1
|
Chen Y, Wang Y, He L, Wang L, Zhao J, Yang Z, Li Q, Shi R. Zein/fucoidan-coated phytol nanoliposome: preparation, characterization, physicochemical stability, in vitro release, and antioxidant activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7536-7549. [PMID: 38747177 DOI: 10.1002/jsfa.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND To improve phytol bioavailability, a novel method of magnetic stirring and high-pressure homogenization (HPH) combination was used to prepare zein/fucoidan-coated phytol nanoliposomes (P-NL-ZF). The characterization, the simulated in vitro digestion, and the antioxidant activity of these phytol nanoliposomes from the different processes have been studied. RESULTS Based on the results of dynamic light scattering (DLS) and gas chromatography-mass spectrometer (GC-MS) analysis, P-NL-ZF prepared through the combination of magnetic stirring and HPH exhibited superior encapsulation efficiency at 76.19% and demonstrated exceptional physicochemical stability under a series of conditions, including storage, pH, and ionic in comparison to single method. It was further confirmed that P-NL-ZF by magnetic stirring and HPH displayed a uniform distribution and regular shape through transmission electron microscopy (TEM). Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) analysis showed that electrostatic interactions and hydrogen bonding were the primary driving forces for the formation of composite nanoliposomes. Additionally, an in vitro digestion study revealed that multilayer composite nanoliposomes displayed significant and favorable slow-release properties (58.21%) under gastrointestinal conditions compared with traditional nanoliposomes (82.36%) and free phytol (89.73%). The assessments of chemical and cell-based antioxidant activities demonstrated that the coating of zein/fucoidan on phytol nanoliposomes resulted in enhanced effectiveness in scavenging activity of ABTS free radical and hydroxyl radical and mitigating oxidative damage to HepG2 cells. CONCLUSION Based on our studies, the promising delivery carrier of zein/fucoidan-coated nanoliposomes is contributed to the encapsulation of hydrophobic natural products and enhancement of their biological activity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yadan Chen
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yanbin Wang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Liang He
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Liling Wang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Jianchen Zhao
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Zhenya Yang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Qin Li
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Rui Shi
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Castro NR, Pinto CDSC, Dos Santos EP, Mansur CRE. Nanosystems with potential application as carriers for skin depigmenting actives. NANOTECHNOLOGY 2024; 35:402001. [PMID: 38901412 DOI: 10.1088/1361-6528/ad5a15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Hyperpigmentation is a skin disorder characterized by excessive production of melanin in the skin and includes dyschromias such as post-inflammatory hyperchromias, lentigens, melasma and chloasma. Topical products containing depigmenting agents offer a less aggressive treatment option for hyperpigmentation compared to methods like chemical peels and laser sessions. However, some of these agents can cause side effects such as redness and skin irritation. Encapsulating these actives in nanosystems shows promise in mitigating these effects and improving product safety and efficacy. In addition, nanocarriers have the ability to penetrate the skin, potentially allowing for targeted delivery of actives to the affected areas. The most commonly investigated nanosystems are nanoemulsions, vesicular nanosystems and nanoparticles, in which different materials can be used to generate different compositions in order to improve the properties of these nanocarriers. Nanocarriers have already been widely explored, but it is necessary to understand the evolution of these technologies when applied to the treatment of skin hyperchromias. Therefore, this literature review aims to present the state of the art over the last 15 years on the use of nanosystems as a potential strategy for encapsulating depigmenting actives for potential application in cosmetic products for skin hyperchromia. By providing a comprehensive overview of the latest research findings and technological advances, this article can contribute to improving the care and quality of life of people affected by this skin condition.
