1
|
Salgado P, Aedo E, Vidal G. Green Synthesis of Fe 2O 3 Nanoparticles Using Eucalyptus globulus Leaf Extract on Pinus radiata Sawdust for Cationic Dye Adsorption. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1832. [PMID: 39591072 PMCID: PMC11597417 DOI: 10.3390/nano14221832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
The present study reports the synthesis of Fe2O3 nanoparticles on Pinus radiata sawdust (Fe2O3@PS) using a Eucalyptus globulus leaf extract. The morphology and structure of Fe2O3@PS were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and UV-Vis diffuse reflectance. The adsorption capacity of the system was evaluated by testing its ability to remove the Rhodamine B (RhB) dye. The optimization of the system was carried out using the Plackett-Burman design (PBD) and the response surface methodology (steepest ascent and the Box-Behnken design), which provided information on the main parameters affecting the adsorption process. The PBD results showed that the most important parameters for the removal of RhB using Fe2O3@PS were the removal time, the RhB concentration, and the initial pH of the system. The reusability of Fe2O3@PS under optimal conditions was tested and it was found to maintain its efficiency after five cycles of use. The efficiency and rate of RhB removal observed at pH values near 7.0 were found to be predominantly influenced by electrostatic interactions. In contrast, the analyses conducted at pH values near 8.3 exhibited reduced influence from electrostatic attractions, with π-π interactions and hydrogen bonds emerging as dominant forces. At pH values exceeding 8.3, all potential interactions between RhB and Fe2O3@PS exhibited diminished strength. This research provides valuable information on the formation of eco-friendly nanoparticles immobilized on a forest residue such as sawdust, which can effectively remove organic pollutants like RhB. This contributes to the valorization of resources and the search for solutions to water pollution.
Collapse
Affiliation(s)
- Pablo Salgado
- Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (P.S.); (E.A.)
| | - Eduardo Aedo
- Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (P.S.); (E.A.)
| | - Gladys Vidal
- Grupo de Ingeniería y Biotecnología Ambiental (GIBA-UDEC), Facultad de Ciencias Ambientales, Universidad de Concepción, Concepción 4070386, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), Agencia Nacional de Investigación y Desarrollo (ANID) Fondap Center, Victoria 1295, Concepción 4070411, Chile
| |
Collapse
|
2
|
Raza S, Poria R, Kala D, Sharma N, Sharma AK, Florien N, Tuli HS, Kaushal A, Gupta S. Innovations in dengue virus detection: An overview of conventional and electrochemical biosensor approaches. Biotechnol Appl Biochem 2024; 71:481-500. [PMID: 38225854 DOI: 10.1002/bab.2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Globally, people are in great threat due to the highly spreading of viral infectious diseases. Every year like 100-300 million cases of infections are found, and among them, above 80% are not recognized and irrelevant. Dengue virus (DENV) is an arbovirus infection that currently infects people most frequently. DENV encompasses four viral serotypes, and they each express comparable sign. From a mild febrile sickness to a potentially fatal dengue hemorrhagic fever, dengue can induce a variety of symptoms. Presently, the globe is being challenged by the untimely identification of dengue infection. Therefore, this review summarizes advances in the detection of dengue from conventional methods (nucleic acid-based, polymerase chain reaction-based, and serological approaches) to novel biosensors. This work illustrates an extensive study of the current designs and fabrication approaches involved in the formation of electrochemical biosensors for untimely identifications of dengue. Additionally, in electrochemical sensing of DENV, we skimmed through significances of biorecognition molecules like lectins, nucleic acid, and antibodies. The introduction of emerging techniques such as the CRISPR/Cas' system and their integration with biosensing platforms has also been summarized. Furthermore, the review revealed the importance of electrochemical approach compared with traditional diagnostic methods.
