliation(s)
- Yaping Chen
- College of Plant Protection, Yunnan Agricutural University, Kunming, Yunnan, China
| | - Yao Chen
- College of Plant Protection, Yunnan Agricutural University, Kunming, Yunnan, China
| | - Yahong Li
- Yunnan Plant Protection and Quarantine Station, Kunming, Yunnan, China
| | - Ewei Du
- College of Plant Protection, Yunnan Agricutural University, Kunming, Yunnan, China
| | - Zhongxiang Sun
- College of Plant Protection, Yunnan Agricutural University, Kunming, Yunnan, China
| | - Zhihui Lu
- College of Plant Protection, Yunnan Agricutural University, Kunming, Yunnan, China
| | - Furong Gui
- College of Plant Protection, Yunnan Agricutural University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Streicher T, Brinker P, Tragust S, Paxton RJ. Host Barriers Limit Viral Spread in a Spillover Host: A Study of Deformed Wing Virus in the Bumblebee Bombus terrestris. Viruses 2024; 16:607. [PMID: 38675948 PMCID: PMC11053533 DOI: 10.3390/v16040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The transmission of pathogens from reservoir to recipient host species, termed pathogen spillover, can profoundly impact plant, animal, and public health. However, why some pathogens lead to disease emergence in a novel species while others fail to establish or do not elicit disease is often poorly understood. There is strong evidence that deformed wing virus (DWV), an (+)ssRNA virus, spills over from its reservoir host, the honeybee Apis mellifera, into the bumblebee Bombus terrestris. However, the low impact of DWV on B. terrestris in laboratory experiments suggests host barriers to virus spread in this recipient host. To investigate potential host barriers, we followed the spread of DWV genotype B (DWV-B) through a host's body using RT-PCR after experimental transmission to bumblebees in comparison to honeybees. Inoculation was per os, mimicking food-borne transmission, or by injection into the bee's haemocoel, mimicking vector-based transmission. In honeybees, DWV-B was present in both honeybee faeces and haemolymph within 3 days of inoculation per os or by injection. In contrast, DWV-B was not detected in B. terrestris haemolymph after inoculation per os, suggesting a gut barrier that hinders DWV-B's spread through the body of a B. terrestris. DWV-B was, however, detected in B. terrestris faeces after injection and feeding, albeit at a lower abundance than that observed for A. mellifera, suggesting that B. terrestris sheds less DWV-B than A. mellifera in faeces when infected. Barriers to viral spread in B. terrestris following oral infection may limit DWV's impact on this spillover host and reduce its contribution to the community epidemiology of DWV.
Collapse
Affiliation(s)
- Tabea Streicher
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Pina Brinker
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Simon Tragust
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Lu QC, Yu JM, Liu HL, Wu XL, Wei SJ, Lei M, Cai P, He HG, Pu DQ. Stable composition of gut microbiome in the Asian ladybeetle Coccinella septempunctata reared on natural and artificial diets. Sci Rep 2024; 14:71. [PMID: 38168578 PMCID: PMC10761721 DOI: 10.1038/s41598-023-49885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
The Asian ladybeetle, Coccinella septempunctata, is an important insect of predatory natural enemy, which has a strong control effect and application prospects for aphids, whiteflies, mealybugs, and other small-sized pests of agriculture and forestry crops. Gut microbiota composition posed impacts on development of insects. In order to clarify the effect of artificial feed feeding on the intestinal microbial species and structure of C. septempunctata, we compared the intestinal microbial flora of C. septempunctata reared on bean aphids and artificial food for 15 days. Results show that Proteobacteria was the dominant component in all groups at phylum level, Rhodobacter, Methylovigula, Burkholderia, and Bradyrhizobium were the dominant bacteria among all groups at genus level. As to the differences in bacterial community structure and diversity, there is no significant difference between Shannon index and Simpson index, the principal components analysis of the bacterial communities, and the samples were roughly distributed in different regions. After 15 days of feeding, artificial diet did not significantly reduce the microbial diversity of the gut of C. septempunctata compared to the aphid group, and there was no significant effect on the abundance of dominant flora in the gut of C. septempunctata, C. septempunctata gut has a similar core microbiota. This study clarifies the effects in intestinal microbial diversity and composition structure of the C. septempunctata with artificial diet, and provides a theoretical basis for understanding the intestinal microorganisms and optimizating the artificial diet of C. septempunctata.
