1
|
Alam A, Syamala A, Yu A, Khandelwal M. Tailoring the Wettability of Bacterial Cellulose Magnetobots via the Assembly of In Situ Synthesized and Surfactant-Coated Magnetic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22433-22445. [PMID: 39387836 DOI: 10.1021/acs.langmuir.4c03330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
This study showcases the possibility of tailoring the wettability of magnetic bacterial cellulose (m-BC) composites by the combined effect of in situ synthesized magnetic nanoparticles (MNPs) distribution and simultaneous oleic acid (OA) coating within the BC matrix. This combined effect of MNPs and OA resulted in m-BC composites exhibiting solvent-dependent and time-dependent surface-wetting behavior, which was not observed in either individual cases of BC that have been modified with OA or BC that has MNPs adsorbed on its fibers. This tailored wettability in m-BCs was achieved via varying the concentrations of iron precursors, which governed the arrangement and morphology of MNPs (uniformly or clustered) on the BC membrane, although the same fraction of MNPs was observed in both the m-BCs. Finally, we have achieved delayed water absorption in m-BC_x (synthesized in a comparatively lower precursor concentration) and no absorption of water in m-BC_4x (synthesized in a 4-times-higher precursor concentration). The m-BC_4x composite maintained its hydrophobic characteristics in diverse environments, ranging from highly acidic conditions (pH 1.2) to physiological environments at pH 4, 5.5, and 7.4. The MNP agglomerates on the BC nanofibers in the m-BC_4x composite were found to be instrumental in attaining a stable cyclic absorption performance with structural integrity. Additionally, the magnetic-inducing heat generation efficiency of the m-BCs can be extended for evaporating low-boiling-point solvents. The present study expands the frontiers of BC-based magnetic composites by emphasizing the assembly of surfactant-coated magnetic nanostructures in their responsiveness to polar/nonpolar liquids with stable performance even in complex scenarios.
Collapse
Affiliation(s)
- Aszad Alam
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Hyderabad, Sangareddy Telangana 502285, India
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Aditya Syamala
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Hyderabad, Sangareddy Telangana 502285, India
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Mudrika Khandelwal
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Hyderabad, Sangareddy Telangana 502285, India
| |
Collapse
|
2
|
Abarca-Cabrera L, Xu L, Berensmeier S, Fraga-García P. Competition at the Bio-nano Interface: A Protein, a Polysaccharide, and a Fatty Acid Adsorb onto Magnetic Nanoparticles. ACS APPLIED BIO MATERIALS 2023; 6:146-156. [PMID: 36503228 DOI: 10.1021/acsabm.2c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnetic nanoparticles are an attractive bioseparation tool due to their magnetic susceptibility and high adsorption capacity for different types of molecules. A major challenge for separation is to generate selectivity for a target molecule, or for a group of molecules in complex environments such as cell lysates. It is crucial to understand the factors that determine the targets' adsorption behavior in mixtures for triggering intended interactions and selectivity. Here we use a model system containing three molecules, each of them a common representative of the more abundant types of macromolecules in living systems: sodium oleate (SO), a fatty acid; bovine serum albumin (BSA), a protein; and dextran, a polysaccharide. Our results show that (a) the BSA adsorption capacity on the iron oxide material depends markedly on the pH, with the maximum capacity at the pI of the protein (0.39 g gMNP-1 ); (b) sodium oleate, a strongly negatively charged molecule, an organic anion, renders a maximum adsorption capacity of 0.40 g gMNP-1, even at pHs at which oleate as well as the nanoparticle surface are negatively charged; (c) the adsorbed masses of dextran, a neutral sugar, are lower than for the other two molecules, between 0.09 and 0.13 g gMNP-1, regardless of the system's pH. We observe an unexpected behavior in mixtures: SO completely prevents the adsorption of BSA, and dextran decreases the adsorption of the other competitors, SO and BSA, while adsorbing at the same capacities, unaffected by either the presence of the other two molecules or the pH. BSA does not decrease the oleate adsorption capacity. We demonstrate the essential role of pH in the adsorption of BSA (a protein) and SO (a fatty acid), as well as its impact in the structural organization of the oleate molecules in water. Moreover, we present exciting data on the adsorption of the molecules in competition, revealing the need to focus on interaction studies in more complex environments. This study attempts to open the scope of the current research of bio-nano interactions to not only proteins but also to mixtures, and generally to molecules with other physicochemical characteristics. Furthermore, we contribute to the understanding of multicomponent systems with the vision set in enhancing biomass exploitation and biofractionation processes.
Collapse
Affiliation(s)
- Lucía Abarca-Cabrera
- Bioseparation Engineering Group, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Garching 85748, Germany
| | - Lianxin Xu
- Bioseparation Engineering Group, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Garching 85748, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Garching 85748, Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
3
|
Plunkett A, Kampferbeck M, Bor B, Sazama U, Krekeler T, Bekaert L, Noei H, Giuntini D, Fröba M, Stierle A, Weller H, Vossmeyer T, Schneider GA, Domènech B. Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivity. ACS NANO 2022; 16:11692-11707. [PMID: 35760395 PMCID: PMC9413410 DOI: 10.1021/acsnano.2c01332] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nanocrystal assembly into ordered structures provides mesostructural functional materials with a precise control that starts at the atomic scale. However, the lack of understanding on the self-assembly itself plus the poor structural integrity of the resulting supercrystalline materials still limits their application into engineered materials and devices. Surface functionalization of the nanobuilding blocks with organic ligands can be used not only as a means to control the interparticle interactions during self-assembly but also as a reactive platform to further strengthen the final material via ligand cross-linking. Here, we explore the influence of the ligands on superlattice formation and during cross-linking via thermal annealing. We elucidate the effect of the surface functionalization on the nanostructure during self-assembly and show how the ligand-promoted superlattice changes subsequently alter the cross-linking behavior. By gaining further insights on the chemical species derived from the thermally activated cross-linking and its effect in the overall mechanical response, we identify an oxidative radical polymerization as the main mechanism responsible for the ligand cross-linking. In the cascade of reactions occurring during the surface-ligands polymerization, the nanocrystal core material plays a catalytic role, being strongly affected by the anchoring group of the surface ligands. Ultimately, we demonstrate how the found mechanistic insights can be used to adjust the mechanical and nanostructural properties of the obtained nanocomposites. These results enable engineering supercrystalline nanocomposites with improved cohesion while preserving their characteristic nanostructure, which is required to achieve the collective properties for broad functional applications.