Collapse
Affiliation(s)
- Shadan Raza
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Deepak Kala
- Centera Laboratories, Institute of High Pressure Physics PAS, Warsaw, Poland
| | - Nishant Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Anil K Sharma
- Department of Biotechnology, Amity University of Punjab, Mohali, Punjab, India
| | - Nkurunziza Florien
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Hardeep S Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| |
Collapse
|
3
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers (Basel) 2023; 15:3492. [PMID: 37631549 PMCID: PMC10460086 DOI: 10.3390/polym15163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidase and peroxidase enzymes have attracted attention in various biotechnological industries due to their ease of synthesis, wide range of applications, and operation under mild conditions. Their applicability, however, is limited by their poor stability in harsher conditions and their non-reusability. As a result, several approaches such as enzyme engineering, medium engineering, and enzyme immobilization have been used to improve the enzyme properties. Several materials have been used as supports for these enzymes to increase their stability and reusability. This review focusses on the immobilization of oxidase and peroxidase enzymes on metal and metal oxide nanoparticle-polymer composite supports and the different methods used to achieve the immobilization. The application of the enzyme-metal/metal oxide-polymer biocatalysts in biosensing of hydrogen peroxide, glucose, pesticides, and herbicides as well as blood components such as cholesterol, urea, dopamine, and xanthine have been extensively reviewed. The application of the biocatalysts in wastewater treatment through degradation of dyes, pesticides, and other organic compounds has also been discussed.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, Johannesburg 1710, South Africa;
| | - Nils H. Haneklaus
- Transdisciplinarity Laboratory Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Hendrik Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
4
|
Qassim MI, Khalill MM, Hamed AA, Gizawy MA, Atta E, El-Hag Ali A. Synthesis and evaluation of a novel polycarbonate grafted poly (glycidyl methacrylate) resin for sorption of 131I. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Mishra B, Ghosh D, Tripathi BP. Finely dispersed AgPd bimetallic nanoparticles on a polydopamine modified metal organic framework for diverse catalytic applications. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Alshorifi FT, Alswat AA, Mannaa MA, Alotaibi MT, El-Bahy SM, Salama RS. Facile and Green Synthesis of Silver Quantum Dots Immobilized onto a Polymeric CTS-PEO Blend for the Photocatalytic Degradation of p-Nitrophenol. ACS OMEGA 2021; 6:30432-30441. [PMID: 34805673 PMCID: PMC8600520 DOI: 10.1021/acsomega.1c03735] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 05/17/2023]
Abstract
Immobilization of inorganic metal quantum dots (especially, noble transition metals) onto organic polymers to synthesize nanometal-polymer composites (NMPCs) has attracted considerable attention because of their advanced optical, electrical, catalytic/photocatalytic, and biological properties. Herein, novel, highly efficient, stable, and visible light-active NMPC photocatalysts consisting of silver quantum dots (Ag QDs) immobilized onto polymeric chitosan-polyethylene oxide (CTS-PEO) blend sheets have been successfully prepared by an in situ self-assembly facile casting method as a facile and green approach. The CTS-PEO blend polymer acts as a reducing and a stabilizing agent for Ag QDs which does not generate any environmental chemical pollutant. The prepared x wt % Ag QDs/CTS-PEO composites were fully characterized through X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis, and UV/visible spectroscopy. The characterization results indicated the successful synthesis of the Ag QDs/CTS-PEO composites by the interactions and complexation between x wt % Ag QDs and CTS-PEO blend sheets. TEM images revealed small granules randomly distributed onto the CTS-PEO blend sheets, indicating the immobilization of Ag QDs onto CTS-PEO composites. The presence of a surface plasmon resonance (SPR) band and the shifting of the absorption edge toward higher wavelengths in the UV/vis spectra indicated the formation of x wt % Ag QDs/CTS-PEO composites. The Ag QDs in the polymeric blend matrix led to remarkable enhancement in the optical, thermal, electrical, and photocatalytic properties of x wt % Ag QDs/CTS-PEO composites. The photocatalytic efficiency of the prepared composites was evaluated by the photodegradation of p-nitrophenol (PNP) under simulated sunlight. The maximum photocatalytic degradation reached 91.1% efficiency within 3 h for the 12.0 wt % Ag QDs/CTS-PEO photocatalyst. Generally, the Ag QDs immobilized onto CTS-PEO blend composites significantly enhance the SPR effect and the synergistic effect and reduce the band gap, leading to a high photocatalytic activity.
Collapse
Affiliation(s)
- Fares T. Alshorifi
- Department
of Chemistry, Faculty of Science, Sheba
Region University, Sanaa 15452, Yemen
- Department
of Chemistry, Faculty of Science, Sana’a
University, Sanaa 15452, Yemen
| | - Abdullah A. Alswat
- Chemistry
Department, Faculty of Education and Applied Science, Arhab Sana’a University, Sanaa 15452, Yemen
| | - Mohammed A. Mannaa
- Chemistry
Department, Faculty of Applied Science, Sa’ada University, Sanaa 15452, Yemen
| | - Mohammed T. Alotaibi
- Department
of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Salah M. El-Bahy
- Department
of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Reda S. Salama
- Basic
Science
Department, Faculty of Engineering, Delta
University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
7
|