Collapse
Affiliation(s)
- Qiu-Cheng Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- China West Normal University, Nanchong, 637002, China
| | - Jia-Min Yu
- Sichuan Tobacco Company, Chengdu, 653100, China
| | - Hong-Ling Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xing-Long Wu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Min Lei
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Peng Cai
- Horticultural Institute, Sichuan Academy of Agricultural Sciences, Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
| | - Heng-Guo He
- China West Normal University, Nanchong, 637002, China.
| | - De-Qiang Pu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
| |
Collapse
|
6
|
Sakda P, Xiang X, Song Z, Wu Y, Zhou L. Impact of Season on Intestinal Bacterial Communities and Pathogenic Diversity in Two Captive Duck Species. Animals (Basel) 2023; 13:3879. [PMID: 38136916 PMCID: PMC10740475 DOI: 10.3390/ani13243879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Vertebrates and their gut bacteria interact in complex and mutually beneficial ways. The intestinal microbial composition is influenced by several external influences. In addition to food, the abiotic elements of the environment, such as temperature, humidity, and seasonal fluctuation are also important determinants. Fecal samples were collected from two captive duck species, Baikal teal (Sibirionetta formosa) and common teal (Anas crecca) across four seasons (summer, autumn, winter, and spring). These ducks were consistently fed the same diet throughout the entire experiment. High throughput sequencing (Illumina Mi-seq) was employed to analyze the V4-V5 region of the 16sRNA gene. The dominant phyla in all seasons were Proteobacteria and Firmicutes. Interestingly, the alpha diversity was higher in winter for both species. The NMDS, PCoA, and ANOSIM analysis showed the distinct clustering of bacterial composition between different seasons, while no significant differences were discovered between duck species within the same season. In addition, LefSe analysis demonstrated specific biomarkers in different seasons, with the highest number revealed in winter. The co-occurrence network analysis also showed that during winter, the network illustrated a more intricate structure with the greatest number of nodes and edges. However, this study identified ten potentially pathogenic bacterial species, which showed significantly enhanced diversity and abundance throughout the summer. Overall, our results revealed that season mainly regulated the intestinal bacterial community composition and pathogenic bacteria of captive ducks under the instant diet. This study provides an important new understanding of the seasonal variations in captive wild ducks' intestinal bacterial community structure. The information available here may be essential data for preventing and controlling infections caused by pathogenic bacteria in captive waterbirds.
Collapse
Affiliation(s)
- Patthanan Sakda
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| | - Zhongqiao Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
| | - Yuannuo Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Lizhi Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| |
Collapse
|
7
|
Griem-Krey H, Petersen C, Hamerich IK, Schulenburg H. The intricate triangular interaction between protective microbe, pathogen and host determines fitness of the metaorganism. Proc Biol Sci 2023; 290:20232193. [PMID: 38052248 PMCID: PMC10697802 DOI: 10.1098/rspb.2023.2193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
The microbiota shapes host biology in numerous ways. One example is protection against pathogens, which is likely critical for host fitness in consideration of the ubiquity of pathogens. The host itself can affect abundance of microbiota or pathogens, which has usually been characterized in separate studies. To date, however, it is unclear how the host influences the interaction with both simultaneously and how this triangular interaction determines fitness of the host-microbe assemblage, the so-called metaorganism. To address this current knowledge gap, we focused on a triangular model interaction, consisting of the nematode Caenorhabditis elegans, its protective symbiont Pseudomonas lurida MYb11 and its pathogen Bacillus thuringiensis Bt679. We combined the two microbes with C. elegans mutants with altered immunity and/or microbial colonization, and found that (i) under pathogen stress, immunocompetence has a larger influence on metaorganism fitness than colonization with the protective microbe; (ii) in almost all cases, MYb11 still improves fitness; and (iii) disruption of p38 MAPK signalling, which contributes centrally to immunity against Bt679, completely reverses the protective effect of MYb11, which further reduces nematode survival and fitness upon infection with Bt679. Our study highlights the complex interplay between host, protective microbe and pathogen in shaping metaorganism biology.
