1
|
Min H, Bau L, Payne SJ, Stride EP. Behavior of Microbubbles on Air-Aqueous Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23259-23267. [PMID: 39454083 PMCID: PMC11542178 DOI: 10.1021/acs.langmuir.4c02546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/27/2024]
Abstract
Animal-derived lung surfactants have saved millions of lives of preterm neonates with neonatal Respiratory Distress Syndrome (nRDS). However, a replacement for animal-derived lung surfactants has been sought for decades due to its high manufacturing cost, inaccessibility in low-income countries, and failure to show efficacy when nebulized. This study investigated the use of lipid-coated microbubbles as potential replacements for exogenous lung surfactants. Three different formulations of microbubbles (DPPC with/out PEG40-stearate and poractant alfa) were prepared, and their equilibrium and dynamic surface tensions were tested on a clean air-saline interface or a simulated air-lung fluid interface using a Langmuir-Blodgett trough. In dynamic surface measurements, microbubbles reduced the minimum surface tension compared with the equivalent composition lipid suspension: e.g., PEG-free microbubbles had a minimum surface tension of 4.3 mN/m while the corresponding lipid suspension and poractant alfa had 20.4 (p ≤ 0.0001) and 21.8 mN/m (p ≤ 0.0001), respectively. Two potential mechanisms for the reduction of surface tension were found: Fragmentation of the foams created by microbubble coalescence; and clustering of microbubbles in the aqueous subphase disrupting the interfacial phospholipid monolayer. The predominant mechanism appears to depend on the formulation and/or the environment. The use of microbubbles as a replacement for exogenous lung surfactant products thus shows promise and further work is needed to evaluate efficacy in vivo.
Collapse
Affiliation(s)
- Hyunhong
J Min
- Institute
of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7LD, U.K.
| | - Luca Bau
- Institute
of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7LD, U.K.
| | - Stephen J Payne
- Institute
of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
| | - Eleanor P Stride
- Institute
of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7LD, U.K.
| |
Collapse
|
2
|
Kumar N, Sahu S, Paul H, Rout MK, De J, Pal SK, Mishra P, Nayak A. Temperature-Induced Nanoarchitectonics of Monolayer Self-Assembly of Heterocoronene-Based Discotic Liquid Crystals. J Phys Chem B 2024; 128:7912-7919. [PMID: 39105702 DOI: 10.1021/acs.jpcb.4c03460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Enhancing molecular self-assembly at the monolayer level offers significant potential for various applications. For monolayers made of π-conjugated discotic liquid crystal (DLC) molecule nanowires, achieving precise separation and alignment of these nanowires has been a long-standing challenge. This research explores an approach using the manipulation of subphase temperature and surface pressure within a Langmuir trough to control molecular nanowire separation. We observe notable temperature-dependent behavior: as the temperature increases from 5 to 30 °C, the monolayer collapse pressure rises steadily. In contrast, temperatures from 35 to 50 °C exhibit an initial small plateau with a nonzero slope that becomes more distinct with rising temperature. Our study of Langmuir-Blodgett (LB) films provides crucial insights into the monolayer's structure. At lower temperatures, the LB films show coalesced molecular nanowires, whereas at higher temperatures, the DLC nanowires separate and form an interconnected network. Remarkably, upon compression, this network transforms into a compact, highly uniform monolayer. To explain these temperature-dependent behaviors, we examine the area relaxation curves, which indicate a two-step molecular loss mechanism involving desorption and monolayer collapse due to the nucleation and growth of critical nuclei. This extensive study offers valuable insights into the dynamic interaction of the temperature, surface pressure, and molecular assembly, enhancing our understanding of the fundamental processes in monolayer self-assembly.
Collapse
Affiliation(s)
- Nishant Kumar
- Department of Physics, Indian Institute of Technology (IIT) Patna, Patna, Bihar 801106, India
| | - Subhasish Sahu
- Department of Physics, Indian Institute of Technology (IIT) Patna, Patna, Bihar 801106, India
| | - Himangshu Paul
- Department of Physics, Indian Institute of Technology (IIT) Patna, Patna, Bihar 801106, India
| | - Mukesh Kumar Rout
- Department of Physics, Indian Institute of Technology (IIT) Patna, Patna, Bihar 801106, India
| | - Joydip De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab 140306, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab 140306, India
| | - Puneet Mishra
- Department of Physics, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Alpana Nayak
- Department of Physics, Indian Institute of Technology (IIT) Patna, Patna, Bihar 801106, India
| |
Collapse
|
3
|
Bykov AG, Panaeva MA, Milyaeva OY, Michailov AV, Rafikova AR, Guzman E, Rubio R, Miller R, Noskov BA. Structural changes in layers of lipid mixtures at low surface tensions. Chem Phys Lipids 2024; 258:105365. [PMID: 38092233 DOI: 10.1016/j.chemphyslip.2023.105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Layers of pulmonary lipids on an aqueous substrate at non-equilibrium conditions can decrease the surface tension of water to quite low values. This is connected with different relaxation processes occurring at the interface and the associated changes in the surface layer structure. Results of measurements by the combination of methods like surface rheology, ellipsometry, Brewster angle microscopy, and IRRAS for spread layers of lipid mixtures open a possibility to specify the dynamics of structural changes at conditions close to the physiological state. At sufficiently low surface tension values (below 5 mN/m) significant changes in the ellipsometric signal were observed for pure DPPC layers, which can be related to a transition from 2D to 3D structures caused by the layer folding. The addition of other lipids can accelerate the relaxation processes connected with squeezing-out of molecules or multilayer stacks formation hampering thereby a decrease of surface tension down to low values corresponding to the folding of the monolayer.
