1
|
Yefimova S, Klochkov V, Kavok N, Tkachenko A, Onishchenko A, Chumachenko T, Dizge N, Özdemir S, Gonca S, Ocakoglu K. Antimicrobial activity and cytotoxicity study of cerium oxide nanoparticles with two different sizes. J Biomed Mater Res B Appl Biomater 2023; 111:872-880. [PMID: 36420776 DOI: 10.1002/jbm.b.35197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/25/2022]
Abstract
The control over bacterial diseases requires the development of novel antibacterial agents. The use of antibacterial nanomedicines is one of the strategies to tackle antibiotic resistance. The study was designed to assess the antimicrobial activity of cerium oxide (CeO2 ) nanoparticles (NP) of two different sizes (CeO2 NP1 [1-2 nm] and CeO2 NP2 [10-12 nm]) and their cytotoxicity towards eukaryotic cells. The antimicrobial activity, effects of nanoparticles on DNA cleavage, microbial cell viability, and biofilm formation inhibition were analyzed. The impact of cerium oxide nanoparticles on eryptosis of erythrocytes was estimated using annexin V staining by flow cytometry. The newly synthesized CeO2 NP1 and CeO2 NP2 displayed moderate antimicrobial activities. CeO2 NP1 and CeO2 NP2 exhibited single-strand DNA cleavage ability. CeO2 NPs were found to show 100% microbial cell viability inhibition at a concentration of 500 mg/L. In addition, CeO2 NP1 and CeO2 NP2 inhibited the biofilm formation of S. aureus and P. aeruginosa. Larger cerium oxide nanoparticles were found to be less toxic against erythrocytes compared with the smaller ones. CeO2 nanoparticles demonstrate moderate antimicrobial activity and low cytotoxicity towards erythrocytes, which make them promising antibacterial agents.
Collapse
Affiliation(s)
- Svetlana Yefimova
- Department of Nanostructured Materials, Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Vladimir Klochkov
- Department of Nanostructured Materials, Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Nataliya Kavok
- Department of Nanostructured Materials, Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Tatyana Chumachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine.,Department of Epidemiology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin, Turkey
| | - Serpil Gonca
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Mersin University, Mersin, Turkey
| | - Kasim Ocakoglu
- Faculty of Engineering, Department of Engineering Fundamental Sciences, Tarsus University, Tarsus, Turkey
| |
Collapse
|
2
|
Nikitchenko YV, Klochkov VK, Kavok NS, Karpenko NA, Yefimova SL, Semynozhenko VP, Nikitchenko IV, Bozhkov AI. CeO2 nanoparticles improve prooxidant/antioxidant balance, life quality and survival of old male rats. Biogerontology 2023; 24:47-66. [PMID: 36030453 DOI: 10.1007/s10522-022-09987-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/22/2022] [Indexed: 01/20/2023]
Abstract
Due to its unique redox chemistry, nanoceria is considered as potent free radical scavenger and antioxidant. However, their protective capacity in aging organisms remains controversial. To detect the anti-aging effects associated with the redox activity of 2 and 10 nm nano-CeO2, different test systems were used, including in vitro analysis, in situ assay of mitochondria function and in vivo studies of suitable nano-CeO2 on aging of male Wistar rats from 22 months-old to the end of life. The 2 nm nanoparticles exhibited not only antioxidant (·OH scavenging; chemiluminescence assay; decomposition of H2O2, phosphatidylcholine autooxidation) but also prooxidant properties (reduced glutathione and reduced nicotinamide adenine dinucleotide phosphate oxidation) as well as affected mitochondria whereas in most test systems 10 nm nano-CeO2 showed less activity or was inert. Prolonged use of the more redox active 2 nm nano-CeO2 (0.25-0.3 mg/kg/day) in vivo with drinking water resulted in improvement in physiological parameters and normalization of the prooxidant/antioxidant balance in liver and blood of aging animals. Survival analysis using Kaplan-Meier curve and Gehan tests with Yates' correction showed that by the time the prooxidant-antioxidant balance was assessed (32 months), survival rates exceeded the control values most considerably. The apparent median survival for the control rats was 900 days, and for the experimental rats-960 days. In general, the data obtained indicate the ability of extra-small 2 nm nano-CeO2 to improve quality of life and increase the survival rate of an aging organism.