Collapse
Affiliation(s)
- Alexander Plunkett
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| | - Michael Kampferbeck
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Büsra Bor
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| | - Uta Sazama
- Institute
of Inorganic and Applied Chemistry, University
of Hamburg, 20146 Hamburg, Germany
| | - Tobias Krekeler
- Electron
Microscopy Unit, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Lieven Bekaert
- Research
Group of Electrochemical and Surface Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Heshmat Noei
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Diletta Giuntini
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
- Department
of Mechanical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Michael Fröba
- Institute
of Inorganic and Applied Chemistry, University
of Hamburg, 20146 Hamburg, Germany
| | - Andreas Stierle
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Fachbreich
Physik, University of Hamburg, 20355 Hamburg, Germany
| | - Horst Weller
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Fraunhofer-CAN, 20146 Hamburg, Germany
| | - Tobias Vossmeyer
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Gerold A. Schneider
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| | - Berta Domènech
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| |
Collapse
|
4
|
Flores-Cano DA, Checca-Huaman NR, Castro-Merino IL, Pinotti CN, Passamani EC, Litterst FJ, Ramos-Guivar JA. Progress toward Room-Temperature Synthesis and Functionalization of Iron-Oxide Nanoparticles. Int J Mol Sci 2022; 23:8279. [PMID: 35955414 PMCID: PMC9368286 DOI: 10.3390/ijms23158279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 02/06/2023] Open
Abstract
Novel magnetic nanohybrids composed of nanomaghemite covered by organic molecules were successfully synthesized at room temperature with different functionalization agents (sodium polystyrene sulfonate, oxalic acid, and cetyltrimethylammonium bromide) in low and high concentrations. Structural, vibrational, morphological, electron energy-loss spectroscopy, magnetic, and Mössbauer characterizations unraveled the presence of mainly cubic inverse spinel maghemite (γ-Fe2O3), whilst X-ray diffraction and 57Fe Mössbauer spectroscopy showed that most samples contain a minor amount of goethite phase (α-FeOOH). Raman analysis at different laser power revealed a threshold value of 0.83 mW for all samples, for which the γ-Fe2O3 to α-Fe2O3 phase transition was observed. Imaging microscopy revealed controlled-size morphologies of nanoparticles, with sizes in the range from 8 to 12 nm. Organic functionalization of the magnetic nanoparticles was demonstrated by vibrational and thermogravimetric measurements. For some samples, Raman, magnetic, and Mössbauer measurements suggested an even more complex core-shell-like configuration, with a thin shell containing magnetite (Fe3O4) covering the γ-Fe2O3 surface, thus causing an increase in the saturation magnetization of approximately 11% against nanomaghemite. Field cooling hysteresis curves at 5 K did not evidence an exchange bias effect, confirming that the goethite phase is not directly interacting magnetically with the functionalized maghemite nanoparticles. These magnetic nanohybrids may be suitable for applications in effluent remediation and biomedicine.
Collapse
Affiliation(s)
- Diego A. Flores-Cano
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru;
| | - Noemi-Raquel Checca-Huaman
- Centro Brasileiro de Pesquisas Físicas (CBPF), R. Xavier Sigaud, 150, Urca, Rio de Janeiro 22290-180, Brazil; (N.-R.C.-H.); (I.-L.C.-M.)
| | - Isabel-Liz Castro-Merino
- Centro Brasileiro de Pesquisas Físicas (CBPF), R. Xavier Sigaud, 150, Urca, Rio de Janeiro 22290-180, Brazil; (N.-R.C.-H.); (I.-L.C.-M.)
| | - Camila N. Pinotti
- Physics Department, Federal University of Espírito Santo, Vitória 29075-910, Brazil; (C.N.P.); (E.C.P.)
| | - Edson C. Passamani
- Physics Department, Federal University of Espírito Santo, Vitória 29075-910, Brazil; (C.N.P.); (E.C.P.)
| | - Fred Jochen Litterst
- Institut für Physik der Kondensierten Materie, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
| | - Juan A. Ramos-Guivar
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru;
| |
Collapse
|
5
|
Polyaniline and magnetite on curaua fibers for molecular interface improvement with a cement matrix. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Schwaminger SP, Schwarzenberger K, Gatzemeier J, Lei Z, Eckert K. Magnetically Induced Aggregation of Iron Oxide Nanoparticles for Carrier Flotation Strategies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20830-20844. [PMID: 33884871 DOI: 10.1021/acsami.1c02919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
On the nanoscale, iron oxides can be used for multiple applications ranging from medical treatment to biotechnology. We aimed to utilize the specific properties of these nanoparticles for new process concepts in flotation. Magnetic nanoparticles were synthesized by alkaline coprecipitation, leading to a primary particle size of 9 nm, and coated with oleate. The nanomaterial was characterized for its superparamagnetism and its colloidal stability at different ionic strengths, with and without an external magnetic field. The nanomaterial was used for model experiments on magnetic carrier flotation of microplastic particles, based on magnetically induced heteroagglomeration. We were able to demonstrate the magnetically induced aggregation of the nanoparticles which allows for new flotation strategies. Since the nanomaterial has zero remanent magnetization, the agglomeration is reversible which facilitates the process control. Magnetic carrier flotation based on iron oxide nanoparticles can pave the way to promising new recycling processes for microplastic wastes.
