1
|
Milyaeva OY, Akentiev AV, Bykov AG, Loglio G, Miller R, Portnaya I, Rafikova AR, Noskov BA. Dynamic Properties of Adsorption Layers of κ-Casein Fibrils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15268-15274. [PMID: 37867296 DOI: 10.1021/acs.langmuir.3c01950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The dynamic surface properties of native κ-casein solutions and aqueous dispersions of its fibrils differ significantly from the corresponding properties of the systems with globular proteins. The dependence of the dynamic surface elasticity of κ-casein solutions on surface pressure has a local maximum, indicating partial displacement of macromolecules from the proximal region of the surface layer to the distal one. This dependence becomes monotonic for fibril dispersions, similar to the results for dispersions of globular protein fibrils, but unlike the latter case, the surface elasticity close to the steady state reaches values that are approximately four times higher than the data for native protein solutions at the same concentrations.
Collapse
Affiliation(s)
- Olga Yu Milyaeva
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Alexander V Akentiev
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Alexey G Bykov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Giuseppe Loglio
- Institute of Condensed Matter Chemistry and Energy Technology, 16149 Genova, Italy
| | - Reinhard Miller
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - Irina Portnaya
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000003, Israel
| | - Anastasiya R Rafikova
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Boris A Noskov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| |
Collapse
|
2
|
The dynamic surface properties of green fluorescent protein and its mixtures with poly(N,N-diallyl-N-hexyl-N-methylammonium chloride). J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Adsorption layer formation in dispersions of protein aggregates. Adv Colloid Interface Sci 2020; 276:102086. [PMID: 31895989 DOI: 10.1016/j.cis.2019.102086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
Abstract
The review discusses recent results on the adsorption of amyloid fibrils and protein microgels at liquid/fluid interfaces. The application of the shear and dilational surface rheology, atomic force microscopy and passive particle probe tracking allowed for elucidating characteristic features of the protein aggregate adsorption while some proposed hypothesis still must be examined by special methods for structural characterization. Although the distinctions of the shear surface properties of dispersions of protein aggregates from the properties of native protein solutions are higher than the corresponding distinctions of the dilational surface properties, the latter ones give a possibility to obtain new information on the formation of fibril aggregates at the water/air interface. Only the adsorption of BLG microgels and fibrils was studied in some details. The kinetic dependencies of the dynamic surface tension and dilational surface elasticity for aqueous dispersions of protein globules, protein microgels and purified fibrils are similar if the system does not contain flexible macromolecules or flexible protein fragments. In the opposite case the kinetic dependencies of the dynamic surface elasticity can be non-monotonic. The solution pH influences strongly the dynamic surface properties of the dispersions of protein aggregates indicating that the adsorption kinetics is controlled by an electrostatic adsorption barrier if the pH deviates from the isoelectric point. A special section of the review considers the possibility to apply kinetic models of nanoparticle adsorption to the adsorption of protein aggregates.
Collapse
|
4
|
Yang J, Yu K, Tsuji T, Jha R, Zuo YY. Determining the surface dilational rheology of surfactant and protein films with a droplet waveform generator. J Colloid Interface Sci 2018; 537:547-553. [PMID: 30469122 DOI: 10.1016/j.jcis.2018.11.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022]
Abstract
Understanding rheological properties of surfactant and protein films plays a crucial role in a variety of industrial and research areas, such as food processing, cosmetics, and pharmacology. To determine the surface dilational modulus using drop shape analysis, one needs to measure the dynamic surface tension in response to a sinusoidal oscillation of the surface area of the droplet. Despite many applications of drop shape analysis in studying interfacial rheology, oscillation of the droplet surface area is usually controlled in an indirect manner. Existing methods are only capable of controlling volume oscillations of the droplet rather than its surface area. We have developed an arbitrary waveform generator (AWG) to directly oscillate the surface area of a millimeter-sized droplet in a predefined sinusoidal waveform. Here, we demonstrated the capacity of this AWG, in conjunction with constrained drop surfactometry (CDS), in studying the surface dilational rheology of adsorbed surfactant and protein films. It is found that the surface dilational modulus determined for a dilute surfactant (C12DMPO) and two protein solutions (bovine serum albumin and β-casein) revealed their adsorption mechanisms. Our methods hold promise in studying the interfacial rheology of various thin-film materials, biomembranes, foams, and emulsions.