Collapse
Affiliation(s)
- A G Bykov
- St. Petersburg State University, St. Petersburg, the Russian Federation.
| | - M A Panaeva
- St. Petersburg State University, St. Petersburg, the Russian Federation
| | - O Y Milyaeva
- St. Petersburg State University, St. Petersburg, the Russian Federation
| | - A V Michailov
- St. Petersburg State University, St. Petersburg, the Russian Federation
| | - A R Rafikova
- St. Petersburg State University, St. Petersburg, the Russian Federation
| | - E Guzman
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - R Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - R Miller
- Institute for Soft Matter Physics, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - B A Noskov
- St. Petersburg State University, St. Petersburg, the Russian Federation
| |
Collapse
|
4
|
Sudjarwo WAA, Toca-Herrera JL. Unraveling Complex Hysteresis Phenomenon in 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine Monolayer: Insight into Factors Influencing Surface Dynamics. Int J Mol Sci 2023; 24:16252. [PMID: 38003442 PMCID: PMC10671618 DOI: 10.3390/ijms242216252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This study explores the hysteresis phenomenon in DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) monolayers, considering several variables, including temperature, compression and expansion rates, residence time, and subphase content. The investigation focuses on analyzing the influence of these variables on key indicators such as the π-A isotherm curve, loop area, and compression modulus. By employing the Langmuir-Blodgett technique, the findings reveal that all the examined factors significantly affect the aforementioned parameters. Notably, the hysteresis loop, representing dissipated energy, provides valuable insights into the monolayer's viscoelasticity, molecular packing, phase transition changes, and resistance during the isocycle process. These findings contribute to a comprehensive understanding of the structural and dynamic properties of DPPC monolayers, offering insights into their behavior under varying conditions. Moreover, the knowledge gained from this study can aid in the development of precise models and strategies for controlling and manipulating monolayer properties, with potential applications in drug delivery systems, surface coatings, as well as further investigation into air penetration into alveoli and the blinking mechanism.
Collapse
Affiliation(s)
- Wisnu Arfian A. Sudjarwo
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - José L. Toca-Herrera
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| |
Collapse
|
5
|
Ahmed I, Das N, Islam AKMM, Plaisier JR, Parisse P, Bal JK. Interfacial Interactions of a Myoglobin/DOPC Hybrid System at the Air-Water Interface and Its Physicochemical Properties. ACS OMEGA 2023; 8:30199-30212. [PMID: 37636970 PMCID: PMC10448488 DOI: 10.1021/acsomega.3c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
In the present study, the intermolecular interactions between a water-insoluble phospholipid (DOPC) and water-soluble protein (myoglobin) and the interaction among themselves were investigated at the air-water interface using the Langmuir and Langmuir-Blodgett techniques. The effects of changes in physicochemical factors, like pH and temperature, on these interactions were also examined. Surface pressure-molecular area (π-A) isotherms of the DOPC monolayer at the air-water interface, with and without myoglobin (Myo) revealed the evolution of various physical properties, such as elastic, thermodynamic, and hysteric properties, in response to changes in subphase pH and temperature. With the increment of subphase pH from 5 to 7 at a fixed temperature (20 °C), the DOPC isotherm expanded, and the in-plane elasticity (CS-1) decreased, but no significant presence of hysteresis was encountered in either of the pH values. On the other hand, a diminution of temperature (from 20 to 5 °C) leads to an expansion of monolayers yielding low elasticity and significant hysteresis. The incorporation of Myo molecules within the DOPC monolayer decreased the CS-1 value of the DOPC monolayer. Such a decrement in CS-1 was also encountered while increasing the pH and decreasing the temperature (T) of the subphase in the absence of Myo. Systematic expansion of DOPC isotherm and increased hysteric area with the increase in Myo proportion were observed and the atomic force microscopy (AFM) observations suggested a strong conjugation between Myo and DOPC in the mixed monolayer. The denaturation effect of Myo molecules was studied using AFM at different temperatures. Furthermore, the Myo molecules were found to be most surface active at pH = 7, which is very close to its isoelectric point. These observations come up with the interaction mechanism between biomolecules under dynamically varied conditions.