Collapse
Affiliation(s)
- Natalia Ruben Castro
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Cristal Dos Santos C Pinto
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Elisabete P Dos Santos
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Department of Drugs and Medicines, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Claudia Regina E Mansur
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Tang Y, Zhou A, Zhou S, Ruan J, Qian C, Wu C, Ye L. Preparation of VC nanoliposomes by high pressure homogenization: Process optimization and evaluation of efficacy, transdermal absorption, and stability. Heliyon 2024; 10:e29516. [PMID: 38707316 PMCID: PMC11066132 DOI: 10.1016/j.heliyon.2024.e29516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Vitamin C (VC) possesses antioxidant and whitening effects. However, its effectiveness is hindered by challenges such as instability, impaired solubility, and limited bioavailability hinder. In this study, VC was encapsulated in nanoliposomes by primary emulsification and high-pressure homogenization. The VC nanoliposomes were comprehensively characterized for their microscopic morphology, particle size, polydispersity index (PDI), and encapsulation efficiency (EE). Orthogonal experiments were designed to optimize the optimal preparation process, and the antioxidant activity, whitening efficacy, transdermal absorption, and stability of VC nanoliposomes were evaluated based on this optimized process. The findings demonstrated the high reproducibility of the optimal process, with particle size, PDI, and EE values of 113.502 ± 4.360 nm, 0.104 ± 0.010, and 56.09 ± 1.01 %, respectively. Differential scanning calorimetry analysis showed effective encapsulation of VC nanoliposomes with better thermal stability than aqueous VC solution. Besides, the VC nanoliposomes demonstrated excellent antioxidant and whitening effects in efficacy experiments, stronger skin permeability in transdermal experiments and fluorescence tracking. Furthermore, storage stability tests indicated that the VC in nanoliposomes remained relatively stable after 60 days of storage. These findings highlighted the potential use of VC nanoliposomes in a wide range of applications for the cosmetic market, especially in the development of ingredients for skin care products.
Collapse
Affiliation(s)
- Yunqi Tang
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Ankun Zhou
- Hangzhou Yayan Cosmetics Co. Ltd., #9 Shunle Road, Hangzhou, Zhejiang Province, 311123, PR China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Jiancheng Ruan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Chao Qian
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Chen Wu
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Linlin Ye
- Hangzhou Yayan Cosmetics Co. Ltd., #9 Shunle Road, Hangzhou, Zhejiang Province, 311123, PR China
| |
Collapse
|
4
|
El-Zahaby SA, Abdelhady SA, Ali MA, Younis SE, Elnaggar YSR. Limosomes versus hyalurolimosomes loaded with piperine for management of skin cancer. Int J Pharm 2024; 650:123730. [PMID: 38142014 DOI: 10.1016/j.ijpharm.2023.123730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/12/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Skin cancer is considered the fifth most commonly occurring cancer worldwide hampering both health and economy. Piperine had proven efficacy in fighting skin cancer cells. Unfortunately, this natural agent had limited ability to penetrate the skin. The aim of the current study was to formulate piperine-loaded limosomes and hyalurolimosomes incorporating limonene as an edge activator and hyaluronic acid as bioactive gelling agent for managing skin cancer. Titration method followed by homogenization was adopted to prepare the nanoliposomal formulations. Characterization involved size, & zeta potential measurements, examination using transmission electron microscope (TEM) and stability study. Biological evaluation of the antitumor activity of piperine nanoliposomal formulations against Ehrlich's (EAC) solid tumor was also performed. Drug loaded limosomes and hyalurolimosomes had particle size; 346.55 ± 8.55 & 372.70 ± 10.83 nm, respectively. Zeta potential was high enough to ensure their stability. TEM micrographs detected the surrounding layer of Hyaluronic acid formed around the spherical limosomal nano-carrier ensuring the formation of Hyalurolimosomes. All stored formulations showed non-significant differences compared with freshly prepared ones at p < 0.05. In addition, A DAD-HPLC method was developed and validated for Piperine analysis in the skin. Upon application of this method, it was found that hyalurolimosomes deliver double the concentration delivered by limosomes. The piperine hyalurolimosome group showed a significant reduction in tumor size with a smaller AUC compared to piperine gel, which was confirmed by in vivo studies. Consequently, hyalurolimosomes loaded with piperine is considered a promising nanocarrier system and a step forward better management of skin cancer introducing new hope in beating this deadly disease.