Collapse
Affiliation(s)
- Yuri V Nikitchenko
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Vladimir K Klochkov
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Nataliya S Kavok
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine.
| | - Nina A Karpenko
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Svetlana L Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Vladimir P Semynozhenko
- SSI "Institute for Single Crystal", National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Irina V Nikitchenko
- Research Institute of Biology, V.N. Karazin Kharkiv National University, Svobody sq, 4, Kharkiv, 61022, Ukraine
| | - Anatoly I Bozhkov
- Research Institute of Biology, V.N. Karazin Kharkiv National University, Svobody sq, 4, Kharkiv, 61022, Ukraine
| |
Collapse
|
3
|
Zhao H, Zhang R, Yan X, Fan K. Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J Mater Chem B 2021; 9:6939-6957. [PMID: 34161407 DOI: 10.1039/d1tb00720c] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Superoxide dismutases (SODs) are a group of metalloenzymes that catalyze the dismutation of superoxide radicals (O2˙-) into hydrogen peroxide (H2O2) and oxygen (O2). As the first line of defense against reactive oxygen species (ROS)-mediated damage, SODs are expected to play an important role in the treatment of oxidative stress-related diseases. However, the clinical applications of SODs have been severely limited by their structural instability and high cost. Compared with natural enzymes, nanozymes, nanomaterials with enzyme-like activity, are more stable, and economical, can be easily modified and their activities can be adjusted. Due to their excellent characteristics, nanozymes have attracted widespread attention in recent years and are expected to become effective substitutes for natural enzymes in many application fields. Importantly, some nanozymes with SOD-like activity have been developed and proved to have a mitigating effect on diseases caused by oxidative stress. These studies on SOD-like nanozymes provide a feasible strategy for breaking through the dilemma of SOD clinical applications. However, at present, the specific catalytic mechanism of SOD-like nanozymes is still unclear, and many important issues need to be resolved. Although there are many comprehensive reviews to introduce the overall situation of the nanozyme field, the research on SOD-like nanozymes still lacks a systematic review. From the structure and mechanism of natural SOD enzymes to the structure and regulation of SOD-like nanozymes, and then to the measurement and application of nanozymes, this review systematically summarizes the recent progress in SOD-like nanozymes. The existing shortcomings and possible future research hotspots in the development of SOD-like nanozymes are summarized and prospected. We hope that this review would provide ideas and inspirations for further research on the catalytic mechanism and rational design of SOD-like nanozymes.
Collapse
Affiliation(s)
- Hanqing Zhao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. and University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. and University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. and University of Chinese Academy of Sciences, Beijing 101408, China and Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. and University of Chinese Academy of Sciences, Beijing 101408, China and Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
4
|
Nikitchenko YV, Klochkov VK, Kavok NS, Karpenko NA, Yefimova SL, Nikitchenko IV, Bozhkov AI. Age-Related Effects of Orthovanadate Nanoparticles Involve Activation of GSH-Dependent Antioxidant System in Liver Mitochondria. Biol Trace Elem Res 2021; 199:649-659. [PMID: 32447579 DOI: 10.1007/s12011-020-02196-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022]
Abstract
Vanadium is an important ultra-trace element nowadays attracting attention with particular emphasis on medical application. But the therapeutic application of vanadium-based drugs is still questionable and restricted due to some toxic side effects. It was found that unique redox properties of vanadium in nanoform provided antioxidant activity and prevented oxidative disturbance in cells in vitro. Though, on the organism level, ambiguous effects of vanadium-based nanoparticles were observed. In this study, the age-related features of prooxidant/antioxidant balance in blood serum and liver mitochondrial and postmitochondrial fractions of 3 and 18-month-old Wistar male rats treated with orthovanadate nanoparticles (GdVO4/Eu3+, 8 × 25 nm) within 2 months have been investigated. Prooxidant potential-related indexes were the content of lipid hydroperoxides as well as aconitase activity. Activity of glutathione peroxidase, glutathione-S-transferase, glutaredoxin, glutathione reductase, glucose-6-phosphate dehydrogenase, and NADPH-dependent isocitrate dehydrogenase designated the tissue antioxidant potential. Based on the obtained values, the integral index of the prooxidant/antioxidant balance-the reliability coefficient (Kr) has been calculated. The data show that due to activation some chain links of GSH-dependent antioxidant system, GdVO4/Eu3+ nanoparticles increase the reliability of the prooxidant-antioxidant balance in tissues and especially in the liver mitochondria of old animals (Kr in mitochondria of young rats was 2.94, and in mitochondria of old ones-9.83 conventional units). Detected in vitro glutathione peroxidase-like activity of the GdVO4/Eu3+ nanoparticles is supposed to be among factors increasing the reliability of the system. So, for the first time, the beneficial effect of the long-term orthovanadate nanoparticle consumption in old males has been discovered.