Mahouche-Chergui S, Oun A, Haddadou I, Hoyez C, Michely L, Ouellet-Plamondon C, Carbonnier B. Efficient and Recyclable Heterogeneous Catalyst Based on PdNPs Stabilized on a Green-Synthesized Graphene-like Nanomaterial: Effect of Surface Functionalization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44673-44685. [PMID: 34506108 DOI: 10.1021/acsami.1c07540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work reports for the first time a straightforward and efficient approach to covalent surface functionalization of a sustainable graphene-like nanomaterial with abundant carboxylic acid groups. This approach results in an efficient and robust chelatant platform for anchoring highly dispersed ultrasmall palladium particles with excellent catalytic activity in the reduction of both cationic (methylene blue, MB) and anionic (eosin-Y, Eo-Y) toxic organic dyes. The large-specific-surface-area (SBET = 266.94 m2/g) graphene-like nanomaterial (GHN) was prepared through a green and cost-effective pyrolysis process from saccharose using layered bentonite clay as a template. To introduce a high density of carboxylic acid functions, GHN was first doubly functionalized by successive grafting reaction using two different strategies: (i) in the first case, GHN was first grafted by (3-glycidyloxypropyl) trimethoxysilane (GPTMS) and then bifunctionalized by chemical grafting of tris(4-hydroxyphenyl)methane triglycidyl ether (TGE). In the second case, the grafting order of the two molecules has been reversed. GHN-GPTMS-TGE provided the highest number of grafted reactive epoxy groups, and it was selected for further functionalization with carboxylic acid functions via a ring-opening reaction through a two-step hydrolysis (H2SO4)/oxidation (KMnO4) approach. The GHN nanomaterial bearing carboxylic acid groups was then treated with sodium hydroxide to produce a deprotonated carboxylic acid-rich platform. Finally, due to a high density of accessible chelatant carboxylic acid groups, GHN-COO- binds strongly a great amount of Pd2+ ions to form stable complexes which after reduction by NaBH4 leads to highly dispersed, densely anchored, and uniformly distributed nanoscale Pd particles (d ∼ 4.5 nm) on the surface of the functionalized GHN. The GHN-COO-@PdNPs nanohybrid proved to be highly efficient for dye reduction by NaBH4 in aqueous solution at room temperature. Moreover, because of the high stability of the as-prepared graphene-like supported PdNPs, it exhibited very good reusability and could be recycled up to eight times without any significant loss in activity.
Collapse
Affiliation(s)
| | - Abdallah Oun
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | - Imane Haddadou
- Construction Engineering Department, École de Technologie Supérieure, 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| | - Clémentine Hoyez
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | - Laurent Michely
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | - Claudiane Ouellet-Plamondon
- Construction Engineering Department, École de Technologie Supérieure, 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| | - Benjamin Carbonnier
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| |
Collapse
|
8
|
Li D, Luo Y, Onidas D, He L, Jin M, Gazeau F, Pinson J, Mangeney C. Surface functionalization of nanomaterials by aryl diazonium salts for biomedical sciences. Adv Colloid Interface Sci 2021; 294:102479. [PMID: 34237631 DOI: 10.1016/j.cis.2021.102479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Nanoparticles (NPs) can be prepared by simple reactions and methods from a number of materials. Their small size opens up a number of applications in different fields, among which biomedicine, including: i) drug delivery, ii) biosensors, iii) bioimaging, iv) antibacterial activity. To be able to perform such tasks, NPs must be modified with a variety of functional molecules, such as drugs, targeting groups, chemical tags or antibacterial agents, and must also be prevented from aggregation. The attachment must be stable to resist during the transportation to the targeted location. Diazonium salts, which have been widely used for coupling applications and surface modification, fulfil such criteria. Moreover, they are simple to prepare and can be easily substituted with a large number of organic groups. This review describes the use of these compounds in nanomedicine with a focus on the construction of nanohybrids derived from metal, oxide and carbon-based NPs as well as viruses.
Collapse
Affiliation(s)
- Da Li
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | - Yun Luo
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France.
| | | | - Li He
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | - Ming Jin
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | | | - Jean Pinson
- Université de Paris, ITODYS, CNRS, F-75013 Paris, France.
| | | |
Collapse
|
9
|
Zhong C, Zajki-Zechmeister K, Nidetzky B. Reducing end thiol-modified nanocellulose: Bottom-up enzymatic synthesis and use for templated assembly of silver nanoparticles into biocidal composite material. Carbohydr Polym 2021; 260:117772. [PMID: 33712130 DOI: 10.1016/j.carbpol.2021.117772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022]
Abstract
Nanoparticle-polymer composites are important functional materials but structural control of their assembly is challenging. Owing to its crystalline internal structure and tunable nanoscale morphology, cellulose is promising polymer scaffold for templating such composite materials. Here, we show bottom-up synthesis of reducing end thiol-modified cellulose chains by iterative bi-enzymatic β-1,4-glycosylation of 1-thio-β-d-glucose (10 mM), to a degree of polymerization of ∼8 and in a yield of ∼41% on the donor substrate (α-d-glucose 1-phosphate, 100 mM). Synthetic cellulose oligomers self-assemble into highly ordered crystalline (cellulose allomorph II) material showing long (micrometers) and thin nanosheet-like morphologies, with thickness of 5-7 nm. Silver nanoparticles were attached selectively and well dispersed on the surface of the thiol-modified cellulose, in excellent yield (≥ 95%) and high loading efficiency (∼2.2 g silver/g thiol-cellulose). Examined against Escherichia coli and Staphylococcus aureus, surface-patterned nanoparticles show excellent biocidal activity. Bottom-up approach by chemical design to a functional cellulose nanocomposite is presented. Synthetic thiol-containing nanocellulose can expand the scope of top-down produced cellulose materials.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria.
| | - Krisztina Zajki-Zechmeister
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria.