Collapse
Affiliation(s)
- Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | - Sherien A Abdelhady
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Sameh E Younis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of international publishing & nanotechnology consultation center INCC, Faculty of Pharmacy, Pharos university, Alexandria, Egypt.
| |
Collapse
|
5
|
Lv JM, Ismail BB, Ye XQ, Zhang XY, Gu Y, Chen JC. Ultrasonic-assisted nanoencapsulation of kiwi leaves proanthocyanidins in liposome delivery system for enhanced biostability and bioavailability. Food Chem 2023; 416:135794. [PMID: 36878119 DOI: 10.1016/j.foodchem.2023.135794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
The poor biostability and bioavailability of proanthocyanidins limit their application. In this study, it was hypothesized that encapsulation in lecithin-based nanoliposomes using ultrasonic technology improves the above properties. Based on preliminary experiments, the effects of lecithin mass ratio (1-9%, wt.), pH (3.2-6.8), ultrasonic power (0-540 W), and time (0-10 min) on biostability and bioavailability of purified kiwi leaves proanthocyanidins (PKLPs) were determined. Nanoliposomes prepared optimally with lecithin (5%, wt.), pH = 3.2, ultrasonic power (270 W), and time (5 min) demonstrated a significantly (p < 0.05) improved physicochemical stability, homogeneity, and high encapsulation efficiency (73.84%) relative to control. The PKLPs bioaccessibility during in vitro digestion increased by 2.28-3.07-fold, with a remarkable sustained release and delivery to the small intestine. Similar results were obtained by in vivo analyses, showing over 200% increase in PKLPs bioaccessibility compared to the control. Thus, PKLPs-loaded nanoliposomes are promising candidates for foods and supplements for novel applications.
Collapse
Affiliation(s)
- Ji-Min Lv
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China; Department of Food Science & Technology, Faculty of Agriculture, Bayero University, Kano, PMB 3011, Kano, Nigeria.
| | - Xing-Qian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xia-Yan Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Ye Gu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jian-Chu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Souri P, Emamifar A, Davati N. Physical and Antimicrobial Properties of Nano-ZnO-loaded Nanoliposomes Prepared by Thin Layer Hydration-Sonication and Heating Methods. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
7
|
Duong VA, Nguyen TTL, Maeng HJ. Recent Advances in Intranasal Liposomes for Drug, Gene, and Vaccine Delivery. Pharmaceutics 2023; 15:207. [PMID: 36678838 PMCID: PMC9865923 DOI: 10.3390/pharmaceutics15010207] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Liposomes are safe, biocompatible, and biodegradable spherical nanosized vesicles produced from cholesterol and phospholipids. Recently, liposomes have been widely administered intranasally for systemic and brain delivery. From the nasal cavity, liposome-encapsulated drugs and genes enter the systemic circulation primarily via absorption in the respiratory region, whereas they can be directly transported to the brain via the olfactory pathway. Liposomes can protect drugs and genes from enzymatic degradation, increase drug absorption across the nasal epithelium, and prolong the residence time in the nasal cavity. Intranasal liposomes are also a potential approach for vaccine delivery. Liposomes can be used as a platform to load antigens and as vaccine adjuvants to induce a robust immune response. With the recent interest in intranasal liposome formulations, this review discusses various aspects of liposomes that make them suitable for intranasal administration. We have summarized the latest advancements and applications of liposomes and evaluated their performance in the systemic and brain delivery of drugs and genes administered intranasally. We have also reviewed recent advances in intranasal liposome vaccine development and proposed perspectives on the future of intranasal liposomes.