Collapse
Affiliation(s)
- Ikbal Ahmed
- Department
of Physics, Aliah University, Kolkata 700160, India
- International
Centre for Theoretical Sciences, Tata Institute
of Fundamental Research, Bengaluru 560089, India
| | - Nilanjan Das
- Abhedananda
Mahavidyalaya, University of Burdwan, Sainthia 731234, India
| | | | - Jasper Rikkert Plaisier
- Elettra-Sincrotrone
Trieste S.C.p.A., S.S.
14 Km 163,5 in Area Science Park, Basovizza, Trieste 34149, Italy
| | - Pietro Parisse
- Elettra-Sincrotrone
Trieste S.C.p.A., S.S.
14 Km 163,5 in Area Science Park, Basovizza, Trieste 34149, Italy
- Istituto
Officina dei Materiali—Consiglio Nazionale delle Ricerche, S.S. 14 Km 163,5 in Area Science
Park, Basovizza, Trieste 34149, Italy
| | - Jayanta Kumar Bal
- Abhedananda
Mahavidyalaya, University of Burdwan, Sainthia 731234, India
| |
Collapse
|
6
|
Kumar N, Samal PP, Mahapatra A, De J, Pal SK, Mishra P, Nayak A. Deciphering pressure-induced nanoarchitectonics in a monolayer of heterocoronene-based discotics at air-water and air-solid interfaces. SOFT MATTER 2023; 19:1513-1522. [PMID: 36727296 DOI: 10.1039/d2sm01317g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding and control of molecular alignment at the nanoscale in self-assembled supramolecular structures is a prerequisite for the subsequent exploitation of molecules in functional devices. Here, we have clarified the surface-pressure induced molecular nanoarchitectures in a monolayer of a heterocoronene-based discotic liquid crystal (DLC) at air-water and air-solid interfaces using surface manometry, real-time Brewster angle microscopy, and real-space atomic force microscopy (AFM). Chloroform-spread DLCs at a concentration of ∼108 μM exhibit floating domains at the air-water interface comprising small aggregates of edge-on stacked molecules interacting via peripheral alkyl chains. Detailed analysis of surface manometry and relaxation measurements reveal that, upon compression, these domains coalesce to form a coherent monolayer which then undergoes irreversible structural transformations via mechanisms such as monolayer loss due to desorption and localized nucleation of defects. AFM images of the films transferred on a hydrophilic substrate reveal that with increasing surface-pressure, the nanoscale structure of the monolayer transforms from randomly oriented nanowires to tightly-packed nanowire domains, and finally to fragmented wire segments which diffuse locally above the film. These results provide a facile method for the preparation of compact, two-dimensional films of ambipolar DLC molecules with a tunable nanoarchitecture which will be crucial for their applications in nanoscale electronic devices.
Collapse
Affiliation(s)
- Nishant Kumar
- Department of Physics, Indian Institute of Technology Patna, Patna, India.
| | | | - Anwesha Mahapatra
- Department of Physics, Indian Institute of Technology Patna, Patna, India.
| | - Joydip De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Punjab, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Punjab, India
| | - Puneet Mishra
- Department of Physics, Central University of South Bihar, Gaya, India.
| | - Alpana Nayak
- Department of Physics, Indian Institute of Technology Patna, Patna, India.
| |
Collapse
|
7
|
Giri RP, Mukhopadhyay MK, Sanyal MK, Bose D, Chakrabarti A, Quan P, Bu W, Lin B. Structural Flexibility of Proteins Dramatically Alters Membrane Stability─A Novel Aspect of Lipid-Protein Interaction. J Phys Chem Lett 2022; 13:11430-11437. [PMID: 36468973 DOI: 10.1021/acs.jpclett.2c02971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Protein isoforms are structural variants with changes in the overall flexibility predominantly at the tertiary level. For membrane associated proteins, such structural flexibility or rigidity affects membrane stability by playing modulatory roles in lipid-protein interaction. Herein, we investigate the protein chain flexibility mediated changes in the mechanistic behavior of phospholipid model membranes in the presence of two well-known isoforms, erythroid (ER) and nonerythroid (NER) spectrin. We show dramatic alterations of membrane elasticity and stability induced by spectrin in the Langmuir monolayers of phosphatidylocholine (PC) and phosphatidylethanolamine (PE) by a combination of isobaric relaxation, surface pressure-area isotherm, X-ray scattering, and microscopy measurements. The NER spectrin drives all monolayers to possess an approximately equal stability, and that required 25-fold increase and 5-fold decrease of stability in PC and PE monolayers, respectively. The untilting transition of the PC membrane in the presence of NER spectrin observed in X-ray measurements can explain better membrane packing and stability.