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010 Graz, Austria.
| |
Collapse
|
10
|
Crosslinked chitosan embedded TiO 2 NPs and carbon dots-based nanocomposite: An excellent photocatalyst under sunlight irradiation. Int J Biol Macromol 2020; 164:3676-3686. [PMID: 32888996 DOI: 10.1016/j.ijbiomac.2020.08.230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 08/29/2020] [Indexed: 11/21/2022]
Abstract
Herein, a new hybrid nanocomposite, comprising of titania nanoparticles (TiO2 NPs) and carbon dots (CDs) deposited polyvinyl imidazole crosslinked chitosan [cl-Ch-p(VI)/TiO2NPs-CDs] has been developed. The nanocomposite has been synthesised by in-situ deposition of TiO2 NPs and CDs onto the surface of the copolymer under microwave irradiation. To the best of our knowledge, this in-situ approach has effectively been applied for the first time to fabricate green fluorescent CDs from sugar cane juice at moderate temperature (75 °C) under microwave irradiation. The developed nanocomposite has been characterized using UV-Vis spectroscopy, 13C NMR, XRD, HR-TEM, STEM and XPS analyses. The results suggest that the successful deposition of TiO2 NPs and CDs onto the surface of crosslinked chitosan is achieved. The experimental studies indicate that the NPs/CDs-impregnated nanocomposite allows efficient photocatalytic degradation of toxic organic compounds (~98.6% degradation of 2,4-dicholorophenol, ~95.8% degradation of Reactive Blue 4, ~98.2% degradation of Reactive Red 15) in the presence of sunlight. Finally, LC-MS analysis of the resultant degraded materials reveals the formation of organic molecules with lower molecular mass.
Collapse
|
11
|
Lupínková S, Kaimlová M, Kormunda M, Kolská Z. Chitosan‐capped sulfur microparticles grafted on UV‐treated PET surface. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simona Lupínková
- Faculty of Science J. E. Purkinje University in Ústí nad Labem České Mládeže 8 Ústí nad Labem 400 96 Czech Republic
| | - Markéta Kaimlová
- Institute of Solid State Engineering University of Chemistry and Technology Prague Technická 5 Prague 6 166 28 Czech Republic
| | - Martin Kormunda
- Faculty of Science J. E. Purkinje University in Ústí nad Labem České Mládeže 8 Ústí nad Labem 400 96 Czech Republic
| | - Zdeňka Kolská
- Faculty of Science J. E. Purkinje University in Ústí nad Labem České Mládeže 8 Ústí nad Labem 400 96 Czech Republic
| |
Collapse
|
12
|
Centomo P, Zecca M, Biffis A. Cross-Linked Polymers as Scaffolds for the Low-Temperature Preparation of Nanostructured Metal Oxides. Chemistry 2020; 26:9243-9260. [PMID: 32357276 DOI: 10.1002/chem.202000815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 12/22/2022]
Abstract
The current state of the art of the use of cross-linked organic polymers, both insoluble (resins or gels) and soluble (micro- and nanogels), as aids for the low-temperature preparation of stable metal oxide nanoparticles or nanostructured metal oxides is reviewed herein. Synthetic strategies for inorganic oxide nanomaterials of this kind can greatly benefit from the use of cross-linked polymers, which may act as scaffolds/exotemplates during inorganic nanoparticle synthesis, or as stabilizers following post-synthetic modification of the nanoparticles. Furthermore, the peculiar properties of the organic cross-linked polymers add to those of the inorganic oxide nanoparticles, producing materials with combined properties. The potential applications of such highly promising composite nanomaterials will be also briefly sketched.