Collapse
Affiliation(s)
- Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Karin Schwarzenberger
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Jacqueline Gatzemeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Zhe Lei
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Kerstin Eckert
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
7
|
Abarca-Cabrera L, Fraga-García P, Berensmeier S. Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomater Res 2021; 25:12. [PMID: 33883044 PMCID: PMC8059211 DOI: 10.1186/s40824-021-00212-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
The major interest in nanoparticles as an application platform for biotechnology arises from their high surface-to-volume ratio. Iron oxide nanoparticles (IONPs) are particularly appealing due to their superparamagnetic behavior, which enables bioseparation using external magnetic fields. In order to design advanced biomaterials, improve binding capacities and develop innovative processing solutions, a thorough understanding of the factors governing organic-inorganic binding in solution is critical but has not yet been achieved, given the wide variety of chemical and physical influences. This paper offers a critical review of experimental studies of the interactions between low cost IONPs (bare iron oxides, silica-coated or easily-functionalized surfaces) and the main groups of biomolecules: proteins, lipids, nucleic acids and carbohydrates. Special attention is devoted to the driving forces and interdependencies responsible of interactions at the solid-liquid interface, to the unique structural characteristics of each biomolecular class, and to environmental conditions influencing adsorption. Furthermore, studies focusing on mixtures, which are still rare, but absolutely necessary to understand the biocorona, are also included. This review concludes with a discussion of future work needed to fill the gaps in knowledge of bio-nano interactions, seeking to improve nanoparticles' targeting capabilities in complex systems, and to open the door for multipurpose recognition and bioseparation processes.
Collapse
Affiliation(s)
- Lucía Abarca-Cabrera
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching bei München, Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching bei München, Germany.
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching bei München, Germany
| |
Collapse
|
8
|
Modified Fe3O4 nanoparticle used for stabilizing foam flooding for enhanced oil recovery. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Sodium Hexametaphosphate: An Inexpensive Inorganic Polyelectrolyte “Primer” For Upconverting Nanoparticles/Mesoporous Silica Core‐Shell Synthesis. ChemistrySelect 2020. [DOI: 10.1002/slct.202000287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Zamani Kouhpanji MR, Stadler BJH. A Guideline for Effectively Synthesizing and Characterizing Magnetic Nanoparticles for Advancing Nanobiotechnology: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2554. [PMID: 32365832 PMCID: PMC7248791 DOI: 10.3390/s20092554] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
The remarkable multimodal functionalities of magnetic nanoparticles, conferred by their size and morphology, are very important in resolving challenges slowing the progression of nanobiotechnology. The rapid and revolutionary expansion of magnetic nanoparticles in nanobiotechnology, especially in nanomedicine and therapeutics, demands an overview of the current state of the art for synthesizing and characterizing magnetic nanoparticles. In this review, we explain the synthesis routes for tailoring the size, morphology, composition, and magnetic properties of the magnetic nanoparticles. The pros and cons of the most popularly used characterization techniques for determining the aforementioned parameters, with particular focus on nanomedicine and biosensing applications, are discussed. Moreover, we provide numerous biomedical applications and highlight their challenges and requirements that must be met using the magnetic nanoparticles to achieve the most effective outcomes. Finally, we conclude this review by providing an insight towards resolving the persisting challenges and the future directions. This review should be an excellent source of information for beginners in this field who are looking for a groundbreaking start but they have been overwhelmed by the volume of literature.
Collapse
Affiliation(s)
- Mohammad Reza Zamani Kouhpanji
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bethanie J. H. Stadler
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Gautam RK, Tiwari I. Humic acid functionalized magnetic nanomaterials for remediation of dye wastewater under ultrasonication: Application in real water samples, recycling and reuse of nanosorbents. CHEMOSPHERE 2020; 245:125553. [PMID: 31862552 DOI: 10.1016/j.chemosphere.2019.125553] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Water pollution by industrial sector is a great problem which hampers the sustainable development goals. Dye containing water effluent poses vast challenge to clean water before its discharge in to the surrounding ecosystem. Herein, we prepared humic acid functionalized Fe3O4 nanosorbents through an eco-friendly route and applied for decolorization of carcinogenic dye from water. The nanosorbents was characterized by AFM, BET surface area analyzer, FTIR, SEM-EDX, TEM, TGA/DTG, VSM and XRD. Adsorption experiments were conducted by taking the appropriate amount of dye in different sources of water under ultrasonication. Adsorption process was controlled by chemisorption in nature making pseudo-second-order model most suitable. Multilayer adsorption was taking place on the active sites of nanosorbents showing applicability of Freundlich isotherm model with highest adsorbed amount of 199.986 mg g-1 at 323 K. Rise in temperature favors the remediation of colored effluent thus positive value of ΔH° (74.234 kJ mol-1) and negative value of ΔG° shows endothermic and spontaneous nature of adsorption system. Cationic surfactant CTAB favors the adsorption (<80%) while anionic SDS gives very low removal (>48%) because of the micelle formation at the surface of nanosorbents. Decolorization from real water samples shows that the adsorption of malachite green was 97, 90, 91, 87, and 86% for Ganga river water, tap water, well water, hand pump water and submersible water, respectively. The used Fe3O4/HA nanosorbents was easily recycled from water samples through 0.1 M HCl and nanosorbents was used up to five cycles with greater percentage of removal at 85%.