Collapse
Affiliation(s)
- Hanne Griem-Krey
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Carola Petersen
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Inga K. Hamerich
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
- Antibiotic resistance group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
8
|
Vommaro ML, Zanchi C, Angelone T, Giglio A, Kurtz J. Herbicide exposure alters the effect of the enthomopathogen Beauveria bassiana on immune gene expression in mealworm beetles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122662. [PMID: 37778488 DOI: 10.1016/j.envpol.2023.122662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Concerns have grown worldwide about the potentially far-reaching effects of herbicides on functional biodiversity in agroecosystems. Repeated applications over time can lead to accumulation of residues in soil, water, and food and may have negative impacts on non-target organisms. However, the effects of herbicide residues on interspecific relationships, such as host-pathogen interactions, are poorly studied. In this study, we evaluated the effects of two different concentrations of a commercial pendimethalin-based formulation (PND), the residual contamination (S, 13 ppm) in treated soils and the maximum residue level allowed by the European Commission in cereals (EU, 0.05 ppm). We tested the effect of PND on the biological interaction between the mealworm beetle Tenebrio molitor Linnaeus, 1758 and the entomopathogenic fungus Beauveria bassiana Vuillemin, 1912 (Bb, strain KVL 03-144) at two concentrations (LC50 5 × 105 conidia mL-1 and LC100 1 × 107 conidia mL-1). We checked the survival of beetles exposed to PND or/and inoculated with B. bassiana, the expression of four antimicrobial peptides (AMPs), and finally how PND affects in vitro germination of fungus. The exposure to PND had no significant effects on the survival of either control or Bb-exposed beetles. In the mealworm beetle, upregulation of gene expression of the inducible AMPs Tenecin 1, 2, and 4 was observed in PND-treated beetles after inoculation with Bb, while the levels of the non-inducible AMP Tenecin 3 were similar between treatments. In conclusion, our findings demonstrate that admitted residual doses of currently used herbicides modify an important component of the inducible immune response of an insect. This did not translate into an effect on the survival to B. bassiana in our system. However, residual doses of the herbicide at 13 ppm may temporarily affect fungal germination. These results raise questions about the compatibility of bioinsecticides with synthetic pesticides and the effects of herbicide residues on host-pathogen interactions.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy; Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany.
| | - Caroline Zanchi
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany; Institute for Biology, Freie Universität Berlin, Königin-Luise Str. 1-3, 14 195, Berlin, Germany
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Joachim Kurtz
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany
| |
Collapse
|
9
|
Fatemi E, Jung C. Pathogenicity of the root lesion nematode Pratylenchus neglectus depends on pre-culture conditions. Sci Rep 2023; 13:19642. [PMID: 37949971 PMCID: PMC10638436 DOI: 10.1038/s41598-023-46551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
The ability of a plant parasitic nematode to infect and reproduce within a host plant depends on its genotype and the environmental conditions before and during infection. We studied the culturing conditions of the root lesion nematode Pratylenchus neglectus to produce inoculum for plant infection tests. Nematodes were either cultivated on carrot calli for different periods or directly isolated from the roots of the host plants. After infection of wheat and barley plants in the greenhouse, nematodes were quantified by RT-qPCR and by visual counting of the nematodes. We observed drastically reduced infection rates after long-term (> 96 weeks) cultivation on carrot callus. In contrast, fresh isolates from cereal roots displayed much higher pathogenicity. We recommend using root lesion nematodes cultivated on carrot calli no longer than 48 weeks to guarantee uniform infection rates.