Collapse
Affiliation(s)
| | - Thi-Thao-Linh Nguyen
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
8
|
Zhan QW, Gao J, Li D, Huang Y. High throughput onion-like liposome formation with efficient protein encapsulation under flash antisolvent mixing. J Colloid Interface Sci 2022; 618:185-195. [PMID: 35338925 DOI: 10.1016/j.jcis.2022.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/28/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Achieving a high encapsulation efficiency and loading capacity of proteins in lecithin-based liposomes has always been a challenge. Here, we use Flash Nano-Precipitation (FNP) to produce liposomes and investigated the encapsulation of model protein (Bovine Serum Albumin, BSA). Through rapid turbulent mixing, we obtained liposomes with small size, low polydispersity, and good batch repeatability at a high production rate. We demonstrated that the bilayer of liposomes prepared solely using lecithin was defective, which led to the fusion, and increased size and polydispersity. When cholesterol was added to reach a lecithin-to-cholesterol molar ratio of 5:3, a compact bilayer formed to effectively inhibit liposome fusion. The encapsulation efficiency and loading capacity of BSA was as high as ∼ 68% and ∼ 6% in lecithin-cholesterol liposome, respectively, far exceeding the values reported in the literature. Further study by Quartz Crystal Microbalance with Dissipation (QCM-D) revealed that the highly effective encapsulation was due to the rapid mutual adsorption between BSA and defective/curved lecithin double layers during the liposome formation. Such rapid mutual adsorption leads to the layer-by-layer assembly and formation of onion-like compact liposome structure as revealed by Cryo-TEM. This simple FNP method provides a scalable manufacturing approach for liposomes with efficient protein encapsulation. The revealed adsorption mechanism between protein and lecithin bilayers could also serve as a guide for similar studies.
Collapse
Affiliation(s)
- Qiang-Wei Zhan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jun Gao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Dongcui Li
- InCipirit Tech (Guangzhou) Co., Ltd., Guangzhou, Guangdong, China
| | - Yan Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
9
|
Liu P, Chen G, Zhang J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041372. [PMID: 35209162 PMCID: PMC8879473 DOI: 10.3390/molecules27041372] [Citation(s) in RCA: 311] [Impact Index Per Article: 155.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022]
Abstract
Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties, including site-targeting, sustained or controlled release, protection of drugs from degradation and clearance, superior therapeutic effects, and lower toxic side effects. Given these merits, several liposomal drug products have been successfully approved and used in clinics over the last couple of decades. In this review, the liposomal drug products approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) are discussed. Based on the published approval package in the FDA and European public assessment report (EPAR) in EMA, the critical chemistry information and mature pharmaceutical technologies applied in the marketed liposomal products, including the lipid excipient, manufacturing methods, nanosizing technique, drug loading methods, as well as critical quality attributions (CQAs) of products, are introduced. Additionally, the current regulatory guidance and future perspectives related to liposomal products are summarized. This knowledge can be used for research and development of the liposomal drug candidates under various pipelines, including the laboratory bench, pilot plant, and commercial manufacturing.
Collapse
Affiliation(s)
- Peng Liu
- Correspondence: (P.L.); (J.Z.); Tel.: +86-1332-1952-664 (P.L.); +86-1891-7601-368 (J.Z.)
| | | | - Jingchen Zhang
- Correspondence: (P.L.); (J.Z.); Tel.: +86-1332-1952-664 (P.L.); +86-1891-7601-368 (J.Z.)
| |
Collapse
|
10
|
Post-Processing Techniques for the Improvement of Liposome Stability. Pharmaceutics 2021; 13:pharmaceutics13071023. [PMID: 34371715 PMCID: PMC8309137 DOI: 10.3390/pharmaceutics13071023] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Liposomes have been utilized as a drug delivery system to increase the bioavailability of drugs and to control the rate of drug release at the target site of action. However, the occurrence of self-aggregation, coalescence, flocculation and the precipitation of aqueous liposomes during formulation or storage can cause degradation of the vesicle structure, leading to the decomposition of liposomes. To increase the stability of liposomes, post-processing techniques have been applied as an additional process to liposomes after formulation to remove water and generate dry liposome particles with a higher stability and greater accessibility for drug administration in comparison with aqueous liposomes. This review covers the effect of these techniques including freeze drying, spray drying and spray freeze drying on the stability, physicochemical properties and drug encapsulation efficiency of dry liposomes. The parameters affecting the properties of liposomes during the drying process are also highlighted in this review. In addition, the impact of using a protective agent to overcome such limitations of each process is thoroughly discussed through various studies.