Collapse
Affiliation(s)
- Ravindra Kumar Gautam
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 211005, India.
| | - Ida Tiwari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 211005, India.
| |
Collapse
|
12
|
Preller T, Knickmeier S, Menzel D, Temel B, Garnweitner G. Exchange Bias in FePt-FePt 3 Thin Films by Controlled Phase Transition of Blended Nanoparticle Building Blocks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2093-2101. [PMID: 32041411 DOI: 10.1021/acs.langmuir.9b02880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanostructured composite thin films showing magnetic exchange coupling at the material interface have attracted great interest for the development of electronic components such as spin-valves. Besides the commonly performed fabrication of multilayer systems, the utilization of nanoparticle building blocks holds great potential for thin films with tailored magnetic properties and allows the facile but controlled combination of materials with complementary magnetic characteristics. In this work, we present the use of prefabricated highly crystalline iron platinum (fcc-FePt) and iron oxide (FexOy) nanoparticles for the preparation of nanocomposite thin films with varying compositions by wet processing from mixed dispersions. The resulting multiphase coatings showed high homogeneity, low surface roughness, and superparamagnetic behavior. By the variation of the amount of incorporated iron oxide, a precise adjustment of the magnetization at high field strength could be achieved. Furthermore, calcination under inert gas atmosphere resulted in a controlled phase transition of the magnetic phases and thus, in purely metallic coatings composed of ferromagnetic fct-FePt and antiferromagnetic fcc-FePt3, a decrease in surface roughness as well as high magnetic coercivity at room temperature. Field-cooling below the Néel temperature of fcc-FePt3 led to an exchange bias effect with a strong increase in coercivity and the characteristic hysteresis shift. In comparison to the literature, our nanocomposite thin films showed fully ordered phases without the occurrence of phase impurities, a distinctly higher coercivity, and an exchange bias shift of 38.7 mT.
Collapse
Affiliation(s)
- Tobias Preller
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Straße 5, 38104 Braunschweig, Germany
| | - Saskia Knickmeier
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Straße 5, 38104 Braunschweig, Germany
| | - Dirk Menzel
- Institute of Condensed Matter Physics, Technische Universität Braunschweig, Mendelssohnstraße 3, 38106 Braunschweig, Germany
| | - Bilal Temel
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Straße 5, 38104 Braunschweig, Germany
| | - Georg Garnweitner
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Straße 5, 38104 Braunschweig, Germany
- Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Langer Kamp 6A, 38106 Braunschweig, Germany
| |
Collapse
|
13
|
Kampferbeck M, Vossmeyer T, Weller H. Cross-Linked Polystyrene Shells Grown on Iron Oxide Nanoparticles via Surface-Grafted AGET-ATRP in Microemulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8790-8798. [PMID: 31244257 DOI: 10.1021/acs.langmuir.9b01060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most applications of nanoparticles require robust stabilization, for example, by surface-bound ligands or the encapsulation within polymer shells. Furthermore, for biomedical applications, the particles must be dispersible in a complex biological environment. Thus, high-quality nanoparticles synthesized in organic solvents must be transferred into aqueous media. Here, we present a novel scalable method enabling the robust hydrophilic encapsulation of non-agglomerated nanoparticles by growing polystyrene shells via AGET-ATRP in microemulsion. To demonstrate this approach, we encapsulate iron oxide nanoparticles (diameter: 13.7 ± 0.6 nm). Because the ATRP initiator is grafted onto the nanoparticles' surface, the shells are covalently attached to the iron oxide cores. By varying the amount of monomers, the shell thickness can be adjusted precisely, as indicated by the increasing hydrodynamic size from ∼22 to 26 nm (DLS, number mean) with an increasing amount of added monomers. Moreover, the degree of cross-linking can be controlled by the amount of added divinylbenzene (DVB). To evaluate the robustness of the polymer shells against ion infusion, we introduce a novel colorimetric method, which is based on the formation of the red iron thiocyanate complex. After addition of HCl, the increase in absorbance at 468 nm indicates leaching of iron ions from the polymer-encapsulated core particles. These measurements confirm that with increasing shell thickness, significantly improved shielding is achieved. Furthermore, high concentrations of added DVB [33-50% (v/v) in a monomer mixture] improve the shielding effect. However, when smaller amounts of DVB were added [10-25% (v/v)], the shielding effect was diminished, even in comparison to non-cross-linked polymer shells. This finding suggests a higher porosity of shells with a low degree of cross-linking.
