1
|
Yang D, Xie L, Mao X, Gong L, Peng X, Peng Q, Wang T, Liu Q, Zeng H, Zhang H. Probing Hydrophobic Interactions between Polymer Surfaces and Air Bubbles or Oil Droplets: Effects of Molecular Weight and Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5257-5268. [PMID: 34787428 DOI: 10.1021/acs.langmuir.1c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrophobic interaction plays an important role in numerous interfacial phenomena and biophysical and industrial processes. In this work, polystyrene (PS) was used as a model hydrophobic polymer for investigating its hydrophobic interaction with highly deformable objects (i.e., air bubbles and oil droplets) in aqueous solutions. The effects of polymer molecular weight, solvent (i.e., addition of ethanol to water), the presence of surface-active species, and hydrodynamic conditions were investigated, via direct surface force measurements using the bubble/drop probe atomic force microscopy (AFM) technique and theoretical calculations based on the Reynolds lubrication theory and augmented Young-Laplace equation by including the effect of disjoining pressure. It was found that the PS of low molecular weight (i.e., PS590 and PS810) showed slightly weaker hydrophobic interactions with air bubbles or oil droplets, as compared to glassy PS of higher molecular weight (i.e., PS1110, PS2330, PS46300, and PS1M). The hydrophobic interaction between PS and air bubbles in a 1 M NaCl aqueous solution with 10 vol % ethanol was weaker than that in the bare aqueous solution. Such effects on the hydrophobic interactions are possibly achieved by influencing the structuring/ordering of water molecules close to the hydrophobic polymer surfaces by tuning the surface chain mobility and surface roughness of polymers. It was found that the addition of three surface-active species, i.e., cetyltrimethylammonium chloride (CTAC), Pluronic F-127, and sodium dodecyl sulfate (SDS), to the aqueous media could suppress the attachment of the hydrophobic polymer and air bubbles or oil droplets, most likely caused by the additional steric repulsion due to the adsorbed surface-active species at the bubble/polymer/oil interfaces. Our results have improved the fundamental understanding of the interaction mechanisms between hydrophobic polymers and gas bubbles or oil droplets, with useful implications on developing effective methods for modulating the related interfacial interactions in many engineering applications.
Collapse
Affiliation(s)
- Diling Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lei Xie
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaohui Mao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Tao Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qi Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
2
|
Grohmann C, Cohrs AL, Gorb SN. Underwater Attachment of the Water-Lily Leaf Beetle Galerucella nymphaeae (Coleoptera, Chrysomelidae). Biomimetics (Basel) 2022; 7:biomimetics7010026. [PMID: 35225918 PMCID: PMC8883964 DOI: 10.3390/biomimetics7010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
While the reversible attachment of artificial structures underwater has moved into the focus of many recent publications, the ability of organisms to walk on and attach to surfaces underwater remains almost unstudied. Here, we describe the behaviour of the water-lily leaf beetle Galerucella nymphaeae when it adheres to surfaces underwater and compare its attachment properties on hydrophilic and hydrophobic surfaces underwater and in the air. The beetles remained attached to horizontal leaves underwater for a few minutes and then detached. When the leaf was inclined, the beetles started to move upward immediately. There was no difference in the size of the tarsal air bubble visible beneath the beetles’ tarsi underwater, between a hydrophilic (54° contact angle of water) and a hydrophobic (99°) surface. The beetles gained the highest traction forces on a hydrophilic surface in the air, the lowest on a hydrophobic surface in air, and intermediate traction on both surfaces underwater. The forces measured on both surfaces underwater did not differ significantly. We discuss factors responsible for the observed effects and conclude that capillary forces on the tarsal air bubble might play a major role in the adhesion to the studied surfaces.