Collapse
Affiliation(s)
- Paolo Centomo
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marco Zecca
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Andrea Biffis
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
13
|
Polydopamine assisted synthesis of ultrafine silver nanoparticles for heterogeneous catalysis and water remediation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Shchitovskaya EV, Kolzunova LG, Karpenko MA. Electrochemical Immobilization of Silver Nanoparticles in a Polymethylolacryalmide Matrix. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193520040114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Prince E, Narayanan P, Chekini M, Pace-Tonna C, Roberts MG, Zhulina E, Kumacheva E. Solvent-Mediated Isolation of Polymer-Grafted Nanoparticles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elisabeth Prince
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Pournima Narayanan
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mahshid Chekini
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Carleigh Pace-Tonna
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Megan G. Roberts
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ekaterina Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
16
|
Sargsyan SH, Sargsyan TS, Khizantsyan KM, Aghajanyan IG, Sargsyan AS, Margaryan KS. Electrosynthesis of 1-Vinylimidazole- and Acrylic-Acid-Based Metal-Containing Nanocomposites. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193520010073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Photocrosslinked hybrid composites with Ag, Au or Au-Ag NPs as visible-light triggered photocatalysts for degradation/reduction of aromatic nitroderivatives. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Abstract
In the present comprehensive review we have specifically focused on polymer nanocomposites used as photocatalytic materials in fine organic reactions or in organic pollutants degradation. The selection of the polymer substrates for the immobilization of the active catalyst particles is motivated by several advantages displayed by them, such as: Environmental stability, chemical inertness and resistance to ultraviolet radiations, mechanical stability, low prices and ease availability. Additionally, the use of polymer nanocomposites as photocatalysts offers the possibility of a facile separation and reuse of the materials, eliminating thus the post-treatment separation processes and implicitly reducing the costs of the procedure. This review covers the polymer-based photocatalytic materials containing the most popular inorganic nanoparticles with good catalytic performance under UV or visible light, namely TiO2, ZnO, CeO2, or plasmonic (Ag, Au, Pt, Pd) NPs. The study is mainly targeted on the preparation, photocatalytic activity, strategies directed toward the increase of photocatalytic efficiency under visible light and reuse of the hybrid polymer catalysts.
Collapse
|
19
|
Shifrina ZB, Matveeva VG, Bronstein LM. Role of Polymer Structures in Catalysis by Transition Metal and Metal Oxide Nanoparticle Composites. Chem Rev 2019; 120:1350-1396. [DOI: 10.1021/acs.chemrev.9b00137] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, Moscow, 119991 Russia
| | - Valentina G. Matveeva
- Tver State Technical University, Department of Biotechnology and Chemistry, 22 A. Nikitina St, 170026 Tver, Russia
| | - Lyudmila M. Bronstein
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, Moscow, 119991 Russia
- Indiana University, Department of Chemistry, Bloomington, 800 East Kirkwood Avenue, Indiana 47405, United States
- King Abdulaziz University, Faculty of Science, Department of Physics, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| |
Collapse
|
20
|
Gurunathan P, Hari S, Suseela SB, Sankararajan R, Mukannan A. Production, characterization and effectiveness of cellulose acetate functionalized ZnO nanocomposite adsorbent for the removal of Se (VI) ions from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:528-543. [PMID: 30406595 DOI: 10.1007/s11356-018-3472-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
In this study, ZnO functionalized cellulose acetate nanocomposite (ZnO/CA NC) was synthesized using a simple chemical approach found to have a high surface area of 657.34 m2/g and utilized as adsorbents for the removal of Se (VI) from aqueous solutions. Investigations on X-ray diffraction (XRD) revealed that ZnO nanocomposite has a smaller crystallite size compared to ZnO nanoparticles which facilitated for reduced agglomeration confirmed by scanning electron microscopy (SEM). The ensuing properties of ZnO/CA NC displayed high maximum adsorption capacity of 160.5 mg/g for Se (VI) ions. Inner-sphere surface complexes on ZnO/CA NC under prevailing conditions for Se (VI) were discussed using FTIR spectroscopical results. In order to evaluate the removal efficiency, the effects of adsorbent dosage, pH, and temperature were thoroughly investigated. The amount of Se (VI) ions adsorbed on ZnO/CA NC was also determined by zeta potential. The fractional removal of pollutants (Se (VI)) was done using mass transfer model. In addition, prominent adsorption capacity was also tested utilizing concurrent anions (SO42-, Cl-, and F-) with reference to Se (VI) and cost prudent regenerability of adsorbent by NaOH solution was ascertained with anti-interference and recovery steps. ZnO/CA NC was obtained by simple chemical methodology and high surface adsorption capacities supply an encouraging technique for Se (VI) removal in water treatment applications.