Collapse
Affiliation(s)
- Michael Kampferbeck
- Institute of Physical Chemistry , University of Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
| | - Tobias Vossmeyer
- Institute of Physical Chemistry , University of Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
| | - Horst Weller
- Institute of Physical Chemistry , University of Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
| |
Collapse
|
14
|
Zhang X, Chen L, Liu R, Li D, Ge X, Ge G. The Role of the OH Group in Citric Acid in the Coordination with Fe 3O 4 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8325-8332. [PMID: 31149819 DOI: 10.1021/acs.langmuir.9b00208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The role of the C?OH group in citric acid (CA) in the molecular coordination with Fe3O4 nanoparticles (NPs) has been elusive for a long time. In this study, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectral deconvolution and thermogravimetric analysis (TGA) have been used to quantitatively clarify its significance in CA adsorption and its corresponding conformation. The experimental results show that the coordination and the corresponding conformation are exclusively determined by COOH not C?OH at pH 3, where its adsorption behavior conforms to the Brunauer?Emmett?Teller (BET) multilayer model with a maximal monolayer coordination number of 2.1/nm2. However, C?OH is involved in the coordination at pH 10, and CA conforms to the Langmuir monolayer model with 1.4/nm2 as its maximal monolayer coordination number, which is more stable than the COOH-only coordination. Especially, the conformational transformation is observed for the first time at pH 3, where the CA molecules adjust their conformation upon elution to maximize the utilization of the available binding sites on Fe3O4 NPs. This finding deepens the understanding on the fundamental mechanism for the interaction between the C?OH and COOH groups containing the organic ligand and metal oxide.
Collapse
Affiliation(s)
- Xiaorui Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Renxiao Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Dexing Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Xiujie Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| |
Collapse
|
15
|
Zhang X, Chen L, Yuan L, Liu R, Li D, Liu X, Ge G. Conformation-Dependent Coordination of Carboxylic Acids with Fe 3O 4 Nanoparticles Studied by ATR-FTIR Spectral Deconvolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5770-5778. [PMID: 30458104 DOI: 10.1021/acs.langmuir.8b03303] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The coordination of valeric acid (VA), glutaric acid (GA), and tricarballylic acid (TA) with Fe-OH on the Fe3O4 nanoparticle surface has been systematically studied to elucidate the effects of COOH, molecular configuration, and ligand concentration on the coordination by the combined use of attenuated total reflectance Fourier transform infrared (ATR-FTIR) and thermogravimetric analysis (TGA). The results show that the binding ability of the acids increases with the increase in the COOH number. Multiple conformations coexist for the dicarboxylic and tricarboxylic acid coordinated on the iron oxide NPs. Saturated coordination formed with only a one-, two-, or three-COOH conformation for VA, GA, and TA, respectively, occurs under ligand-scarce conditions, while unsaturated coordination formed with the mixture of uncoordinated, one-, and/or two-COOH conformations for VA, GA, and TA, respectively, exists under ligand-abundant conditions. The maximum coordination numbers for monolayer adsorption for VA, GA, and TA on Fe3O4 NPs are 9, 2.4, and 2.7 nm-2, respectively. This study helps us to understand the fine coordination mechanism caused by the acid molecules with different configurations and elucidates, for the first time, the fine conformational variance incurred by the surrounding ligand with different concentrations and the way in which the ligand is added.
Collapse
Affiliation(s)
- Xiaorui Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Beijing 100049 , P. R. China
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Li Yuan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Renxiao Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Dexing Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Xiaoping Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| |
Collapse
|
16
|
Domènech B, Kampferbeck M, Larsson E, Krekeler T, Bor B, Giuntini D, Blankenburg M, Ritter M, Müller M, Vossmeyer T, Weller H, Schneider GA. Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticles. Sci Rep 2019; 9:3435. [PMID: 30837545 PMCID: PMC6401156 DOI: 10.1038/s41598-019-39934-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/04/2019] [Indexed: 11/09/2022] Open
Abstract
Biomaterials often display outstanding combinations of mechanical properties thanks to their hierarchical structuring, which occurs through a dynamically and biologically controlled growth and self-assembly of their main constituents, typically mineral and protein. However, it is still challenging to obtain this ordered multiscale structural organization in synthetic 3D-nanocomposite materials. Herein, we report a new bottom-up approach for the synthesis of macroscale hierarchical nanocomposite materials in a single step. By controlling the content of organic phase during the self-assembly of monodisperse organically-modified nanoparticles (iron oxide with oleyl phosphate), either purely supercrystalline or hierarchically structured supercrystalline nanocomposite materials are obtained. Beyond a critical concentration of organic phase, a hierarchical material is consistently formed. In such a hierarchical material, individual organically-modified ceramic nanoparticles (Level 0) self-assemble into supercrystals in face-centered cubic superlattices (Level 1), which in turn form granules of up to hundreds of micrometers (Level 2). These micrometric granules are the constituents of the final mm-sized material. This approach demonstrates that the local concentration of organic phase and nano-building blocks during self-assembly controls the final material's microstructure, and thus enables the fine-tuning of inorganic-organic nanocomposites' mechanical behavior, paving the way towards the design of novel high-performance structural materials.