Collapse
Affiliation(s)
- Yuri V Nikitchenko
- Biology Research Institute, Karazin Kharkiv National University, pl. Svobody 4, Kharkiv, 61000, Ukraine
| | - Vladimir K Klochkov
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Nataliya S Kavok
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine.
| | - Nina A Karpenko
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Svetlana L Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Irina V Nikitchenko
- Biology Research Institute, Karazin Kharkiv National University, pl. Svobody 4, Kharkiv, 61000, Ukraine
| | - Anatoly I Bozhkov
- Biology Research Institute, Karazin Kharkiv National University, pl. Svobody 4, Kharkiv, 61000, Ukraine
| |
Collapse
|
5
|
Gupta A, Sarkar FK, Sarkar R, Jamatia R, Lee CY, Gupta G, Pal AK. Development of a new catalytic and sustainable methodology for the synthesis of benzodiazepine triazole scaffold using magnetically separable CuFe
2
O
4
@MIL‐101(Cr) nano‐catalyst in aqueous medium. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ajay Gupta
- Department of Chemistry, Centre for Advanced StudiesNorth‐Eastern Hill University Shillong 793022 India
| | - Fillip Kumar Sarkar
- Department of Chemistry, Centre for Advanced StudiesNorth‐Eastern Hill University Shillong 793022 India
| | - Rajib Sarkar
- Department of Chemistry, Centre for Advanced StudiesNorth‐Eastern Hill University Shillong 793022 India
| | - Ramen Jamatia
- Department of Chemistry, Centre for Advanced StudiesNorth‐Eastern Hill University Shillong 793022 India
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Centre for Chemical EngineeringIncheon National University 119 Academy‐ro, Yeonsu‐gu Incheon 22012 Republic of Korea
| | - Gajendra Gupta
- Department of Energy and Chemical Engineering/Innovation Centre for Chemical EngineeringIncheon National University 119 Academy‐ro, Yeonsu‐gu Incheon 22012 Republic of Korea
| | - Amarta Kumar Pal
- Department of Chemistry, Centre for Advanced StudiesNorth‐Eastern Hill University Shillong 793022 India
| |
Collapse
|
6
|
Sayour H, Kassem S, Canfarotta F, Czulak J, Mohamed M, Piletsky S. Biocompatibility and biodistribution of surface-modified yttrium oxide nanoparticles for potential theranostic applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19095-19107. [PMID: 30710327 DOI: 10.1007/s11356-019-04309-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
The surface of ultrafine yttrium oxide nanoparticles (NPs) with mean size of 7-8 nm was modified with a functional polymer layer to improve their dispersion and impart fluorescent properties for imaging purposes. Surface functionalization was achieved by silanization of yttrium oxide NPs with 3-trimethoxysilylpropyl methacrylate followed by grafting of a co-polymer made of acrylic acid (AA) and ethylene glycol methacrylate phosphate (EGMP). The polymer shell decreases the surface energy of NPs, enhances their polarity, and, as a result, improves their colloidal stability. The synthesized NPs are capable of scavenging free radicals and for this reason have therapeutic potential that warrants further investigations. Furthermore, these stabilized core-shell NPs showed a very low cytotoxicity, confirming that the polymer shell sensibly improves the biocompatibility of bare yttrium oxide NPs, which are otherwise toxic on their own. Poly-EGMP yttrium NPs proved to be safe up to 0.1 mg/g body weight in 1 month old Sprague-Dawley rats, showing also the ability to cross the blood-brain barrier short time after tail injection. The surface modification of yttrium NPs here described allows these NPs to be potentially used in theranostics to reduce neurodegenerative damage due to the heat stress.