Collapse
Affiliation(s)
- Rajendra P Giri
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
- Institute for Experimental and Applied Physics, Kiel University, 24118Kiel, Germany
| | - Mrinmay K Mukhopadhyay
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
| | - Milan K Sanyal
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
| | - Dipayan Bose
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
| | - Abhijit Chakrabarti
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational & Research Institute, Narendrapur, Kolkata700103, India
| | - Peiyu Quan
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois60637, United States
| | - Wei Bu
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois60637, United States
| | - Binhua Lin
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
8
|
|
9
|
Bykov A, Milyaeva O, Isakov N, Michailov A, Loglio G, Miller R, Noskov B. Dynamic properties of adsorption layers of pulmonary surfactants. Influence of matter exchange with bulk phase. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Kale SK, Cope AJ, Goggin DM, Samaniuk JR. A miniaturized radial Langmuir trough for simultaneous dilatational deformation and interfacial microscopy. J Colloid Interface Sci 2021; 582:1085-1098. [PMID: 32932179 DOI: 10.1016/j.jcis.2020.08.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022]
Abstract
INNOVATION Interfacial rheological properties of complex fluid-fluid interfaces are strongly influenced by the film microstructure. Experimental investigations for correlating interfacial morphology and rheology are notoriously challenging. A miniaturized radial Langmuir trough was developed to study complex fluid-fluid interfaces under purely dilatational deformations that operates in tandem with a conventional inverted microscope for simultaneous interfacial visualization. EXPERIMENTS Two materials were investigated at an air-water interface: poly(tert-butyl methacrylate) (PtBMA) and dipalmitoylphosphatidylcholine (DPPC). Surface pressure measurements made in the radial Langmuir trough were compared with a commercial rectangular Langmuir trough. Interfacial in situ visualization for each material was performed during the compression cycle in the radial trough. Challenges associated with the small size of the radial Langmuir trough, such as the influence of capillary deformation on the measured surface pressure, are also quantified. FINDINGS Measured surface pressures between the newly developed radial trough and the rectangular Langmuir trough compare well. Micrographs obtained in the radial Langmuir trough were used to obtain film properties such as Young's modulus. The new advance in colloid and interface science is the ability to capture structure-property relationships of planar interfaces using microscopy and purely dilatational deformation. This will advance the development of constitutive modeling of complex fluid-fluid interfaces.
Collapse
Affiliation(s)
- Shalaka K Kale
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Andrew J Cope
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - David M Goggin
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Joseph R Samaniuk
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
11
|
Schüer JJ, Arndt A, Wölk C, Pinnapireddy SR, Bakowsky U. Establishment of a Synthetic In Vitro Lung Surfactant Model for Particle Interaction Studies on a Langmuir Film Balance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4808-4819. [PMID: 32306733 DOI: 10.1021/acs.langmuir.9b03712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the intention to provide a robust and economical model that can be used for predicting particle interactions with the pulmonary surfactant, this study was aimed to find an artificial surfactant model that perfectly mimics the properties of the natural pulmonary surfactant. A surfactant model should be reproducible, robust, and able to predict interactions between the pulmonary surfactant and exogenous influences from air and the aqueous site. We compared three synthetic models with the natural bovine surfactant Alveofact. The lung conditions were simulated by spreading the surfactants at the air/aqueous interface on a Langmuir trough with movable barriers. All three artificial surfactant models showed properties very similar to that of Alveofact. Visualization of the monolayers by atomic force microscopy revealed very similar structures with domain formation. The Tanaka lipid mixture has already shown good results in vitro and in vivo in previous studies. The 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) model has large conformations in the surface pressure isotherms and showed a biomimetic exclusion plateau, indicative of an effective lung surfactant formulation. Also, the equilibrium spreading pressure was similar. DPPC-1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-1'-rac-glycerol (POPG) had the greatest similarities with Alveofact in the hysteresis areas. The kinetic constants of the relaxation experiments during desorption showed that the PCPG model (at 30 mN/m) had almost identical diffusion and dissolution values as Alveofact. As a proof of concept, the interaction of the models with PLGA nanoparticles showed promising results in all experiments for all the three surfactant models. The results show that the choice of components in a model play a crucial role in obtaining reproducible results. The selected models can be used for further studies as synthetic in vitro lung models.