Collapse
Affiliation(s)
- Padmalaya Gurunathan
- Department of Electronics and Communication Engineering, SSN College of Engineering, Kalavakkam, Tamilnadu, India
| | - Sivaram Hari
- Centre for Nanoscience and Technology, Anna University, Chennai, India
| | | | - Radha Sankararajan
- Department of Electronics and Communication Engineering, SSN College of Engineering, Kalavakkam, Tamilnadu, India
| | | |
Collapse
|
21
|
|
22
|
Padmalaya G, Sreeja BS, Dinesh Kumar P, Radha S, Poornima V, Arivanandan M, Shrestha S, Uma TS. A Facile Synthesis of Cellulose Acetate Functionalized Zinc Oxide Nanocomposite for Electrochemical Sensing of Cadmium ions. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0989-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Palencia M, Córdoba A, Arrieta Á. Stimuli-sensitive nanostructured poly(sodium 4-styrene sulfonate): Synthesis, characterization, and study of metal ion retention properties. J Appl Polym Sci 2018. [DOI: 10.1002/app.46001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manuel Palencia
- Research Group in Science with Technological Applications (GI-CAT), Department of Chemistry, Faculty of Natural and Exact Sciences; Universidad del Valle, Street 13 # 100-00; Cali 25360 Colombia
| | - Alexander Córdoba
- Research Group in Science with Technological Applications (GI-CAT), Department of Chemistry, Faculty of Natural and Exact Sciences; Universidad del Valle, Street 13 # 100-00; Cali 25360 Colombia
- Mindtech Research Group (Mindtech-RG), MINDTECH S.A.S, Street 101 # 42-75; Cali 25360 Colombia
| | - Álvaro Arrieta
- Department of Biology and Chemistry; Universidad de Sucre, Street 28 # 5-267; Sincelejo 700001 Colombia
| |
Collapse
|
24
|
Snoussi Y, Bastide S, Abderrabba M, Chehimi MM. Sonochemical synthesis of Fe 3O 4@NH 2-mesoporous silica@Polypyrrole/Pd: A core/double shell nanocomposite for catalytic applications. ULTRASONICS SONOCHEMISTRY 2018; 41:551-561. [PMID: 29137786 DOI: 10.1016/j.ultsonch.2017.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/22/2017] [Accepted: 10/22/2017] [Indexed: 05/18/2023]
Abstract
There is a growing interest in sonochemistry for either the controlled design of nanostructured materials or for the synthesis of polymers and polymer composites. It is fast and highly efficient method that provides materials with exceptional and enhanced structural and chemical properties. Herein, we take advantage of the versatile sonochemical process in order to design core/double layered shell nanocomposite denoted by Fe3O4@NH2-mesoporous silica@ PPy/Pd. This magnetic, multicomponent material was designed in a three-step sono-process: (i) synthesis of magnetic core, (ii) cure of mesoporous silica, and (iii) sonochemical deposition of PPy/Pd. This last step was achieved within 1 h, a much shorter duration compared to conventional routes which usually take several hours to few days. The final nanocomposite can be recovered with a simple magnetic stick. X-ray diffraction patterns highlighted the presence of zerovalent palladium on the surface of the magnetic nanocomposite. The catalytic activity of the solid support was investigated by the study of the p-nitrophenol (p-NP) reduction and the Methyl Orange (MO) degradation in aqueous media. Results showed a very high catalytic efficiency, a high conversion yield of p-NP into 4-aminophenol (more than 94%) and an almost entire degradation of MO (99%) with a fast kinetics fitting to the first order model. This work demonstrates conclusively the benefits of sonochemistry in the design of metal nanoparticle-decorated inorganic/polymer hybrid system with outstanding performances.
Collapse
Affiliation(s)
- Youssef Snoussi
- Laboratory of Materials, Molecules and Applications, IPEST, University of Carthage, Sidi Bou Said Road, B.P. 51 2070, La Marsa, Tunisia; Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia.
| | - Stéphane Bastide
- Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2-8 rue Henri Dunant, 94320 Thiais, France
| | - Manef Abderrabba
- Laboratory of Materials, Molecules and Applications, IPEST, University of Carthage, Sidi Bou Said Road, B.P. 51 2070, La Marsa, Tunisia
| | - Mohamed M Chehimi
- Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2-8 rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
25
|
Darvishi S, Souissi M, Kharaziha M, Karimzadeh F, Sahara R, Ahadian S. Gelatin methacryloyl hydrogel for glucose biosensing using Ni nanoparticles-reduced graphene oxide: An experimental and modeling study. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Sithole MN, Choonara YE, du Toit LC, Kumar P, Marimuthu T, Kondiah PPD, Pillay V. Development of a Novel Polymeric Nanocomposite Complex for Drugs with Low Bioavailability. AAPS PharmSciTech 2018; 19:303-314. [PMID: 28717975 DOI: 10.1208/s12249-017-0796-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/01/2017] [Indexed: 02/03/2023] Open
Abstract
Semi-synthetic biopolymer complex (SSBC) nanoparticles were investigated as a potential oral drug delivery system to enhance the bioavailability of a poorly water-soluble model drug acyclovir (ACV). The SSBCs were prepared from cross-linking of hydroxyl groups on hyaluronic acid (HA) with poly(acrylic acid) (PAA) resulting in ether linkages. Thereafter, conjugation of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) onto HA-PAA was accomplished using a 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS)-promoted coupling reaction. Nanoparticle powders were prepared by spray drying of drug-loaded SSBC emulsions in a laboratory nano spray dryer. The prepared SSBC was characterized by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), 1H nuclear magnetic resonance (NMR) imaging, and X-ray diffraction (XRD) spectroscopy. The average particle size was found to be 257.92 nm. An entrapment efficiency of 85% was achieved as ACV has enhanced affinity for the hydrophobic inner core of the complex. It was shown that SSBC improved the solubility of ACV by 30% and the ex vivo permeation by 10% compared to the conventional ACV formulation, consequentially enhancing its bioavailability. Overall, this study resulted in the successful preparation of a hybrid chemically conjugated SSBC which has great potential for enhanced oral absorption of ACV with possible tuneable ACV permeability and solubility, producing an "intelligent" nanoenabled drug delivery system.