Collapse
|
11
|
Castro NR, Pinto CDSC, de Campos VEB, Cardoso V, Vermelho AB, Santos EPD, Mansur CRE. Development of hybrid vesicular nanosystems composed of lipids and chitosan for octyl methoxycinnamate encapsulation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Lucia A, Guzmán E, Rubio RG, Ortega F. Enhanced solubilization of an insect juvenile hormone (JH) mimetic (piryproxyfen) using eugenol in water nanoemulsions stabilized by a triblock copolymer of poly(ethylenglycol) and poly(propilenglycol). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Wang A, Cui J, Wang Y, Zhu H, Li N, Wang C, Shen Y, Liu P, Cui B, Sun C, Zhao X, Wang C, Gao F, Zeng Z, Cui H. Preparation and characterization of a novel controlled-release nano-delivery system loaded with pyraclostrobin via high-pressure homogenization. PEST MANAGEMENT SCIENCE 2020; 76:2829-2837. [PMID: 32246522 DOI: 10.1002/ps.5833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The development of efficient and safe green pesticides is a scientific strategy to alleviate current pesticide residues, environmental pollution, and threats to non-target organisms. Pesticide controlled-release formulations (CRFs) have attracted wide attention because they can control the rate of release of active ingredients and prolong the effective duration. In particular, nanoscale pesticide sustained-release systems have excellent biological activity and distribution performance because of their small particle size. Some technical difficulties remain in obtaining nanoscale CRFs. RESULTS We successfully fabricated pyraclostrobin nanosphere CRF by combining high-pressure homogenization technology and emulsion-solvent evaporation methods. The pyraclostrobin nanospheres had a uniform spherical shape with a mean particle size of 450 nm and polydispersity index of less than 0.3. The pyraclostrobin loading capacity reached 53.6%, with excellent storage stability. The contact angle of nanospheres on cucumber leaf surfaces demonstrated that it had good wettability. Compared with pyraclostrobin technical and commercial formulations, the nanosphere systems showed a significantly sustained release of pyraclostrobin for longer (up to 250 h). A preliminary bioassay against Penicillium ochrochloron showed that the bioactivity and long-term efficiency of pyraclostrobin nanospheres were superior to those of the commercial formulation. CONCLUSION This research introduced a simple, fast, expandable method for preparing pyraclostrobin nanospheres. The results showed that pyraclostrobin nanospheres could prolong the duration of pesticide efficacy and enhance bioactivity. Furthermore, this technology provides a platform for scale-up production of nano-scale pesticide CRFs. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anqi Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianxia Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaxin Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ningjun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Liposomes: Advancements and innovation in the manufacturing process. Adv Drug Deliv Rev 2020; 154-155:102-122. [PMID: 32650041 DOI: 10.1016/j.addr.2020.07.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/13/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Liposomes are well recognised as effective drug delivery systems, with a range of products approved, including follow on generic products. Current manufacturing processes used to produce liposomes are generally complex multi-batch processes. Furthermore, liposome preparation processes adopted in the laboratory setting do not offer easy translation to large scale production, which may delay the development and adoption of new liposomal systems. To promote advancement and innovation in liposome manufacturing processes, this review considers the range of manufacturing processes available for liposomes, from laboratory scale and scale up, through to large-scale manufacture and evaluates their advantages and limitations. The regulatory considerations associated with the manufacture of liposomes is also discussed. New innovations that support leaner scalable technologies for liposome fabrication are outlined including self-assembling liposome systems and microfluidic production. The critical process attributes that impact on the liposome product attributes are outlined to support potential wider adoption of these innovations.