Collapse
Affiliation(s)
- Julia J Schüer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Alexej Arndt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Christian Wölk
- Institute of Pharmacy, Martin Luther University, Wolfgang-Langenbeck-Straße 4, 06210 Halle (Saale), Germany
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany
| | - Shashank R Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| |
Collapse
|
12
|
Schüer JJ, Wölk C, Bakowsky U, Pinnapireddy SR. Comparison of Tanaka lipid mixture with natural surfactant Alveofact to study nanoparticle interactions on Langmuir film balance. Colloids Surf B Biointerfaces 2019; 188:110750. [PMID: 31884081 DOI: 10.1016/j.colsurfb.2019.110750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/03/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022]
Abstract
Upon inhalation, nanoparticles enter the lungs where the pulmonary surfactant forms the first point of contact and plays a pivotal role for the subsequent absorption into the body. This can lead to interactions that alter the biophysical function of the surfactant monolayer. Therefore, a reliable prediction of the interaction is desired. In this study, we compared the behaviour of an artificial surfactant model with that of a natural surfactant upon exposure to chitosan nanoparticles. To simulate the physiology of the lungs, the surfactant monolayers were placed at an air/aqueous interface of a Langmuir film balance. Based on the data obtained from the experiments, the chitosan nanoparticles first integrated into the monolayer of the natural surfactant and then interact strongly with its compounds thereby moving out of the monolayer. The topographic changes in the monolayer were determined by atomic force microscopy analysis. Using this technique, the nanoparticle localisation on the monolayer could be studied. No visible interaction was observed with the artificial surfactant from surface pressure-time isotherms and atomic force microscopy analysis. Incomplete miscibility lead to instability of the artificial surfactant which left behind a DPPC rich monolayer after nanoparticle interaction. It was not stable enough to see a possible interaction (i.e. change in surface pressure) with the nanoparticles directly. These results should help understand the interactions of lipids among themselves and with the nanoparticles. Furthermore, it should help generate an efficient artificial surfactant model and to understand the underlying mechanisms of the nanoparticle interaction with the monolayer.
Collapse
Affiliation(s)
- Julia Janina Schüer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Christian Wölk
- Institute of Pharmacy, Martin Luther University, Wolfgang-Langenbeck-Straße 4, 06210 Halle (Saale), Germany; Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
13
|
Influence of temperature on dynamic surface properties of spread DPPC monolayers in a broad range of surface pressures. Chem Phys Lipids 2019; 225:104812. [DOI: 10.1016/j.chemphyslip.2019.104812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/20/2019] [Accepted: 08/17/2019] [Indexed: 12/27/2022]
|
14
|
Study of mucin interaction with model phospholipid membrane at the air–water interface. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Development of inhalable curcumin loaded Nano-in-Microparticles for bronchoscopic photodynamic therapy. Eur J Pharm Sci 2019; 132:63-71. [PMID: 30797026 DOI: 10.1016/j.ejps.2019.02.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/05/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy is amongst the most rapidly developing therapeutic strategies against cancer. However, most photosensitizers are administered intravenously with very few reports about pulmonary applications. To address this issue, an inhalable formulation consisting of nanoparticles loaded with photosensitizer (i.e. curcumin) was developed. The nanoparticles were prepared using nanoprecipitation method. Dynamic light scattering measurements of the curcumin loaded nanoparticles revealed a hydrodynamic diameter of 181.20 ± 11.52 nm. In vitro irradiation experiments with human lung epithelial carcinoma cells (A549) showed a selective cellular toxicity of the nanoparticles upon activation using LED irradiating device. Moreover, curcumin nanoparticles exhibited a dose-dependent photocytotoxicity and the IC50 values of curcumin were directly dependent on the radiation fluence used. The nanoparticles were subsequently spray dried using mannitol as a stabilizer to produce Nano-in-Microparticles with appropriate aerodynamic properties for a sufficient deposition in the lungs. This was confirmed using the next generation impactor, which revealed a large fine particle fraction (64.94 ± 3.47%) and a mass median aerodynamic diameter of 3.02 ± 0.07 μm. Nano-in-Microparticles exhibited a good redispersibility and disintegrated into the original nanoparticles upon redispersion in aqueous medium. The Langmuir monolayer experiments revealed an excellent compatibility of the nanoparticles with the lung surfactant. Results from this study showed that the Nano-in-Microparticles are promising drug carriers for the photodynamic therapy of lung cancer.
Collapse
|
16
|
Dopierała K, Krajewska M, Prochaska K. Binding of α-lactalbumin to oleic acid monolayer and its relevance to formation of HAMLET-like complexes. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Thermodynamic Behaviour of Mixed Films of an Unsaturated and a Saturated Polar Lipid. (Oleic Acid-Stearic Acid and POPC-DPPC). COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2020017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Stability and interfacial viscoelasticity of oil-water nanoemulsions stabilized by soy lecithin and Tween 20 for the encapsulation of bioactive carvacrol. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.12.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Sanver D, Murray BS, Sadeghpour A, Rappolt M, Nelson AL. Experimental Modeling of Flavonoid-Biomembrane Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13234-13243. [PMID: 27951697 DOI: 10.1021/acs.langmuir.6b02219] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nonspecific interactions of flavonoids with lipids can alter the membrane's features (e.g., thickness and fluctuations) as well as influence their therapeutic potentials. However, relatively little is known about the details of how flavonoids interact with lipid components. Structure-dependent interactions of a variety of flavonoids with phospholipid monolayers on a mercury (Hg) film electrode were established by rapid cyclic voltammetry (RCV). The data revealed that flavonoids adopting a planar configuration altered the membrane properties more significantly than nonplanar flavonoids. Quercetin, rutin, and tiliroside were selected for follow-up experiments with Langmuir monolayers, Brewster angle microscopy (BAM), and small-angle X-ray scattering (SAXS). Relaxation phenomena in DOPC monolayers and visualization of the surface with BAM revealed a pronounced monolayer stabilization effect with both quercetin and tiliroside, whereas rutin disrupted the monolayer structure rendering the surface entirely smooth. SAXS showed a monotonous membrane thinning for all compounds studied associated with an increase in the mean fluctuations of the membrane. Rutin, quercetin, and tiliroside decreased the bilayer thickness of DOPC by ∼0.45, 0.8, and 1.1 Å at 6 mol %, respectively. In addition to the novelty of using lipid monolayers to systematically characterize the structure-activity relationship (SAR) of a variety of flavonoids, this is the first report investigating the effect of tiliroside with biomimetic membrane models. All the flavonoids studied are believed to be localized in the lipid/water interface region. Both this localization and the membrane perturbations have implications for their therapeutic activity.