Collapse
|
3
|
Xie L, Wang J, Lu Q, Hu W, Yang D, Qiao C, Peng X, Peng Q, Wang T, Sun W, Liu Q, Zhang H, Zeng H. Surface interaction mechanisms in mineral flotation: Fundamentals, measurements, and perspectives. Adv Colloid Interface Sci 2021; 295:102491. [PMID: 34332278 DOI: 10.1016/j.cis.2021.102491] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/23/2022]
Abstract
As non-renewable natural resources, minerals are essential in a broad range of biological and technological applications. The surface interactions of mineral particles with other objects (e.g., solids, bubbles, reagents) in aqueous suspensions play a critical role in mediating many interfacial phenomena involved in mineral flotation. In this work, we have reviewed the fundamentals of surface forces and quantitative surface property-force relationship of minerals, and the advances in the quantitative measurements of interaction forces of mineral-mineral, bubble-mineral and mineral-reagent using nanomechanical tools such as surface forces apparatus (SFA) and atomic force microscope (AFM). The quantitative correlation between surface properties of minerals at the solid/water interface and their surface interaction mechanisms with other objects in complex aqueous media at the nanoscale has been established. The existing challenges in mineral flotation such as characterization of anisotropic crystal plane or heterogeneous surface, low recovery of fine particle flotation, and in-situ electrochemical characterization of collectorless flotation as well as the future work to resolve the challenges based on the understanding and modulation of surface forces of minerals have also been discussed. This review provides useful insights into the fundamental understanding of the intermolecular and surface interaction mechanisms involved in mineral processing, with implications for precisely modulating related interfacial interactions towards the development of highly efficient industrial processes and chemical additives.
Collapse
Affiliation(s)
- Lei Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jingyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiuyi Lu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenjihao Hu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Diling Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Tao Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qi Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
4
|
Suzuki C, Takaku Y, Suzuki H, Ishii D, Shimozawa T, Nomura S, Shimomura M, Hariyama T. Hydrophobic-hydrophilic crown-like structure enables aquatic insects to reside effectively beneath the water surface. Commun Biol 2021; 4:708. [PMID: 34112937 PMCID: PMC8192529 DOI: 10.1038/s42003-021-02228-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/07/2021] [Indexed: 11/12/2022] Open
Abstract
Various insects utilise hydrophobic biological surfaces to live on the surface of water, while other organisms possess hydrophilic properties that enable them to live within a water column. Dixidae larvae reside, without being submerged, just below the water surface. However, little is known about how these larvae live in such an ecological niche. Herein, we use larvae of Dixa longistyla (Diptera: Dixidae) as experimental specimens and reveal their characteristics. A complex crown-like structure on the abdomen consists of hydrophobic and hydrophilic elements. The combination of these contrasting features enables the larvae to maintain their position as well as to move unidirectionally. Their hydrophobic region leverages water surface tension to function as an adhesive disc. By using the resistance of water, the hydrophilic region serves as a rudder during locomotion. Suzuki, Takaku, Hariyama and colleagues report on a crown-like structure found on the heads of midge larvae. This structure, analysed using scanning electron microscopy and experimental methods, enables subsurface adhesion and aids in control of locomotion in this region of the water column.
Collapse
Affiliation(s)
- Chiaki Suzuki
- Preeminent Medical Photonics Education & Research Center, Institute for NanoSuit Research, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Yasuharu Takaku
- Preeminent Medical Photonics Education & Research Center, Institute for NanoSuit Research, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan. .,NanoSuit Inc., Higashi-ku, Hamamatsu, Japan.
| | - Hiroshi Suzuki
- Department of Chemistry, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Daisuke Ishii
- Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Japan
| | - Tateo Shimozawa
- Research Institute for Electronic Science, Hokkaido University, N21W10, Kita-ku, Sapporo, Japan
| | - Shuhei Nomura
- National Museum of Nature and Science, Tsukuba, Japan
| | - Masatsugu Shimomura
- Chitose Institute of Science and Technology, Departments of Bio- and Material Photonics, Chitose, Japan
| | - Takahiko Hariyama
- Preeminent Medical Photonics Education & Research Center, Institute for NanoSuit Research, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan. .,NanoSuit Inc., Higashi-ku, Hamamatsu, Japan.