Collapse
|
27
|
Amari H, Guerrouache M, Mahouche-Chergui S, Abderrahim R, Carbonnier B. 2-Aminothiazole-functionalized triazine-modified polystyrene decorated with gold nanoparticles as composite catalyst for the reduction of 4-nitrophenol. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Saad A, Cabet E, Lilienbaum A, Hamadi S, Abderrabba M, Chehimi MM. Polypyrrole/Ag/mesoporous silica nanocomposite particles: Design by photopolymerization in aqueous medium and antibacterial activity. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Halide-Enhanced Catalytic Activity of Palladium Nanoparticles Comes at the Expense of Catalyst Recovery. Catalysts 2017. [DOI: 10.3390/catal7090280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Belbekhouche S, Kebe SI, Mahouche-Chergui S, Guerrouache M, Carbonnier B, Jaziri M, Chehimi MM. Aryl diazonium-modified olive waste: A low cost support for the immobilization of nanocatalysts. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Karakhanov E, Maximov A, Boronoev M, Kulikov L, Terenina M. Mesoporous organo-inorganic hybrid materials as hydrogenation catalysts. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe paper concerns application of two types of organic materials – porous aromatic frameworks (PAFs) with diamond-like structure and the ordered mesoporous phenol-formaldehyde polymers (MPFs) – as supports for metal and metal sulfide nanoparticles. The obtained hybrid materials were tested in hydrogenation of various unsaturated and aromatic compounds. Ruthenium catalyst, based on PAF (Ru-PAF-30), possessed high activity in exhaustive hydrogenation of phenol into cyclohexanol with TOF value of 2700 h−1. Platinum catalyst, based on modified with sulfo-groups MPF (MPF-SO3H-Pt), was selective in semi-hydrogenation of terpenes, [α-terpinene, γ-terpinene, terpinolene, (s)-limonene]. Bimetallic Ni–W sulfide catalysts, prepared by in situ decomposition of [(n-Bu)4N]2Ni(WS4)2 within the pores of MPFs and PAFs, possessed high efficiency in hydrogenation-hydrocracking of naphthalenes as model substrates.
Collapse
Affiliation(s)
- Eduard Karakhanov
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia
| | - Anton Maximov
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia
- Institute of Petrochemical Synthesis RAS, 119991 Moscow, Russia
| | - Maksim Boronoev
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia
| | - Leonid Kulikov
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia
| | - Maria Terenina
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
32
|
Ponnurangam S, Chernyshova IV, Somasundaran P. Nitrogen-containing polymers as a platform for CO 2 electroreduction. Adv Colloid Interface Sci 2017; 244:184-198. [PMID: 27817802 DOI: 10.1016/j.cis.2016.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
Heterogeneous electroreduction of CO2 has received considerable attention in the past decade. However, none of the earlier reviews has been dedicated to nitrogen-containing polymers (N-polymers) as an emerging platform for conversion of CO2 to industrially useful chemicals. The term 'platform' is used here to underscore that the role of N-polymers is not only to serve as direct catalysts (through loaded metals) but also as co-catalysts/promoters and stabilizing agents. This review covers the current state, advantages, challenges, and prospects of the application of N-polymer-metal composites, also referred as polymer functionalized, coated, or modified electrodes, as well as functional hybrid materials, for the electrocatalytic conversion of CO2. It briefly surveys the efficiencies of the N-polymer-metal electrodes already used for this application, methods of their fabrication, and proposed mechanisms of their catalytic activities.
Collapse
Affiliation(s)
- Sathish Ponnurangam
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Irina V Chernyshova
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | | |
Collapse
|
33
|
Khezeli T, Daneshfar A. Development of dispersive micro-solid phase extraction based on micro and nano sorbents. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Asmat S, Husain Q, Azam A. Lipase immobilization on facile synthesized polyaniline-coated silver-functionalized graphene oxide nanocomposites as novel biocatalysts: stability and activity insights. RSC Adv 2017. [DOI: 10.1039/c6ra27926k] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Schematic representation of the preparation of PANI/Ag/GO-NCs and immobilization of lipase.