Collapse
Affiliation(s)
- Berta Domènech
- Institute of Advanced Ceramics, Hamburg University of Technology, 21073, Hamburg, Germany.
| | - Michael Kampferbeck
- Institute of Physical Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Emanuel Larsson
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502, Geesthacht, Germany
| | - Tobias Krekeler
- Electron Microscopy Unit, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Büsra Bor
- Institute of Advanced Ceramics, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Diletta Giuntini
- Institute of Advanced Ceramics, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Malte Blankenburg
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502, Geesthacht, Germany
| | - Martin Ritter
- Electron Microscopy Unit, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Martin Müller
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502, Geesthacht, Germany
| | - Tobias Vossmeyer
- Institute of Physical Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Horst Weller
- Institute of Physical Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Gerold A Schneider
- Institute of Advanced Ceramics, Hamburg University of Technology, 21073, Hamburg, Germany.
| |
Collapse
|
17
|
Brito E, Gomes D, Plá Cid C, de Araújo J, Bohn F, Streck L, Fonseca JL. Superparamagnetic magnetite/IPEC particles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.09.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
de Araújo Segura TC, Pereira ED, Icart LP, Fernandes E, Esperandio de Oliveira G, Gomes de Souza F. Hyperthermic Agent Prepared by One-Pot Modification of Maghemite Using an Aliphatic Polyester Model. POLYMER SCIENCE SERIES B 2018. [DOI: 10.1134/s1560090418060106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. NANOSCALE 2018; 10:12871-12934. [PMID: 29926865 DOI: 10.1039/c8nr02278j] [Citation(s) in RCA: 589] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanostructures have attracted huge interest as a rapidly growing class of materials for many applications. Several techniques have been used to characterize the size, crystal structure, elemental composition and a variety of other physical properties of nanoparticles. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed. In addition, given that the significance of nanoparticles in basic research and applications is constantly increasing, it is necessary that researchers from separate fields overcome the challenges in the reproducible and reliable characterization of nanomaterials, after their synthesis and further process (e.g. annealing) stages. The principal objective of this review is to summarize the present knowledge on the use, advances, advantages and weaknesses of a large number of experimental techniques that are available for the characterization of nanoparticles. Different characterization techniques are classified according to the concept/group of the technique used, the information they can provide, or the materials that they are destined for. We describe the main characteristics of the techniques and their operation principles and we give various examples of their use, presenting them in a comparative mode, when possible, in relation to the property studied in each case.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
20
|
Mercado DF, Caregnato P, Villata LS, Gonzalez MC. Ilex paraguariensis Extract-Coated Magnetite Nanoparticles: A Sustainable Nano-adsorbent and Antioxidant. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0757-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Hataminia F, Farhadian N. A novel experimental method for adsorption of fatty acids from pumpkin seed oil in the presence of iron oxide nanoparticles: Experimental and SA – LOOCV – GRBF mathematical modeling. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Takahashi S, Hotta S, Watanabe A, Idota N, Matsukawa K, Sugahara Y. Modification of TiO 2 Nanoparticles with Oleyl Phosphate via Phase Transfer in the Toluene-Water System and Application of Modified Nanoparticles to Cyclo-Olefin-Polymer-Based Organic-Inorganic Hybrid Films Exhibiting High Refractive Indices. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1907-1912. [PMID: 28051312 DOI: 10.1021/acsami.6b13208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oleyl-phosphate-modified TiO2 nanoparticles (OP_TiO2) were prepared via phase transfer from an aqueous phase containing dispersed TiO2 nanoparticles to a toluene phase containing oleyl phosphate (OP, a mixture of monoester and diester), and employed for the preparation of OP_TiO2/cyclo-olefin polymer (COP) hybrid films with high-refractive indices. The modification of TiO2 by OP was essentially completed by reaction at room temperature for 8 h, and essentially all the TiO2 nanoparticles in the aqueous phase were transferred to the toluene phase. The infrared and solid-state 13C cross-polarization and magic-angle spinning (CP/MAS) NMR spectrum of OP_TiO2 showed the presence of oleyl groups originating from oleyl phosphate. The solid-state 31P MAS NMR spectrum of OP_TiO2 exhibited new signals at -1.4, 2.1, and 4.8 ppm, indicating the formation of Ti-O-P bonds. CHN and inductively coupled plasma analyses revealed that the major species bound to the TiO2 surface was tridentate CH3(CH2)7CH═CH(CH2)8P(OTi)3. These results clearly indicate that the surfaces of the TiO2 nanoparticles were modified by OP moieties via phase transfer. OP_TiO2/COP hybrid films exhibited excellent optical transparency up to 19.1 vol % TiO2 loading, and the light transmittance of the hybrid films with 19.1 vol % TiO2 loading was 99.8% at 633 nm. The refractive index of these hybrid films rose to 1.83.
Collapse
Affiliation(s)
- Shiori Takahashi
- Department of Applied Chemistry, School of Science and Engineering, Waseda University , 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shuhei Hotta
- Department of Applied Chemistry, School of Science and Engineering, Waseda University , 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Akira Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Naokazu Idota
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University , 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Kimihiro Matsukawa
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry, School of Science and Engineering, Waseda University , 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University , 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| |
Collapse
|
23
|
Marín T, Montoya P, Arnache O, Calderón J. Influence of Surface Treatment on Magnetic Properties of Fe3O4 Nanoparticles Synthesized by Electrochemical Method. J Phys Chem B 2016; 120:6634-45. [PMID: 27267938 DOI: 10.1021/acs.jpcb.6b01796] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The changes of magnetic properties in magnetite nanoparticles during two different stabilization processes were investigated. Magnetic nanoparticles (MNPs) were obtained by electrochemical synthesis from two kinds of salts: (CH3)4NCl and NaCl. After that, two methods-steric and electrostatic-were used to stabilize MNPs with oleic acid (OA) and sodium hydroxide (NaOH), respectively. As a consequence, aqueous and organic dispersions were obtained after surface modification. The coated nanoparticles were characterized by TEM, zeta potential, thermogravimetry analysis (TGA), cyclic voltammetry (CV), magnetization measurements, and infrared and Mössbauer spectroscopy. The results showed that the particles were between 8 and 13 nm in size. In addition, the MNPs were coated with negative charge layers from NaOH by physisorption and coated with carboxylate groups from OA by the chemisorption process, and hence, they exhibited different reactivity and behavior depending on the nature of the electrolyte used in the electrochemical synthesis. Furthermore, the uncoated and coated MNPs had a narrow size distribution. Additionally, the saturation magnetization values showed dependence on the magnetite synthesis conditions and surface modifiers.