| |
Collapse
|
5
|
Investigation on the influence of surface roughness on magnetite flotation from the view of both particle-particle and bubble-particle interactions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Recent advances in studies of bubble-solid interactions and wetting film stability. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Zhang X, Manica R, Tang Y, Liu Q, Xu Z. Bubbles with tunable mobility of surfaces in ethanol-NaCl aqueous solutions. J Colloid Interface Sci 2019; 556:345-351. [DOI: 10.1016/j.jcis.2019.08.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 11/28/2022]
|
8
|
Gao Y, Pan L. Measurement of Instability of Thin Liquid Films by Synchronized Tri-wavelength Reflection Interferometry Microscope. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14215-14225. [PMID: 30347975 DOI: 10.1021/acs.langmuir.8b02891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Film thickness measurement of unstable thin liquid films (TLFs) remains a challenge due to the difficulty in determining the order of fringes prior to the film rupture. In the present work, a synchronized tri-wavelength reflection interferometry microscope (STRIM) was developed and employed to determine the spatiotemporal thickness profiles of the TLFs between air bubbles and various hydrophobic surfaces in 10-2 M NaCl solutions. Both accuracy and precision of film thickness measurements were found to be better than 3 nm over the range of 0-1 μm. It was found that when the radii of air bubbles were in the range 0.71-0.88 mm, the critical rupture thicknesses of the wetting films formed on hydrophobic quartz surfaces having water contact angles of 95° scattered over a range of 57-335 nm with a medium rupture thickness of 122 nm. For smaller air bubbles with radii of 0.13-0.26 mm, the critical rupture thicknesses were much more narrowly distributed with a medium rupture thickness of 27 nm. The result obtained with the TLFs between two air bubbles, i.e., foam film, showed that the critical rupture thickness was increased from 25 to 40 nm, when the sizes of air bubbles were increased from 220 to 960 μm. Compared to rupture thickness of the foam film, the critical rupture thickness of the TLF between an air bubble and a dodecane droplet was smaller, indicating that the film rupture might be related to the hydrophobicity of interacting surfaces. In addition to attractive surface forces, both wave motions and gas molecules in TLF might be associated with the film rupture.
Collapse
Affiliation(s)
- Yuesheng Gao
- Department of Chemical Engineering , Michigan Technological University , Houghton 49931 , Michigan United States
| | - Lei Pan
- Department of Chemical Engineering , Michigan Technological University , Houghton 49931 , Michigan United States
| |
Collapse
|
9
|
Zhang L, Xie L, Cui X, Chen J, Zeng H. Intermolecular and surface forces at solid/oil/water/gas interfaces in petroleum production. J Colloid Interface Sci 2018; 537:505-519. [PMID: 30469119 DOI: 10.1016/j.jcis.2018.11.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 11/25/2022]
Abstract
Many challenging issues are encountered along the petroleum production such as the wettability alteration of reservoir solids due to deposition of petroleum materials, stabilization/destabilization of water-in-oil and oil-in-water emulsions and treatment of tailings water. All these problems are essentially driven by the fundamental intermolecular and surface forces among the different components (i.e., water, oil, solid and gas) in the surrounding complex fluid media, and comprehensive understanding of the interactions among these components will pave the way to the development of advanced materials and technologies for improved petroleum production processes. In this work, we have reviewed the quantitative force measurement methods in different petroleum systems by using nanomechanical techniques including surface forces apparatus (SFA) and atomic force microscope (AFM). Interaction forces between petroleum components (e.g., asphaltenes) and mineral solids in both organic solvents and aqueous solutions are reviewed and correlated to the wettability change of the reservoir solids. The recent key progress in quantifying the surface forces of water-in-oil and oil-in-water emulsion drops using AFM drop probe techniques are discussed. The interaction forces of polymer flocculants and colloidal particles are correlated to the performance of tailings water treatment. The current knowledge gap and future perspectives are also presented.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Lei Xie
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Xinwei Cui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
10
|
Xing Y, Gui X, Pan L, Pinchasik BE, Cao Y, Liu J, Kappl M, Butt HJ. Recent experimental advances for understanding bubble-particle attachment in flotation. Adv Colloid Interface Sci 2017; 246:105-132. [PMID: 28619381 DOI: 10.1016/j.cis.2017.05.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/27/2022]
Abstract
Bubble-particle interaction is of great theoretical and practical importance in flotation. Significant progress has been achieved over the past years and the process of bubble-particle collision is reasonably well understood. This, however, is not the case for bubble-particle attachment leading to three-phase contact line formation due to the difficulty in both theoretical analysis and experimental verification. For attachment, surface forces play a major role. They control the thinning and rupture of the liquid film between the bubble and the particle. The coupling between force, bubble deformation and film drainage is critical to understand the underlying mechanism responsible for bubble-particle attachment. In this review we first discuss the advances in macroscopic experimental methods for characterizing bubble-particle attachment such as induction timer and high speed visualization. Then we focus on advances in measuring the force and drainage of thin liquid films between an air bubble and a solid surface at a nanometer scale. Advances, limits, challenges, and future research opportunities are discussed. By combining atomic force microscopy and reflection interference contrast microscopy, the force, bubble deformation, and liquid film drainage can be measured simultaneously. The simultaneous measurement of the interaction force and the spatiotemporal evolution of the confined liquid film hold great promise to shed new light on flotation.