Collapse
Affiliation(s)
- Shamoon Asmat
- Department of Biochemistry
- Faculty of Life Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Qayyum Husain
- Department of Biochemistry
- Faculty of Life Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Ameer Azam
- Centre of Excellence in Material Sciences (Nanomaterials)
- Zakir Husain College of Engineering and Technology
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|
35
|
Wójcik K, Czaja T, Szostak R, Grzeszczuk M. Silver(I) chloride-polypyrrole composite: electrochemical preparation, characterization, and application as a SERS platform. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3429-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Immobilization of silver nanoparticles into POEGMA polymer brushes as SERS-active substrates. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.6137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Xu T, Qi Y, Zhao X, Zhang Q. Controlled fabrication of nanostructures by assembling Au nanoparticles on functionalized polymeric spheres. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Stabilized nanosilver based antimicrobial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites of interest in active food packaging. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2015.10.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Vo VS, Mahouche-Chergui S, Babinot J, Nguyen VH, Naili S, Carbonnier B. Photo-induced SI-ATRP for the synthesis of photoclickable intercalated clay nanofillers. RSC Adv 2016. [DOI: 10.1039/c6ra14724k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Design of functional and hairy nanoclay intercalated assemblies using tandem photoinduced surface initiated ATRP-1,3 dipolar cycloaddition/thiol-yne click reactions.
Collapse
Affiliation(s)
- V.-S. Vo
- Université Paris-Est
- ICMPE (UMR7182)
- CNRS
- UPEC
- Thiais
| | | | - J. Babinot
- Université Paris-Est
- ICMPE (UMR7182)
- CNRS
- UPEC
- Thiais
| | - V.-H. Nguyen
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi-Echelle
- MSME UMR 8208 CNRS
- Créteil Cedex
- France
| | - S. Naili
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi-Echelle
- MSME UMR 8208 CNRS
- Créteil Cedex
- France
| | | |
Collapse
|
40
|
Urban J. Current trends in the development of porous polymer monoliths for the separation of small molecules. J Sep Sci 2015; 39:51-68. [DOI: 10.1002/jssc.201501011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Jiří Urban
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| |
Collapse
|
41
|
Khalil AM, Georgiadou V, Guerrouache M, Mahouche-Chergui S, Dendrinou-Samara C, Chehimi MM, Carbonnier B. Gold-decorated polymeric monoliths: In-situ vs ex-situ immobilization strategies and flow through catalytic applications towards nitrophenols reduction. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.09.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Zetterlund PB, Thickett SC, Perrier S, Bourgeat-Lami E, Lansalot M. Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chem Rev 2015; 115:9745-800. [PMID: 26313922 DOI: 10.1021/cr500625k] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Per B Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Stuart C Thickett
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Sébastien Perrier
- Department of Chemistry, The University of Warwick , Coventry CV4 7AL, U.K.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University , Melbourne, VIC 3052, Australia
| | - Elodie Bourgeat-Lami
- Laboratory of Chemistry, Catalysis, Polymers and Processes (C2P2), LCPP group, Université de Lyon, Université Lyon 1, CPE Lyon, CNRS, UMR 5265, 43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Muriel Lansalot
- Laboratory of Chemistry, Catalysis, Polymers and Processes (C2P2), LCPP group, Université de Lyon, Université Lyon 1, CPE Lyon, CNRS, UMR 5265, 43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
43
|
Zhang L, Li X, Ong L, Tabor RF, Bowen BA, Fernando AI, Nilghaz A, Garnier G, Gras SL, Wang X, Shen W. Cellulose nanofibre textured SERS substrate. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.12.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Lan G, Zhang X, Zhang X, Li M, Li Y, Yang Q. Yolk–shell nanospheres with soluble amino-polystyrene as a reservoir for Pd NPs. RSC Adv 2015. [DOI: 10.1039/c5ra04923g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pd NPs immobilized in yolk–shell nanospheres confined with soluble amino-polystyrene could efficiently catalyze the selective hydrogenation of acetophenone.
Collapse
Affiliation(s)
- Guojun Lan
- Institute of Industrial Catalysis
- Zhejiang University of Technology
- Hangzhou 310014
- China
- State Key Laboratory of Catalysis
| | - Xiaoming Zhang
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiaomin Zhang
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Mingrun Li
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Ying Li
- Institute of Industrial Catalysis
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Qihua Yang
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
45
|
Svec F, Lv Y. Advances and Recent Trends in the Field of Monolithic Columns for Chromatography. Anal Chem 2014; 87:250-73. [DOI: 10.1021/ac504059c] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Frantisek Svec
- International
Research Center
for Soft Matter, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yongqin Lv
- International
Research Center
for Soft Matter, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
46
|
|
47
|
Liu Y, Gu Y, Li M, Wei Y. Protein imprinting over magnetic nanospheres via a surface grafted polymer for specific capture of hemoglobin. NEW J CHEM 2014. [DOI: 10.1039/c4nj01262c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
|
49
|
Reyes-Gallardo EM, Lucena R, Cárdenas S, Valcárcel M. Magnetic nanoparticles-nylon 6 composite for the dispersive micro solid phase extraction of selected polycyclic aromatic hydrocarbons from water samples. J Chromatogr A 2014; 1345:43-9. [DOI: 10.1016/j.chroma.2014.04.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
|
50
|
Boronic acid functionalized polymeric microspheres for catecholamine isolation. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|