Collapse
|
15
|
Beltrán JD, Ricaurte L, Estrada KB, Quintanilla-Carvajal MX. Effect of homogenization methods on the physical stability of nutrition grade nanoliposomes used for encapsulating high oleic palm oil. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Development and Characterization of Liposomal Formulations Containing Phytosterols Extracted from Canola Oil Deodorizer Distillate along with Tocopherols as Food Additives. Pharmaceutics 2019; 11:pharmaceutics11040185. [PMID: 30995762 PMCID: PMC6523737 DOI: 10.3390/pharmaceutics11040185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 11/17/2022] Open
Abstract
Phytosterols are plant sterols recommended as adjuvant therapy for hypercholesterolemia and tocopherols are well-established anti-oxidants. However, thermo-sensitivity, lipophilicity and formulation-dependent efficacy bring challenges in the development of functional foods, enriched with phytosterols and tocopherols. To address this, we developed liposomes containing brassicasterol, campesterol and β-sitosterol obtained from canola oil deodorizer distillate, along with alpha, gamma and delta tocopherol. Three approaches; thin film hydration-homogenization, thin film hydration-ultrasonication and Mozafari method were used for formulation. Validated liquid chromatographic tandem mass spectrometry (LC-MS/MS) was utilized to determine the entrapment efficiency of bioactives. Stability studies of liposomal formulations were conducted before and after pasteurization using high temperature short time (HTST) technique for a month. Vesicle size after homogenization and ultrasonication (<200 nm) was significantly lower than by Mozafari method (>200 nm). However, zeta potential (-9 to -14 mV) was comparable which was adequate for colloidal stability. Entrapment efficiencies were greater than 89% for all the phytosterols and tocopherols formulated by all three methods. Liposomes with optimum particle size and zeta potential were incorporated in model orange juice, showing adequate stability after pasteurization (72 °C for 15 s) for a month. Liposomes containing phytosterols obtained from canola waste along with tocopherols were developed and successfully applied as a food additive using model orange juice.
Collapse
|
17
|
Toro-Uribe S, Ibáñez E, Decker EA, McClements DJ, Zhang R, López-Giraldo LJ, Herrero M. Design, Fabrication, Characterization, and In Vitro Digestion of Alkaloid-, Catechin-, and Cocoa Extract-Loaded Liposomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12051-12065. [PMID: 30353733 DOI: 10.1021/acs.jafc.8b04735] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Liposomes containing theobromine, caffeine, catechin, epicatechin, and a cocoa extract were fabricated using microfluidization and sonication. A high encapsulation efficiency and good physicochemical stability were obtained by sonication (75% amplitude, 7 min). Liposomes produced at pH 5.0 had mean particle diameter ranging from 73.9 to 84.3 nm. The structural and physicochemical properties of the liposomes were characterized by transmission electron microscopy, confocal fluorescence microscopy, and antioxidant activity assays. The release profile was measured by ultra-high performance liquid chromatography coupled to diode array detection. The bioaccessibility of the bioactive compounds encapsulated in liposomes was determined after exposure to a simulated in vitro digestion model. Higher bioaccessibilities were measured for all catechins-loaded liposome formulations as compared to nonencapsulated counterparts. These results demonstrated that liposomes are capable of increasing the bioaccessibility of flavan-3-ols, which may be important for the development of nutraceutical-enriched functional foods.