Collapse
Affiliation(s)
- Yaowen Xing
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiahui Gui
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Lei Pan
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton 49931, USA
| | - Bat-El Pinchasik
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yijun Cao
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Jiongtian Liu
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
11
|
Heitkam S, Sommer AE, Drenckhan W, Fröhlich J. A simple collision model for small bubbles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:124005. [PMID: 28054935 DOI: 10.1088/1361-648x/aa56fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, a model for the interaction force between a small bubble and a wall or another bubble is presented. The formulation is especially designed for Lagrangian calculations of bubble or soft sphere trajectories, with or without resolution of the continuous fluid. The force only relies on position and velocity of the bubble. The model does not include any empirical parameter that would have to be calibrated. Therefore, this force model is easy to implement. The formulation of the force is explicit, which means low computational effort. The collision of a small bubble with an inclined top wall is investigated numerically and experimentally. The computational results achieved with the new collision model show good agreement with the experiment.
Collapse
Affiliation(s)
- Sascha Heitkam
- Institute of Fluid Mechanics, TU Dresden, George-Bähr-Str 3c, 01069 Dresden, Germany
| | | | | | | |
Collapse
|
12
|
Berry JD, Dagastine RR. Mapping coalescence of micron-sized drops and bubbles. J Colloid Interface Sci 2017; 487:513-522. [DOI: 10.1016/j.jcis.2016.10.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/25/2022]
|
13
|
Zhang X, Tchoukov P, Manica R, Wang L, Liu Q, Xu Z. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus. SOFT MATTER 2016; 12:9105-9114. [PMID: 27782274 DOI: 10.1039/c6sm02067d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s-1 to 50 mm s-1. Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.
Collapse
Affiliation(s)
- Xurui Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, CanadaT6G 1H9
| | - Plamen Tchoukov
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, CanadaT6G 1H9
| | - Rogerio Manica
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, CanadaT6G 1H9
| | - Louxiang Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, CanadaT6G 1H9
| | - Qingxia Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, CanadaT6G 1H9
| | - Zhenghe Xu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, CanadaT6G 1H9
| |
Collapse
|
14
|
Del Castillo LA, Ohnishi S, Carnie SL, Horn RG. Variation of Local Surface Properties of an Air Bubble in Water Caused by Its Interaction with Another Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7671-7682. [PMID: 27391417 DOI: 10.1021/acs.langmuir.6b01949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface and hydrodynamic forces acting between an air bubble and a flat mica surface in surfactant-free water and in 1 mM KCl solution have been investigated by observing film drainage using a modified surface force apparatus (SFA). The bubble shapes observed with the SFA are compared to theoretical profiles computed from a model that considers hydrodynamic interactions, surface curvature, and disjoining pressure arising from electrical double layer and van der Waals interactions. It is shown that the bubble experiences double-layer forces, and a final equilibrium wetting film between the bubble and mica surfaces is formed by van der Waals repulsion. However, comparison with the theoretical model reveals that the double-layer forces are not simply a function of surface separation. Rather, they appear to be changed by one of more of the following: the bubble's dynamic deformation, its proximity to another surface, and/or hydrodynamic flow in the aqueous film that separate them. The same comments apply to the hydrodynamic mobility or immobility of the air-water interface. Together the results show that the bubble's surface is "soft" in two senses: in addition to its well-known deformability, its local properties are affected by weak external forces, in this case the electrical double-layer interactions with a nearby surface and hydrodynamic flow in the neighboring aqueous phase.