Collapse
Affiliation(s)
- Didem Sanver
- Department of Food Engineering, Necmettin Erbakan University , Koycegiz Kampusu, 420701 Konya, Turkey
| | | | | | | | | |
Collapse
|
20
|
Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions. Colloids Surf B Biointerfaces 2016; 151:68-75. [PMID: 27987457 DOI: 10.1016/j.colsurfb.2016.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/15/2023]
Abstract
The effects of the combination of two low-molecular weight emulsifiers (lecithin and glycerol-monostearate (GMS)) on the stability, the dynamic interfacial properties and rheology of emulsions have been studied. Different lecithin/GMS ratios were tested in order to assess their impact in the formation and stabilization of oil in water emulsions. The combination of the two surfactants showed a synergistic behaviour, mainly when combined at the same ratio. The dynamic film properties and ζ-potential showed that lecithin dominated the surface of oil droplets, providing stability to the emulsions against flocculation and coalescence, while allowing the formation of small oil droplets. At long times of adsorption, all of the mixtures showed similar interfacial activity. However, higher values of interfacial pressure at the initial times were reached when lecithin and GMS were at the same ratio. Interfacial viscoelasticity and viscosity of mixed films were also similar to that of lecithin alone. On the other hand, emulsions viscosity was dominated by GMS. The synergistic performance of lecithin-GMS blends as stabilizers of oil/water emulsions is attributed to their interaction both in the bulk and at the interface.
Collapse
|
21
|
Segers T, de Rond L, de Jong N, Borden M, Versluis M. Stability of Monodisperse Phospholipid-Coated Microbubbles Formed by Flow-Focusing at High Production Rates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3937-3944. [PMID: 27006083 DOI: 10.1021/acs.langmuir.6b00616] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Monodisperse microbubble ultrasound contrast agents may dramatically increase the sensitivity and efficiency in ultrasound imaging and therapy. They can be produced directly in a microfluidic flow-focusing device, but questions remain as to the interfacial chemistry, such as the formation and development of the phospholipid monolayer coating over time. Here, we demonstrate the synthesis of monodisperse bubbles with radii of 2-10 μm at production rates ranging from 10(4) to 10(6) bubbles/s. All bubbles were found to dissolve to a stable final radius 2.55 times smaller than their initial radius, independent of the nozzle size and shear rate, indicating that the monolayer self-assembles prior to leaving the nozzle. The corresponding decrease in surface area by a factor 6.6 reveals that lipid molecules are adsorbed to the gas-liquid interface in the disordered expanded state, and they become mechanically compressed by Laplace pressure-driven bubble dissolution to a more ordered condensed state with near zero surface tension. Acoustic characterization of the stabilized microbubbles revealed that their shell stiffness gradually increased from 0.8 to 2.5 N/m with increasing number of insonations through the selective loss of the more soluble lipopolymer molecules. This work therefore demonstrates high-throughput production of clinically relevant monodisperse contrast microbubbles with excellent control over phospholipid monolayer elasticity and microbubble resonance.