Collapse
Affiliation(s)
- Tíffany Marín
- Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA , Calle 70 No. 52-21, Medellín Apartado Aéreo 1226, Colombia
| | - Paula Montoya
- Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA , Calle 70 No. 52-21, Medellín Apartado Aéreo 1226, Colombia
| | - Oscar Arnache
- Grupo de Estado Sólido, Instituto de Física, Universidad de Antioquia , Calle 70 No. 52-21, Medellín Apartado Aéreo 1226, Colombia
| | - Jorge Calderón
- Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA , Calle 70 No. 52-21, Medellín Apartado Aéreo 1226, Colombia
| |
Collapse
|
24
|
Ryu HD, Kang HS, Lee SI. Enhancing the separation of silica nanoparticles from backside grinding (BG) wastewater with synthesized magnetite. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.03.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Bixner O, Reimhult E. Controlled magnetosomes: Embedding of magnetic nanoparticles into membranes of monodisperse lipid vesicles. J Colloid Interface Sci 2016; 466:62-71. [DOI: 10.1016/j.jcis.2015.11.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 11/16/2022]
|
26
|
Zaba C, Bixner O, Part F, Zafiu C, Tan CW, Sinner EK. Preparation of water-soluble, PEGylated, mixed-dispersant quantum dots, with a preserved photoluminescence quantum yield. RSC Adv 2016. [DOI: 10.1039/c5ra26936a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present the preparation of PEGylated mixed dispersant QDs from water-soluble nanocrystals, relevant for biomedical applications and environmental monitoring. We mastered control over grafting densities and PEG-conformation while retaining PLQY.
Collapse
Affiliation(s)
- C. Zaba
- Institute for Synthetic Bioarchitectures
- Department of Nanobiotechnology
- University of Natural Resources and Life Sciences
- 1190 Vienna
- Austria
| | - O. Bixner
- Institute for Synthetic Bioarchitectures
- Department of Nanobiotechnology
- University of Natural Resources and Life Sciences
- 1190 Vienna
- Austria
| | - F. Part
- Institute for Synthetic Bioarchitectures
- Department of Nanobiotechnology
- University of Natural Resources and Life Sciences
- 1190 Vienna
- Austria
| | - C. Zafiu
- ICS-6 Structural Biochemistry
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - C.-W. Tan
- Institute for Synthetic Bioarchitectures
- Department of Nanobiotechnology
- University of Natural Resources and Life Sciences
- 1190 Vienna
- Austria
| | - E.-K. Sinner
- Institute for Synthetic Bioarchitectures
- Department of Nanobiotechnology
- University of Natural Resources and Life Sciences
- 1190 Vienna
- Austria
| |
Collapse
|
27
|
Bixner O, Lassenberger A, Baurecht D, Reimhult E. Complete Exchange of the Hydrophobic Dispersant Shell on Monodisperse Superparamagnetic Iron Oxide Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9198-9204. [PMID: 26226071 PMCID: PMC4554299 DOI: 10.1021/acs.langmuir.5b01833] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/30/2015] [Indexed: 05/19/2023]
Abstract
High-temperature synthesized monodisperse superparamagnetic iron oxide nanoparticles are obtained with a strongly bound ligand shell of oleic acid and its decomposition products. Most applications require a stable presentation of a defined surface chemistry; therefore, the native shell has to be completely exchanged for dispersants with irreversible affinity to the nanoparticle surface. We evaluate by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) the limitations of commonly used approaches. A mechanism and multiple exchange scheme that attains the goal of complete and irreversible ligand replacement on monodisperse nanoparticles of various sizes is presented. The obtained hydrophobic nanoparticles are ideally suited for magnetically controlled drug delivery and membrane applications and for the investigation of fundamental interfacial properties of ultrasmall core-shell architectures.
Collapse
Affiliation(s)
- Oliver Bixner
- Department
of Nanobiotechnology, Institute for Biologically Inspired Materials, University of Natural Resources and Life Sciences
Vienna, Muthgasse 11, 1190 Vienna, Austria
- School
of Materials Science and Engineering, Centre for Biomimetic Sensor
Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Andrea Lassenberger
- Department
of Nanobiotechnology, Institute for Biologically Inspired Materials, University of Natural Resources and Life Sciences
Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Dieter Baurecht
- Faculty
of Chemistry, Department of Physical Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
| | - Erik Reimhult
- Department
of Nanobiotechnology, Institute for Biologically Inspired Materials, University of Natural Resources and Life Sciences
Vienna, Muthgasse 11, 1190 Vienna, Austria
- E-mail:
| |
Collapse
|
28
|
Gautam RK, Gautam PK, Banerjee S, Soni S, Singh SK, Chattopadhyaya MC. Removal of Ni(II) by magnetic nanoparticles. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.01.038] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Effect of solvent exchange on the stability of sterically functionalized magnetite nanoparticles in poly(methyl methacrylate) solutions and resulting spray dried composites. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2014.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Leistner T, Müller M, Erler J, Rudolph M, Peuker U. Selektive Trennung sehr feiner Partikelsysteme mittels Flüssig/Flüssig-Flotation. CHEM-ING-TECH 2014. [DOI: 10.1002/cite.201400011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Rudolph M, Peuker U. Hydrophobicity of Minerals Determined by Atomic Force Microscopy - A Tool for Flotation Research. CHEM-ING-TECH 2014. [DOI: 10.1002/cite.201400017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Canfarotta F, Piletsky SA. Engineered magnetic nanoparticles for biomedical applications. Adv Healthc Mater 2014; 3:160-75. [PMID: 24497448 DOI: 10.1002/adhm.201300141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Indexed: 12/11/2022]
Abstract
In the past decades, magnetic nanoparticles (MNPs) have been used in wide range of diverse applications, ranging from separation to sensing. Here, synthesis and applications of functionalized MNPs in the biomedical field are discussed, in particular in drug delivery, imaging, and cancer therapy, highlighting also recent progresses in the development of multifunctional and stimuli-responsive MNPs. The role of their size, composition, and surface functionalization is analyzed, together with their biocompatibility issues.