Collapse
Affiliation(s)
| | | | - Steven L Carnie
- School of Mathematics and Statistics, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Roger G Horn
- Institute for Frontier Materials, Deakin University , 221 Burwood Highway, Burwood, Victoria 3125, Australia
| |
Collapse
|
15
|
Recent experimental advances on hydrophobic interactions at solid/water and fluid/water interfaces. Biointerphases 2016; 11:018903. [DOI: 10.1116/1.4937465] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Ketelaar C, Ajaev VS. Significance of electrically induced shear stress in drainage of thin aqueous films. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052403. [PMID: 26066179 DOI: 10.1103/physreve.91.052403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Indexed: 06/04/2023]
Abstract
We develop a novel model of drainage of microscale thin aqueous film separating a gas bubble and a solid wall. In contrast to previous studies, the electrostatic effects are accounted for not only in the normal but also in the shear stress balance at the liquid-gas interface. We show that the action of the tangential component of the electric field leads to potentially strong spatially variable shear stress at the deforming charged interface. This previously overlooked effect turns out to be essential for correctly estimating the long-time drainage rates. Comparison of time-dependent fluid interface shapes predicted by our model with the experimental data is discussed.
Collapse
Affiliation(s)
- Christiaan Ketelaar
- Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Vladimir S Ajaev
- Department of Mathematics, Southern Methodist University, Dallas, Texas 75275, USA, and Institute of Power Engineering, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| |
Collapse
|
17
|
Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids. Adv Colloid Interface Sci 2015; 217:31-42. [PMID: 25595420 DOI: 10.1016/j.cis.2014.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/09/2014] [Accepted: 12/07/2014] [Indexed: 11/23/2022]
Abstract
The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble-solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble-solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes-Reynolds-Young-Laplace model. The potential to use the design principles of the ITFDA for fundamental and developmental research is demonstrated.
Collapse
|
18
|
Wetting-dewetting films: the role of structural forces. Adv Colloid Interface Sci 2014; 206:207-21. [PMID: 24035126 DOI: 10.1016/j.cis.2013.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/08/2013] [Accepted: 08/19/2013] [Indexed: 11/21/2022]
Abstract
The liquid wetting and dewetting of solids are ubiquitous phenomena that occur in everyday life. Understanding the nature of these phenomena is beneficial for research and technological applications. However, despite their importance, the phenomena are still not well understood because of the nature of the substrate's surface energy non-ideality and dynamics. This paper illustrates the mechanisms and applications of liquid wetting and dewetting on hydrophilic and hydrophobic substrates. We discuss the classical understanding and application of wetting and film stability criteria based on the Frumkin-Derjaguin disjoining pressure model. The roles of the film critical thickness and capillary pressure on the film instability based on the disjoining pressure isotherm are elucidated, as are the criteria for stable and unstable wet films. We consider the film area in the model for the film stability and the applicable experiments. This paper also addresses the two classic film instability mechanisms for suspended liquid films based on the conditions of the free energy criteria originally proposed by de Vries (nucleation hole formation) and Vrij-Scheludko (capillary waves vs. van der Waals forces) that were later adapted to explain dewetting. We include a discussion of the mechanisms of nanofilm wetting and dewetting on a solid substrate based on nanoparticles' tendency to form a 2D layer and 2D inlayer in the film under the wetting film's surface confinement. We also present our view on the future of wetting-dewetting modeling and its applications in developing emerging technologies. We believe the review and analysis presented here will benefit the current and future understanding of the wetting-dewetting phenomena, as well as aid in the development of novel products and technologies.