Collapse
Affiliation(s)
- Hossam Sayour
- Biomedical Chemistry Unit, Department of Chemistry and Nutritional Deficiency Disorders, Animal Health Research Institute, Giza, 12618, Egypt.
| | - Samr Kassem
- Department of Biotechnology, Animal Health Research Institute, Giza, 12618, Egypt
| | - Francesco Canfarotta
- MIP Diagnostics Ltd., University of Leicester, Fielding Johnson Building, University Road, Leicester, LE1 7RH, UK
| | - Joanna Czulak
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Medhat Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, University of Kafr El-Sheikh, Kafr El-Sheikh, Egypt
| | - Sergey Piletsky
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
7
|
Shinde DS, Bhange PD, Jha RK, Bhange DS. TiO
2
Nanoparticles Decorated on BiOCl Flakes with Enhanced Visible Light Photocatalytic Activity. ChemistrySelect 2020. [DOI: 10.1002/slct.201904656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Deepali S. Shinde
- Department of Chemistry Shivaji University Kolhapur 416004, MS India
| | - Pallavi D. Bhange
- School of Science Sanjay Ghodawat University, Atigre Kolhapur 416 118 India
| | - Ratnesh K. Jha
- Catalysis Division National Chemical Laboratory Pune 411008 India
| | - Deu S. Bhange
- Department of Chemistry Shivaji University Kolhapur 416004, MS India
| |
Collapse
|
8
|
Untangling the Mechanisms of GdYVO4:Eu3+ nanoparticle Photocatalytic Activity. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Song W, Zhao B, Wang C, Ozaki Y, Lu X. Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J Mater Chem B 2019; 7:850-875. [DOI: 10.1039/c8tb02878h] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We highlight the recent developments in functional nanomaterials with unique enzyme-like characteristics for sensing applications.
Collapse
Affiliation(s)
- Wei Song
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Yukihiro Ozaki
- School of Science and Technology
- Kwansei Gakuin Universty
- Hyogo 660-1337
- Japan
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
10
|
|
11
|
Kavok N, Grygorova G, Klochkov V, Yefimova S. The role of serum proteins in the stabilization of colloidal LnVO4:Eu3+ (Ln = La, Gd, Y) and CeO2 nanoparticles. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Affiliation(s)
- Guohua Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Junzhe Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- School of Physical Sciences; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China; University of Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
13
|
Spectroscopic Properties of Nanoceria Allowing Visualization of Its Antioxidant Action. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-94-017-7593-9_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
|
14
|
Klochkov V. Comparative analysis of photocatalytic activity of aqueous colloidal solutions of ReVO4:Eu3+(Re=La, Gd, Y), CePO4:Tb, CeO2 and C60. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Ghaznavi H, Najafi R, Mehrzadi S, Hosseini A, Tekyemaroof N, Shakeri-zadeh A, Rezayat M, Sharifi AM. Neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells. Neurol Res 2015; 37:624-32. [DOI: 10.1179/1743132815y.0000000037] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Kavok NS, Averchenko KA, Klochkov VK, Yefimova SL, Malyukin YV. Mitochondrial potential (ΔΨm) changes in single rat hepatocytes: the effect of orthovanadate nanoparticles doped with rare-earth elements. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:127. [PMID: 25533054 DOI: 10.1140/epje/i2014-14127-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/11/2014] [Accepted: 11/28/2014] [Indexed: 06/04/2023]
Abstract
Rare-earth-based nanoparticles (NPs) are widely used as fluorescent probes for imaging in vitro and in vivo. One of the challenges that restrain NPs applications in biomedical research is their effect on subcellular structures. In this paper, the ability of lanthanide NPs to affect the cellular oxidative balance and alter the mitochondrial function was analyzed. Since size and shape mutually affect the cellular internalization and intracellular distribution of NPs, the investigations were performed with NPs of spherical (GdYVO4:Eu(3+), spindle-(GdVO4: Eu(3+) and rod-like (LaVO4: Eu(3+) shapes. Quantitative microfluorimetry with JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide) as a mitochondrial probe was used for monitoring of the mitochondrial transmembrane potential (ΔΨ m) in single living cells. Changes in the ratio of the JC-1 probe fluorescence were used to analyze the NPs effect on ΔΨ(m). The fastest suppressive effect (within 1 hour) was found for spherical NPs. Gradual lowering of ΔΨ(m) was observed at the exposure of cells within 24 hours for all types of NPs. Exogenous thiols were required for ΔΨ(m) protection. The protective role of exogenous glutathione (GSH) proves that the increase of reactive oxygen species (ROS) formation with depletion of GSH can mediate NPs toxicity. The dynamics of the shape-dependent effect can be explained by the features of NPs transportation into cells.