Collapse
Affiliation(s)
- Said Toro-Uribe
- Food Science & Technology Research Center (CICTA), School of Chemical Engineering , Universidad Industrial de Santander , Carrera 27, Calle 9 , Bucaramanga 68002 , Colombia
| | - Elena Ibáñez
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC-UAM) , Nicolás Cabrera 9 , Madrid 28049 , Spain
| | | | | | | | - Luis Javier López-Giraldo
- Food Science & Technology Research Center (CICTA), School of Chemical Engineering , Universidad Industrial de Santander , Carrera 27, Calle 9 , Bucaramanga 68002 , Colombia
| | - Miguel Herrero
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC-UAM) , Nicolás Cabrera 9 , Madrid 28049 , Spain
| |
Collapse
|
18
|
Haghighi M, Yarmand MS, Emam-Djomeh Z, McClements DJ, Saboury AA, Rafiee-Tehrani M. Design and fabrication of pectin-coated nanoliposomal delivery systems for a bioactive polyphenolic: Phloridzin. Int J Biol Macromol 2018; 112:626-637. [DOI: 10.1016/j.ijbiomac.2018.01.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
|
19
|
Zhang Q, Ou C, Ye S, Song X, Luo S. Construction of nanoscale liposomes loaded with melatonin via supercritical fluid technology. J Microencapsul 2017; 34:687-698. [PMID: 28866966 DOI: 10.1080/02652048.2017.1376001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melatonin-loaded liposomes (MLL) were successfully prepared using rapid expansion of supercritical solution technology. The effects of supercritical pressure on encapsulation efficiency (EE) and average particle size were then analysed. Meanwhile, temperature, formation time and ethanol concentration in the products were studied and optimised based on the response surface methodology (RSM). An in vitro simulated digestion model was also established to evaluate the release performance of MLL. The results showed that 140 bar was the best pressure for maximising the EE value using RSM optimisation, reaching up to 82.2%. MLL characterisations were performed using analytic techniques including infrared spectroscopy, transmission electron microscopy, a laser scattering particle size analyser and gas chromatograph-mass spectrometer. The size distribution was uniform, with an average diameter of 66 nm. Stability tests proved that MLL maintained good preservation duration, and residual solvent experiments indicated that only 1.03% (mass ratio) of ethanol remained in the products. Simulated release experiments indicated the slow release feature in early digestive stages and more thorough characteristics in later stages of simulated digestion.
Collapse
Affiliation(s)
- Quan Zhang
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| | - Chunfeng Ou
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| | - Shengying Ye
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| | - Xianliang Song
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| | - Shucan Luo
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| |
Collapse
|
20
|
Situ W, Song X, Luo S, Liang Y. A nano-delivery system for bioactive ingredients using supercritical carbon dioxide and its release behaviors. Food Chem 2017; 228:219-225. [DOI: 10.1016/j.foodchem.2017.01.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/07/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
21
|
Chourasiya V, Bohrey S, Pandey A. Formulation, optimization, characterization and in-vitro drug release kinetics of atenolol loaded PLGA nanoparticles using 3 3 factorial design for oral delivery. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.md.2016.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Chourasiya V, Bohrey S, Pandey A. Hydrochlorothiazide containing PLGA nanoparticles: Design, characterization, in-vitro drug release and release kinetic study. POLYMER SCIENCE SERIES B 2015. [DOI: 10.1134/s1560090415060020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Menon P, Yin Yin T, Misran M. Preparation and characterization of liposomes coated with DEAE-Dextran. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.05.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Jin S, Zhang G, Zhang P, Fan S, Li F. High-pressure homogenization pretreatment of four different lignocellulosic biomass for enhancing enzymatic digestibility. BIORESOURCE TECHNOLOGY 2015; 181:270-4. [PMID: 25661305 DOI: 10.1016/j.biortech.2015.01.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 05/25/2023]
Abstract
Grass clipping, corn straw, catalpa sawdust and pine sawdust were pretreated with high-pressure homogenization (HPH) to enhance the enzymatic digestibility. With a working pressure of 10 MPa, all the four lignocellulosic biomass were significantly changed, such as decrease in particle size, structure destruction, and crystallinity change. Results showed that lignocellulosic biomass pretreated with HPH yielded more reducing sugar, which was suitable for subsequent biofuel production. After 48-h enzymatic hydrolysis, the maximum reducing sugar yield of 229.42 mg/g was achieved for grass clipping. For corn straw, the enzymatic hydrolysis efficiency increased by 68.37% at most. However, reducing sugar yield of catalpa sawdust and pine sawdust was relatively lower. Low lignin content and crystallinity might make grass clipping the most suitable material for HPH pretreatment, thus leading to high hydrolysis efficiency. HPH pretreatment could increase biofuel output in a mild condition without adding any chemicals.
Collapse
Affiliation(s)
- Shuguang Jin
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Guangming Zhang
- School of Environment and Resource, Renmin University of China, Beijing 100872, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Shiyang Fan
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Fan Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|