Collapse
|
19
|
Dumée L, Sears K, Schütz J, Finn N, Duke M, Gray S. Influence of the Sonication Temperature on the Debundling Kinetics of Carbon Nanotubes in Propan-2-ol. NANOMATERIALS 2013; 3:70-85. [PMID: 28348322 PMCID: PMC5304922 DOI: 10.3390/nano3010070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/07/2013] [Accepted: 01/24/2013] [Indexed: 11/16/2022]
Abstract
The effect of sonication temperature on the debundling of carbon nanotube (CNT) macro-bundles is reported and demonstrated by analysis with different particle sizing methods. The change of bundle size over time and after several comparatively gentle sonication cycles of suspensions at various temperatures is reported. A novel technique is presented that produces a more homogeneous nanotube dispersion by lowering the temperature during sonication. We produce evidence that temperature influences the suspension stability, and that low temperatures are preferable to obtain better dispersion without increasing damage to the CNT walls.
Collapse
Affiliation(s)
- Ludovic Dumée
- The Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Pigdons Road, Waurn Ponds 3216, Victoria, Australia.
- The Institute for Sustainability and Innovation, Victoria University, Werribee Campus, Hoppers Lane, Werribee P.O. Box 14428, Melbourne 8001, Victoria, Australia.
| | - Kallista Sears
- CSIRO Materials Science and Engineering, Private bag 10, Clayton 3168, Victoria, Australia.
| | - Jürg Schütz
- CSIRO Materials Science and Engineering, Henry Street, Belmont 2316, Victoria, Australia.
| | - Niall Finn
- CSIRO Materials Science and Engineering, Henry Street, Belmont 2316, Victoria, Australia.
| | - Mikel Duke
- The Institute for Sustainability and Innovation, Victoria University, Werribee Campus, Hoppers Lane, Werribee P.O. Box 14428, Melbourne 8001, Victoria, Australia.
- School of Engineering and Science, Victoria University, Footscray Park Campus P.O. Box 14428, Melbourne 8001, Victoria, Australia.
| | - Stephen Gray
- The Institute for Sustainability and Innovation, Victoria University, Werribee Campus, Hoppers Lane, Werribee P.O. Box 14428, Melbourne 8001, Victoria, Australia.
| |
Collapse
|
20
|
Principal characteristics of a bubble formation on a horizontal downward facing surface. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Hosoda N, Gorb SN. Underwater locomotion in a terrestrial beetle: combination of surface de-wetting and capillary forces. Proc Biol Sci 2012; 279:4236-42. [PMID: 22874756 DOI: 10.1098/rspb.2012.1297] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
For the first time, we report the remarkable ability of the terrestrial leaf beetle Gastrophysa viridula to walk on solid substrates under water. These beetles have adhesive setae on their feet that produce a secretory fluid having a crucial role in adhesion on land. In air, adhesion is produced by capillary forces between the fluid-covered setae and the substrate. In general, capillary forces do not contribute to adhesion under water. However, our observations showed that these beetles may use air bubbles trapped between their adhesive setae to walk on flooded, inclined substrata or even under water. Beetle adhesion to hydrophilic surfaces under water was lower than that in air, whereas adhesion to hydrophobic surfaces under water was comparable to that in air. Oil-covered hairy pads had a pinning effect, retaining the air bubbles on their feet. Bubbles in contact with the hydrophobic substrate de-wetted the substrate and produced capillary adhesion. Additional capillary forces are generated by the pad's liquid bridges between the foot and the substrate. Inspired by this idea, we designed an artificial silicone polymer structure with underwater adhesive properties.