Collapse
Affiliation(s)
- Jinlong Yang
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States.
| | - Kyle Yu
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States.
| | - Tomoaki Tsuji
- Department of Precision Mechanics, Chuo University, Tokyo 112-8551, Japan.
| | - Rajeev Jha
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States.
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States; Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96826, United States.
| |
Collapse
|
5
|
Liu F, Akhmetkhanova N, Pauchard V. A simple numerical solution of diffusional equations for dilatational rheology of complex surfactant mixtures in any geometry. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Noskov BA, Krycki MM. Formation of protein/surfactant adsorption layer as studied by dilational surface rheology. Adv Colloid Interface Sci 2017; 247:81-99. [PMID: 28716186 DOI: 10.1016/j.cis.2017.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/19/2017] [Accepted: 07/02/2017] [Indexed: 12/25/2022]
Abstract
The review discusses the mechanism of formation of protein/surfactant adsorption layers at the liquid - gas interface. The complexes of globular proteins usually preserve their compact structure a low surfactant concentrations. Therefore a simple kinetic model of the adsorption of charged compact nanoparticles is discussed first and compared with experimental data. The increase of surfactant concentrations results in various conformational transitions in the surface layer. One can obtain information on the changes of the adsorption layer structure using the dilational surface rheology. The kinetic dependencies of the dynamic surface elasticity are strongly different for the adsorption of unfolded macromolecules and compact globules, and have local maxima in the former case corresponding to different steps of the adsorption. These distinctions allow tracing the changes of the tertiary structure of protein/surfactant complexes in the surface layer. The adsorption from mixed solutions of ionic surfactants with β-casein, β-lactoglobulin, bovine serum albumin and myoglobin is discussed with some details.
Collapse
|
7
|
Chen XW, Yang DX, Zou Y, Yang XQ. Stabilization and functionalization of aqueous foams by Quillaja saponin-coated nanodroplets. Food Res Int 2017; 99:679-687. [PMID: 28784531 DOI: 10.1016/j.foodres.2017.06.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/05/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
We report evidence for stabilization and functionalization of aqueous foams stabilized by Quillaja saponin (QS)-coated nanodroplets. In contrast to foams stabilized by QS, stabilized the foams of QS-coated nanodroplets showed superior foamability, stability and multi-functional characteristics. Specifically, the half-life time of the foam stabilized by nanodroplets was approximately 4 times that of saponin. The microstructure observation indicates the nanodroplets from assembly of saponin around oil droplet were strong attachment at the gas-liquid interface and stabling a large gas-liquid interfacial area in a hierarchical structure. The surface dynamic adsorption and large deformation rheology were performed, revealed that QS nanodroplets were almost irreversibly adsorbed at air-liquid interface and exhibited less surface desorption and high elastic-viscous response to a large mechanical deformation. These nanodroplets stabilized foams presented a large capacity for loading hydrophobic flavors and nutrients (e.g., β-carotene and curcumin), which could be used to create a new class of foam food products with sustained release of flavors and/or health benefit functionality.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Food Protein Research and Development Center, Department of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Dan-Xia Yang
- Food Protein Research and Development Center, Department of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Yuan Zou
- Food Protein Research and Development Center, Department of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xiao-Quan Yang
- Food Protein Research and Development Center, Department of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
8
|