Collapse
Affiliation(s)
- Tim Segers
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P. O. Box 217, 7500 AE Enschede, The Netherlands
| | - Leonie de Rond
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P. O. Box 217, 7500 AE Enschede, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC , Wyternaweg 80 EE 2302, 3015 CN Rotterdam, The Netherlands
| | - Mark Borden
- Department of Mechanical Engineering, University of Colorado , 1111 Engineering Drive, Boulder, Colorado 80309-0427, United States
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P. O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
22
|
Keller R, Kwak M, de Vries JW, Sawaryn C, Wang J, Anaya M, Müllen K, Butt HJ, Herrmann A, Berger R. Properties of amphiphilic oligonucleotide films at the air/water interface and after film transfer. Colloids Surf B Biointerfaces 2013; 111:439-45. [PMID: 23859875 DOI: 10.1016/j.colsurfb.2013.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
The self-assembly of amphiphilic hybrid materials containing an oligonucleotide sequence at the air/water interface was investigated by means of pressure-molecular area (Π-A) isotherms. In addition, films were transferred onto solid substrates and imaged using scanning force microscopy. We used oligonucleotide molecules with lipid tails, which consisted of a single stranded oligonucleotide 11 mer containing two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases (dU11) at the 5'-end of the oligonucleotide sequence. The air/water interface was used as confinement for the self-assembling process of dU11. Scanning force microscopy of films transferred via Langmuir-Blodgett technique revealed mono-, bi- (Π ≥ 2 mN/m) and multilayer formation (Π ≥ 30 mN/m). The first layer was 1.6 ± 0.1 nm thick. It was oriented with the hydrophilic oligonucleotide moiety facing the hydrophilic substrate while the hydrophobic alkyl chains faced air. In the second layer the oligonucleotide moiety was found to face the air. The second layer was found to cover up to 95% of the sample area. Our measurements indicated that the rearrangement of the molecules into bi- and multiple bilayers happened already at the air/water interface. Similar results were obtained with a second type of oligonucleotide amphiphile, an oligonucleotide block copolymer, which was composed of an oligonucleotide 11 mer covalently attached at the terminus to polypropyleneoxide (PPO).
Collapse
Affiliation(s)
- R Keller
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - M Kwak
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - J W de Vries
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - C Sawaryn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - J Wang
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - M Anaya
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - K Müllen
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - H-J Butt
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - A Herrmann
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - R Berger
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| |
Collapse
|
23
|
Phospholipids at the interface: current trends and challenges. Int J Mol Sci 2013; 14:11767-94. [PMID: 23736688 PMCID: PMC3709755 DOI: 10.3390/ijms140611767] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/03/2013] [Accepted: 05/28/2013] [Indexed: 11/30/2022] Open
Abstract
Phospholipids are one of the major structural elements of biological membranes. Due to their amphiphilic character, they can adopt various molecular assemblies when dispersed in water, such as bilayer vesicles or micelles, which give them unique interfacial properties and render them very attractive in terms of foam or emulsion stabilization. This article aims at reviewing the properties of phospholipids at the air/water and oil/water interfaces, as well as the recent advances in using these natural components as stabilizers, alone or in combination with other compounds such as proteins. A discussion regarding the challenges and opportunities offered by phospholipids-stabilized structure concludes the review.
Collapse
|
24
|
Costa AP, Xu X, Burgess DJ. Langmuir balance investigation of superoxide dismutase interactions with mixed-lipid monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10050-10056. [PMID: 22671579 DOI: 10.1021/la301614t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Higher than theoretical encapsulation efficiencies in liposomes of the cytoplasmic protein, superoxide dismutase (SOD), were previously observed. The high encapsulation of SOD led to the consideration of lipid-protein interactions and the embedding of SOD in the lipid bilayer. Difficulty in other methods such as dynamic scanning calorimetry due to cholesterol obscuring the measurements brought about the interest for a modified Langmuir monolayer relaxation study. A novel method was devised to distinguish between different lipid compositions that formed either a favorable or an unfavorable environment for SOD. Normalized monolayer relaxations with SOD were compared between mixed-lipid compositions containing 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and cholesterol (Chol). Lipid-monolayer relaxation with and without SOD in the subphase was plotted over 30 min to determine if the protein was altering the lipid-monolayer relaxation. The monolayer relaxation with SOD was normalized to the monolayer relaxation without SOD over the 30 min period. The results indicated that lipid length and mole percent of cholesterol were important parameters that must be adjusted in order to support a favorable environment for SOD interaction with the lipid. It was determined that hydrophobic interactions were dominant over electrostatic forces; thus, SOD was embedding into the lipid monolayer. Additionally, this study was correlated to a previous liposome study and proved that lipid-protein interactions were the reason for the higher encapsulation efficiencies. The significance of this method is that it (1) provides a connection between lipid-protein interactions observed in monolayers and bilayers and (2) establishes a simple and effective manner to test lipid compositions for lipid-protein interaction that will aid in optimization of liposome encapsulation efficiency.
Collapse
Affiliation(s)
- Antonio P Costa
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | | | | |
Collapse
|
25
|
Ou-Yang W, Weis M, Manaka T, Iwamoto M. Study of relaxation process of dipalmitoyl phosphatidylcholine monolayers at air-water interface: effect of electrostatic energy. J Chem Phys 2011; 134:154709. [PMID: 21513410 DOI: 10.1063/1.3581890] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The instability of organic monolayer composed of polar molecules at the air-water interface has been a spotlight in interface science for many decades. However, the effect of electrostatic energy contribution to the free energy in the system is still not understood. Herein, we investigate the mechanical and electrical properties by studying the isobaric relaxation process of a dipalmitoyl phosphatidylcholine monolayer on water subphase with various concentrations of divalent ions to reveal the effect of electrostatic energy on thermodynamics and kinetics of the collapse mechanism. Our results demonstrate that electrical energy among the dipolar molecules plays an important role in the stability of monolayer and enhances the formation of micelles into subphase under high pressure. In addition, to confirm the electrostatic energy contribution, the well-known thermal effect on the stability of the film is compared. Hence, the general description of the monolayer free energy with contribution of electrostatic energy is suggested to describe the phase transition.