Collapse
Affiliation(s)
- Naoe Hosoda
- Interconnect Design Group, Hybrid Materials Unit, National Institute for Material Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | | |
Collapse
|
22
|
Hendrix MHW, Manica R, Klaseboer E, Chan DYC, Ohl CD. Spatiotemporal evolution of thin liquid films during impact of water bubbles on glass on a micrometer to nanometer scale. PHYSICAL REVIEW LETTERS 2012; 108:247803. [PMID: 23004333 DOI: 10.1103/physrevlett.108.247803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Indexed: 06/01/2023]
Abstract
Collisions between millimeter-size bubbles in water against a glass plate are studied using high-speed video. Bubble trajectory and shape are tracked simultaneously with laser interferometry between the glass and bubble surfaces that monitors spatial-temporal evolution of the trapped water film. Initial bubble bounces and the final attachment of the bubble to the surface have been quantified. While the global Reynolds number is large (∼10(2)), the film Reynolds number remains small and permits analysis with lubrication theory with tangentially immobile boundary condition at the air-water interface. Accurate predictions of dimple formation and subsequent film drainage are obtained.
Collapse
Affiliation(s)
- Maurice H W Hendrix
- Physics of Fluids, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Parkinson L, Ralston J. Dynamic aspects of small bubble and hydrophilic solid encounters. Adv Colloid Interface Sci 2011; 168:198-209. [PMID: 21880285 DOI: 10.1016/j.cis.2011.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 07/11/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
The capture of solid particles suspended in aqueous solution by rising gas bubbles involves hydrodynamic and physicochemical processes that are central to colloid science. Of the collision, attachment and aggregate stability aspects to the bubble-particle interaction, the crucial attachment process is least understood. This is especially true of hydrophilic solids. We review the current literature regarding each component of the bubble-particle attachment process, from the free-rise of a small, clean single bubble, to the collision, film drainage and interactions which dominate the attachment rate. There is a particular focus on recent studies which employ single, very small bubbles as analysis probes, enabling the dynamic bubble-hydrophilic particle interaction to be investigated, avoiding complications which arise from fluid inertia, deformation of the liquid-vapour interface and the possibility of surfactant contamination.
Collapse
|
24
|
Uddin MH, Tan SY, Dagastine RR. Novel characterization of microdrops and microbubbles in emulsions and foams using atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2536-2544. [PMID: 21299193 DOI: 10.1021/la104458z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The nature of the interface of drops or bubbles and the dynamic interactions between them often mediate or control macroscopic behavior in the formulation and processing of emulsions and foams in solvent extraction, froth flotation, food, personal care products, and microfluidics as well as in many biological processes. Characterization of these interfaces is often complicated due to the small size of the drops and bubbles that may range from the micrometer scale to hundreds of micrometers. We report the direct measurement of the surface or interfacial tension of drops or bubbles in aqueous solutions as a function of the concentration and type of surfactant, using atomic force microscopy (AFM) and a recently developed nanoneedle AFM cantilever. We also demonstrate the viability of imaging drops or bubbles of this size in both tapping and contact imaging modes through a systematic study of parameters, including cantilever spring constant, tip geometry, imaging force, and feedback settings as well as the AFM manufacturer. The imaging study demonstrates the viability of using AFM to visualize complex structures at the oil-water or air-water interface as well as how concentric ring artifacts observed in the literature are the result of earlier AFM instrument limitations.
Collapse
Affiliation(s)
- Md Hemayet Uddin
- Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
25
|
|
26
|
Direct measurement of particle–bubble interaction forces using atomic force microscopy. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.minpro.2008.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Ajaev VS, Tsekov R, Vinogradova OI. Ripples in a wetting film formed by a moving meniscus. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:031602. [PMID: 18851044 DOI: 10.1103/physreve.78.031602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Indexed: 05/26/2023]
Abstract
We carry out a theoretical investigation of the evolution of a wetting film formed by pressing a bubble against a solid substrate. Our model incorporates the effects of capillarity and Derjaguin-Landau-Verwey-Overbeek (DLVO) (van der Waals and electrostatic) components of the disjoining pressure. Rapid changes in the relative position of the bubble and the substrate are shown to result in surprisingly rich dynamics of wetting film deformations. Even for stable films, we find transient rippled deformations with several points of local maximum of wetting film thickness and discuss how their evolution depends on changes in the meniscus position relative to the substrate and the disjoining pressure parameters. A connection is made to the recently reported experimental observations of one such rippled deformation, the so-called wimple, characterized by a local minimum of the thickness in the center, surrounded by a ring of greater film thickness and bounded at the outer edge by the barrier rim. Guidelines are provided for experimental detection of more complex rippled deformations in stable wetting films. Development of instability is studied in a situation when the electrostatic component of disjoining pressure is destabilizing, with particular emphasis on the nonlinear evolution and rupture of the film. Potential applications of our findings to small-scale mixing and deposition of nanoparticles are discussed.