Derkatch S, Kolotova D, Milyaeva O, Noskov B. Dynamic properties of gelatin/surfactant adsorption layers. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.08.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Noskov BA, Bykov AG. Dilational surface rheology of polymer solutions. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Karbaschi M, Lotfi M, Krägel J, Javadi A, Bastani D, Miller R. Rheology of interfacial layers. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.08.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Stanimirova RD, Marinova KG, Danov KD, Kralchevsky PA, Basheva ES, Stoyanov SD, Pelan EG. Competitive adsorption of the protein hydrophobin and an ionic surfactant: Parallel vs sequential adsorption and dilatational rheology. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Interaction of Quillaja bark saponins with food-relevant proteins. Adv Colloid Interface Sci 2014; 209:185-95. [PMID: 24802169 DOI: 10.1016/j.cis.2014.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/22/2022]
Abstract
The surface activity and aggregation behaviour of two Quillaja bark saponins (QBS) are compared using surface tension, conductometry and light scattering. Despite formally of the same origin (bark of the Quillaja saponaria Molina tree), the two QBS show markedly different ionic characters and critical micelle concentrations (7.7·10(-6) mol·dm(-3) and 1.2·10(-4) mol·dm(-3)). The new interpretation of the surface tension isotherms for both QBS allowed us to propose an explanation for the previous discrepancy concerning the orientation of the saponin molecules in the adsorbed layer. The effect of three food-related proteins (hen egg lysozyme, bovine β-lactoglobulin and β-casein) on surface tension of the saponins is also described. Dynamic surface tension was measured at fixed protein concentrations and QBS concentrations varying in the range 5·10(-7)-1·10(-3) mol·dm(-3). Both dynamic and extrapolated equilibrium surface tensions of the protein/QBS mixtures depend not only on the protein, but also on the QBS source. In general, the surface tension for mixtures of the QBS with lower CMC and less ionic character shows less pronounced synergistic effects. This is especially well visible for β-casein/QBS mixtures, where a characteristic maximum in the surface tension isotherm around the molar ratio of one can be noticed for one saponin product, but not for the other.
Collapse
|
13
|
Protein conformational transitions at the liquid-gas interface as studied by dilational surface rheology. Adv Colloid Interface Sci 2014; 206:222-38. [PMID: 24238394 DOI: 10.1016/j.cis.2013.10.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 11/21/2022]
Abstract
Experimental results on the dynamic dilational surface elasticity of protein solutions are analyzed and compared. Short reviews of the protein behavior at the liquid-gas interface and the dilational surface rheology precede the main sections of this work. The kinetic dependencies of the surface elasticity differ strongly for the solutions of globular and non-globular proteins. In the latter case these dependencies are similar to those for solutions of non-ionic amphiphilic polymers and have local maxima corresponding to the formation of the distal region of the surface layer (type I). In the former case the dynamic surface elasticity is much higher (>60 mN/m) and the kinetic dependencies are monotonical and similar to the data for aqueous dispersions of solid nanoparticles (type II). The addition of strong denaturants to solutions of bovine serum albumin and β-lactoglobulin results in an abrupt transition from the type II to type I dependencies if the denaturant concentration exceeds a certain critical value. These results give a strong argument in favor of the preservation of the protein globular structure in the course of adsorption without any denaturants. The addition of cationic surfactants also can lead to the non-monotonical kinetic dependencies of the dynamic surface elasticity indicating destruction of the protein tertiary and secondary structures. The addition of anionic surfactants gives similar results only for the protein solutions of high ionic strength. The influence of cationic surfactants on the local maxima of the kinetic dependencies of the dynamic surface elasticity for solutions of a non-globular protein (β-casein) differs from the influence of anionic surfactants due to the heterogeneity of the charge distribution along the protein chain. In this case one can use small admixtures of ionic surfactants as probes of the adsorption mechanism. The effect of polyelectrolytes on the kinetic dependencies of the dynamic surface elasticity of protein solutions is weaker than the effect of conventional surfactants but exceeds the error limits.
Collapse
|
14
|
Orsi D, Vezzani A, Burioni R, Pucci A, Ruggeri G, Cristofolini L. Statistical properties and morphology of a 2D gel network at the air/water interface. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|