Collapse
Affiliation(s)
- Wei Ou-Yang
- Department of Physical Electronics, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
26
|
Shushkov P, Tzvetanov S, Velinova M, Ivanova A, Tadjer A. Structural aspects of lipid monolayers: computer simulation analyses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8081-8092. [PMID: 20337413 DOI: 10.1021/la904734b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Extensive molecular dynamics simulations at room temperature were carried out for model films of two dissimilar lipids (DPPC and dicaprin) at the air/water interface. To study the peculiarities of the organization patterns at different average areas per molecule, surface concentrations corresponding to five almost equally spaced points along the isotherms of the two surfactants were considered. A variable of prime interest was the density distribution in a direction normal to the interface of the monolayer components: interfacial water and surfactant on one hand and the separate moieties of the lipids on the other hand. The packing pattern and cluster size dispersion were studied by means of Voronoi tessellation and radial distribution functions. Speculations regarding structural changes upon phase-state changes during film compression were made. Individual characteristics for surfactant heads and tails as well as for interfacial water were outlined and related to the available experimental data. An analysis of the diffusion coefficients revealed the limiting factors for lipid lateral and normal diffusion. Structural arguments in support of changes in monolayer dielectric properties with the area per molecule were provided.
Collapse
Affiliation(s)
- Philip Shushkov
- Laboratory of Quantum and Computational Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Sofia, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
27
|
Kwan JJ, Borden MA. Microbubble dissolution in a multigas environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6542-8. [PMID: 20067292 DOI: 10.1021/la904088p] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microbubbles occur naturally in the oceans and are used in many industrial and biomedical applications. Here, a theoretical and experimental study was undertaken to determine the fate of a microbubble suddenly suspended in a medium with several gas species as in, for example, the injection of an ultrasound contrast agent into the bloodstream. The model expands on Epstein and Plesset's analysis to include any number of gases. An experimental system was developed which isolates the microbubble in a permeable hollow fiber submerged in a perfusion chamber, allowing rapid exchange of the external aqueous medium. Experimental verification of the model was performed with individual sulfur hexafluoride (SF(6)) microbubbles coated with the soluble surfactant, sodium dodecyl sulfate (SDS). SDS-coated microbubbles suddenly placed in an air-saturated medium initially grew with the influx of O(2) and N(2) and then dissolved under Laplace pressure. SF(6)-filled microbubbles coated with the highly insoluble lipid, dibehenoylphosphatidylcholine, were found to exhibit significantly different behavior owing to a dynamic surface tension. The initial growth phase was diminished, possibly owing to a shell "breakup" tension that exceeded the pure gas/liquid surface tension. Three dissolution regimes were observed: (1) an initial rapid dissolution to the initial diameter followed by (2) steady dissolution with monolayer collapse and finally (3) stabilization below 10 microm diameter. Results indicated that the lipid shell becomes increasingly rigid as the microbubble dissolves, which has important implications on microbubble size distribution, stability, and acoustic properties.
Collapse
Affiliation(s)
- James J Kwan
- Chemical Engineering, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
28
|
The role of antibody synergy and membrane fluidity in the vascular targeting of immunoliposomes. Biomaterials 2010; 31:900-7. [DOI: 10.1016/j.biomaterials.2009.09.107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/29/2009] [Indexed: 01/02/2023]
|
29
|
Ou-Yang W, Weis M, Lee K, Manaka T, Iwamoto M. Dipolar electrostatic energy effect on relaxation process of monolayers at air-water interface: Analysis of thermodynamics and kinetics. J Chem Phys 2009; 131:244709. [DOI: 10.1063/1.3273790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Caro AL, Rodríguez Niño MR, Rodríguez Patino JM. Dynamics of penetration of dipalmitoyl-phosphatidyl-choline (DPPC) monolayers by β-casein. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2009.03.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Niño MRR, Caro AL, Patino JMR. Structural, topographical, and rheological characteristics of β-casein–dioleoyl phosphatidylcholine (DOPC) mixed monolayers. Colloids Surf B Biointerfaces 2009; 69:15-25. [DOI: 10.1016/j.colsurfb.2008.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 11/26/2022]
|
32
|
Lucero Caro A, Rodríguez Niño MR, Rodríguez Patino JM. The effect of pH on surface dilatational and shear properties of phospholipid monolayers. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2008.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|