Collapse
|
33
|
Erler J, Machunsky S, Grimm P, Schmid HJ, Peuker UA. Liquid–liquid phase transfer of magnetite nanoparticles — Evaluation of surfactants. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2012.09.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Ramimoghadam D, Hussein MZB, Taufiq-Yap YH. Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate. Chem Cent J 2013; 7:71. [PMID: 23601826 PMCID: PMC3637135 DOI: 10.1186/1752-153x-7-71] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/11/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A green approach to synthesize nanomaterials using biotemplates has been subjected to intense research due to several advantages. Palm olein as a biotemplate offers the benefits of eco-friendliness, low-cost and scale-up for large scale production. Therefore, the effect of palm olein on morphology and surface properties of ZnO nanostructures were investigated. RESULTS The results indicate that palm olein as a biotemplate can be used to modify the shape and size of ZnO particles synthesized by hydrothermal method. Different morphology including flake-, flower- and three dimensional star-like structures were obtained. FTIR study indicated the reaction between carboxyl group of palm olein and zinc species had taken place. Specific surface area enhanced while no considerable change were observed in optical properties. CONCLUSION Phase-pure ZnO particles were successfully synthesized using palm olein as soft biotemplating agent by hydrothermal method. The physico-chemical properties of the resulting ZnO particles can be tuned using the ratio of palm olein to Zn cation.
Collapse
Affiliation(s)
- Donya Ramimoghadam
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Zobir Bin Hussein
- Research Center for Catalysis Science and Technology PutraCAT, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yun Hin Taufiq-Yap
- Research Center for Catalysis Science and Technology PutraCAT, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
35
|
Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL. Toxicity of engineered nanoparticles in the environment. Anal Chem 2013; 85:3036-49. [PMID: 23427995 PMCID: PMC4104669 DOI: 10.1021/ac303636s] [Citation(s) in RCA: 366] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
While nanoparticles occur naturally in the environment and have been intentionally used for centuries, the production and use of engineered nanoparticles has seen a recent spike, which makes environmental release almost certain. Therefore, recent efforts to characterize the toxicity of engineered nanoparticles have focused on the environmental implications, including exploration of toxicity to organisms from wide-ranging parts of the ecosystem food webs. Herein, we summarize the current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels, including bacteria, plants, and multicellular aquatic/terrestrial organisms, to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address.
Collapse
Affiliation(s)
- Melissa A. Maurer-Jones
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Ian L. Gunsolus
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
36
|
Travlou NA, Kyzas GZ, Lazaridis NK, Deliyanni EA. Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1657-68. [PMID: 23301870 DOI: 10.1021/la304696y] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In the current study, the functionalization of graphite oxide (GO) with magnetic chitosan (Chm) was investigated to prepare a nanocomposite material (GO-Chm) for the adsorption of a reactive dye (Reactive Black 5). The synthesis mechanism was investigated by various techniques (SEM/EDAX, FTIR spectroscopy, XRD, XPS, DTA, DTG, VSM). Characterization results indicated that a significant fraction of the amines of the chitosan (i) were inserted between the GO layers and (ii) reacted with carboxyl and epoxy groups of GO, leading to its reduction and hence the destruction of the layered structure. The concentrations of iron were found to be ∼25% for Chm and ∼12% for GO-Chm. A VSM plot presents the value of 9 emu/g for the saturation magnetization of GO-Chm. The adsorption behavior of the prepared composite was elucidated with a series of experiments. The tests of the effects of pH revealed that the adsorption mechanism dominated (between dye molecules and the GO-Chm matrix) and showed that acidic conditions were the optimum for the adsorption process (pH 3). Kinetic experiments presented the relatively "fast" adsorption phenomenon using pseudo-first-order, pseudo-second-order, and modified pseudo-second-order equations. The equilibrium data were fitted to the Langmuir, Freundlich, and Langmuir-Freundlich (L-F) models, calculating the maximum adsorption capacities at 25, 45, and 65 °C (391, 401, and 425 mg/g, respectively). Thermodynamic analysis was also performed to calculate the changes in free energy (ΔG(0)), enthalpy (ΔH(0)), and entropy (ΔS(0)).
Collapse
Affiliation(s)
- Nikolina A Travlou
- Laboratory of General & Inorganic Chemical Technology, Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | | | | | | |
Collapse
|
37
|
Marroquin JB, Rhee K, Park S. Chitosan nanocomposite films: Enhanced electrical conductivity, thermal stability, and mechanical properties. Carbohydr Polym 2013; 92:1783-91. [DOI: 10.1016/j.carbpol.2012.11.042] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/31/2012] [Accepted: 11/08/2012] [Indexed: 02/07/2023]
|