Collapse
Affiliation(s)
- Ehsan Fatemi
- Plant Breeding Institute, Christian-Albrechts University, Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts University, Kiel, Germany.
| |
Collapse
|
10
|
Mason CJ, Shikano I. Hotter days, stronger immunity? Exploring the impact of rising temperatures on insect gut health and microbial relationships. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101096. [PMID: 37517588 DOI: 10.1016/j.cois.2023.101096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Climate change can generate cascading effects on animals through compounding stressors. As ectotherms, insects are particularly susceptible to variation in temperature and extreme events. How insects respond to temperature often occurs with respect to their environment, and a pertinent question involves how thermal stress integrates with insect capabilities to resolve interactions with gut microorganisms (microbiome and gut pathogens). We explore the impact of elevated temperatures and the impact of the host physiological response influencing immune system regulation and the gut microbiome. We summarize the literature involving how elevated temperature extremes impact insect gut immune systems, and how in turn that alters potential interactions with the gut microbiome and potential pathogens. Temperature effects on immunity are complex, and ultimate effects on microbial components can vary by system. Moreover, there are multiple questions yet to explore in how insects contend with simultaneous abiotic stressors and potential trade-offs in their response to opportunistic microbiota.
Collapse
Affiliation(s)
- Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Ikkei Shikano
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 513, Honolulu, HI 96822, USA.
| |
Collapse
|
11
|
Jaffar S, Ahmad S, Lu Y. Contribution of insect gut microbiota and their associated enzymes in insect physiology and biodegradation of pesticides. Front Microbiol 2022; 13:979383. [PMID: 36187965 PMCID: PMC9516005 DOI: 10.3389/fmicb.2022.979383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022] Open
Abstract
Synthetic pesticides are extensively and injudiciously applied to control agriculture and household pests worldwide. Due to their high use, their toxic residues have enormously increased in the agroecosystem in the past several years. They have caused many severe threats to non-target organisms, including humans. Therefore, the complete removal of toxic compounds is gaining wide attention to protect the ecosystem and the diversity of living organisms. Several methods, such as physical, chemical and biological, are applied to degrade compounds, but as compared to other methods, biological methods are considered more efficient, fast, eco-friendly and less expensive. In particular, employing microbial species and their purified enzymes makes the degradation of toxic pollutants more accessible and converts them into non-toxic products by several metabolic pathways. The digestive tract of insects is usually known as a superior organ that provides a nutrient-rich environment to hundreds of microbial species that perform a pivotal role in various physiological and ecological functions. There is a direct relationship between pesticides and insect pests: pesticides reduce the growth of insect species and alter the phyla located in the gut microbiome. In comparison, the insect gut microbiota tries to degrade toxic compounds by changing their toxicity, increasing the production and regulation of a diverse range of enzymes. These enzymes breakdown into their derivatives, and microbial species utilize them as a sole source of carbon, sulfur and energy. The resistance of pesticides (carbamates, pyrethroids, organophosphates, organochlorines, and neonicotinoids) in insect species is developed by metabolic mechanisms, regulation of enzymes and the expression of various microbial detoxifying genes in insect guts. This review summarizes the toxic effects of agrochemicals on humans, animals, birds and beneficial arthropods. It explores the preferential role of insect gut microbial species in the degradation process and the resistance mechanism of several pesticides in insect species. Additionally, various metabolic pathways have been systematically discussed to better understand the degradation of xenobiotics by insect gut microbial species.