Collapse
Affiliation(s)
- Nataliya S Kavok
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Lenin Ave, 61001, Kharkiv, Ukraine
| | | | | | | | | |
Collapse
|
17
|
Tkacheva TN, Yefimova SL, Klochkov VK, Borovoy IA, Malyukin YV. Spectroscopic study of ordered hybrid complexes formation between dye aggregates and ReVO4:Eu3+ (Re=Y, Gd, La) nanoparticles. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Grygorova G, Klochkov V, Sedyh O, Malyukin Y. Aggregative stability of colloidal ReVO4:Eu3+ (Re=La, Gd, Y) nanoparticles with different particle sizes. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Tkacheva TN, S .LY, Klochkov VK, Sorokin AV, Malyukin YV. Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells. ACTA ACUST UNITED AC 2014. [DOI: 10.7124/bc.0008a7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - A. V. Sorokin
- Institute for Scintillation Materials, NAS of Ukraine
| | | |
Collapse
|
20
|
Narayanan KB, Park HH. Pleiotropic functions of antioxidant nanoparticles for longevity and medicine. Adv Colloid Interface Sci 2013; 201-202:30-42. [PMID: 24206941 DOI: 10.1016/j.cis.2013.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 12/11/2022]
Abstract
Nanomedicine is a rapidly emerging interdisciplinary field in which medicine is coupled with nanotechnology tools and techniques for advanced therapy with the aid of molecular knowledge and its associated treatment tools. This field creates a myriad of opportunities for improving the health and life of humans. Unchecked chronic inflammation, oxidative stress, and free-radical damage causes proportionate aging and other related diseases/disorders. Antioxidants act as free radical scavengers, singlet oxygen ((1)O2) quenchers, peroxides and other ROS inactivators, as well as metal ion chelators, quenchers of secondary oxidation products and inhibitors of pro-oxidative enzymes. Nanoparticles possessing antioxidative properties have recently emerged as potent therapeutic agents owing to their potential applications in life sciences for improvement of the quality of life and longevity. Accordingly, the use of antioxidant nanoparticles/nanomaterials is burgeoning in biomedical, pharmaceutical, cosmetic, food and nutrition fields. Due to the smaller size, greater permeability, increased circulation ability and biocompatibility of these nanoparticles to alleviate oxidative stress, they have become indispensable agents for controlling aging and its associated pathologies, including neurodegenerative diseases, cardiovascular diseases, and pulmonary diseases. This review discusses antioxidant nanoparticles, which are nano-dimensioned metals, non-metals, metal oxides, synthetic and natural antioxidants and polymers, and the molecular/biochemical mechanisms underpinning their activities.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- Department of Biochemistry, School of Biotechnology, Yeungnam University, Gyeongsan 712 749, Republic of Korea
| | | |
Collapse
|
21
|
Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2708-12. [PMID: 23623087 DOI: 10.1016/j.msec.2013.02.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/01/2013] [Accepted: 02/20/2013] [Indexed: 02/04/2023]
Abstract
In this paper the process of nonfunctionalized negatively charged orthovanadate nanoparticle accumulation and redistribution in cells dependent on their shape and size was investigated. Aqueous colloidal solutions of nReVO4:Eu(3+) (Re=Gd, Y, La) luminescent nanocrystals of different sizes and shapes have been synthesized. The average sizes of spherical particles were 2, 20, and 300 nm, of spindle-like particles - 22×6.3 nm, and of rod-like particles - 57×4.4 nm. Luminescence of nReVO4:Eu(3+) nanocrystals was effectively excited by UV and visible irradiation. By means of luminescence microscopy and luminescence microspectroscopy, it has been revealed that spherical nanocrystals with an average diameter of 2 nm tend to accumulate mainly in the rat hepatocyte nuclei in situ and also in the isolated nuclei of these cells. An additional experiment has shown that nanoparticles reveal tropism to nuclear structural components. The penetration into nuclei does not require any modifications of the surface of nanoparticle and is governed by the shape and size of nanoparticle and also is determined by the cellular type.
Collapse
|