Collapse
Affiliation(s)
- Vladimir S Ajaev
- Department of Mathematics, Southern Methodist University, Dallas, Texas 75275, USA
| | | | | |
Collapse
|
28
|
Pushkarova RA, Horn RG. Bubble-solid interactions in water and electrolyte solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:8726-8734. [PMID: 18656971 DOI: 10.1021/la8007156] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Surface forces between an air bubble and a flat mica surface immersed in aqueous electrolyte solutions have been investigated using a modified surface force apparatus. An analysis of the deformation of the air bubble with respect to the mutual position of the bubble and the mica surface, the capillary pressure, and the disjoining pressure allows the air-liquid surface electrical potential to be determined. The experiments show that a long-range, double-layer repulsion acts between the mica (which is negatively charged) and an air bubble in water and in various electrolyte solutions at low concentration, thereby indicating that the air bubble surface is negatively charged. However, there is clear evidence that charge regulation occurs at the air-water interface to maintain a constant surface potential, and as a result of this, the charge at this interface changes from negative to positive as the bubble approaches the mica surface. Because of the attraction that arises as a result of the charge reversal, a finite force is required to separate the bubble from the mica, though the mica remains wetted by the aqueous phase. At the low concentrations investigated, the potential on the gas-liquid interface is independent of the electrolyte type within experimental uncertainty.
Collapse
Affiliation(s)
- Rada A Pushkarova
- Ian Wark Research Institute, University of South Australia Mawson Lakes, Adelaide, Australia.
| | | |
Collapse
|
29
|
Vakarelski IU, Lee J, Dagastine RR, Chan DYC, Stevens GW, Grieser F. Bubble colloidal AFM probes formed from ultrasonically generated bubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:603-605. [PMID: 18163660 DOI: 10.1021/la7032059] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.
Collapse
Affiliation(s)
- Ivan U Vakarelski
- Particulate Fluids Processing Centre, School of Chemistry, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Dukhin AS, Dukhin SS, Goetz PJ. Gravity as a factor of aggregative stability and coagulation. Adv Colloid Interface Sci 2007; 134-135:35-71. [PMID: 17544356 DOI: 10.1016/j.cis.2007.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Gravity is a potential factor of aggregative stability and/or coagulation for any heterogeneous system having a density contrast between the dispersed phase and its dispersion medium. However, gravity becomes comparable to other stability factors only when the particle size becomes large enough. Since the particle size may grow in time due to various other instabilities, even nano-systems may eventually become susceptible to gravity. There have been many attempts in the last century to incorporate gravity in the overall theory of aggregative stability, but the relevant papers are scattered over a wide variety of journals, some of which are very obscure. Reviews on this subject in modern handbooks are scarce and inadequate. No review describes the role of gravity at all three levels introduced by DLVO theory for characterizing aggregative stability, namely: particle pair interaction, collision frequency and population balance equation. Furthermore, the modern tendency towards numerical solutions overshadows existing analytical solutions. We present a consistent review at each DLVO level. First we describe the role of gravity in particle pair interactions, including both available analytical solutions as well as numerical stability diagrams. Next we discuss a number of works on collision frequency, including works for both charged and non-charged particles. Finally, we present analytical solutions of the population balance equation that takes gravity into account and then compare these analytical solutions with numerical solutions. In addition to the traditional aggregate model we also discuss work on a fractal model and its relevance to gravity controlled stability. Finally, we discuss many experimental works and their relationship to particular theoretical predictions.
Collapse
Affiliation(s)
- A S Dukhin
- Electrokinetic Technology, Goldens Bridge, NY 10526, USA
| | | | | |
Collapse
|