Collapse
Affiliation(s)
- Saleem Jaffar
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Cilia G, Flaminio S, Zavatta L, Ranalli R, Quaranta M, Bortolotti L, Nanetti A. Occurrence of Honey Bee ( Apis mellifera L.) Pathogens in Wild Pollinators in Northern Italy. Front Cell Infect Microbiol 2022; 12:907489. [PMID: 35846743 PMCID: PMC9280159 DOI: 10.3389/fcimb.2022.907489] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Diseases contribute to the decline of pollinator populations, which may be aggravated by the interspecific transmission of honey bee pests and pathogens. Flowers increase the risk of transmission, as they expose the pollinators to infections during the foraging activity. In this study, both the prevalence and abundance of 21 honey bee pathogens (11 viruses, 4 bacteria, 3 fungi, and 3 trypanosomatids) were assessed in the flower-visiting entomofauna sampled from March to September 2021 in seven sites in the two North-Italian regions, Emilia-Romagna and Piedmont. A total of 1,028 specimens were collected, identified, and analysed. Of the twenty-one pathogens that were searched for, only thirteen were detected. Altogether, the prevalence of the positive individuals reached 63.9%, with Nosema ceranae, deformed wing virus (DWV), and chronic bee paralysis virus (CBPV) as the most prevalent pathogens. In general, the pathogen abundance averaged 5.15 * 106 copies, with CBPV, N. ceranae, and black queen cell virus (BQCV) as the most abundant pathogens, with 8.63, 1.58, and 0.48 * 107 copies, respectively. All the detected viruses were found to be replicative. The sequence analysis indicated that the same genetic variant was circulating in a specific site or region, suggesting that interspecific transmission events among honey bees and wild pollinators are possible. Frequently, N. ceranae and DWV were found to co-infect the same individual. The circulation of honey bee pathogens in wild pollinators was never investigated before in Italy. Our study resulted in the unprecedented detection of 72 wild pollinator species as potential hosts of honey bee pathogens. Those results encourage the implementation of monitoring actions aiming to improve our understanding of the environmental implications of such interspecific transmission events, which is pivotal to embracing a One Health approach to pollinators' welfare.
Collapse
Affiliation(s)
| | | | | | - Rosa Ranalli
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | | | | | | |
Collapse
|
13
|
Siddiqui JA, Khan MM, Bamisile BS, Hafeez M, Qasim M, Rasheed MT, Rasheed MA, Ahmad S, Shahid MI, Xu Y. Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Front Microbiol 2022; 13:870462. [PMID: 35591988 PMCID: PMC9111541 DOI: 10.3389/fmicb.2022.870462] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Insect pests cause significant agricultural and economic losses to crops worldwide due to their destructive activities. Pesticides are designed to be poisonous and are intentionally released into the environment to combat the menace caused by these noxious pests. To survive, these insects can resist toxic substances introduced by humans in the form of pesticides. According to recent findings, microbes that live in insect as symbionts have recently been found to protect their hosts against toxins. Symbioses that have been formed are between the pests and various microbes, a defensive mechanism against pathogens and pesticides. Insects' guts provide unique conditions for microbial colonization, and resident bacteria can deliver numerous benefits to their hosts. Insects vary significantly in their reliance on gut microbes for basic functions. Insect digestive tracts are very different in shape and chemical properties, which have a big impact on the structure and composition of the microbial community. Insect gut microbiota has been found to contribute to feeding, parasite and pathogen protection, immune response modulation, and pesticide breakdown. The current review will examine the roles of gut microbiota in pesticide detoxification and the mechanisms behind the development of resistance in insects to various pesticides. To better understand the detoxifying microbiota in agriculturally significant pest insects, we provided comprehensive information regarding the role of gut microbiota in the detoxification of pesticides.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | | | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Qasim
- Department of Agriculture and Forestry, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Tariq Rasheed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Atif Rasheed
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | | | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Hoang KL, King KC. Symbiont-mediated immune priming in animals through an evolutionary lens. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35442184 DOI: 10.1099/mic.0.001181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protective symbionts can defend hosts from parasites through several mechanisms, from direct interference to modulating host immunity, with subsequent effects on host and parasite fitness. While research on symbiont-mediated immune priming (SMIP) has focused on ecological impacts and agriculturally important organisms, the evolutionary implications of SMIP are less clear. Here, we review recent advances made in elucidating the ecological and molecular mechanisms by which SMIP occurs. We draw on current works to discuss the potential for this phenomenon to drive host, parasite, and symbiont evolution. We also suggest approaches that can be used to address questions regarding the impact of immune priming on host-microbe dynamics and population structures. Finally, due to the transient nature of some symbionts involved in SMIP, we discuss what it means to be a protective symbiont from ecological and evolutionary perspectives and how such interactions can affect long-term persistence of the symbiosis.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Kayla C King
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|