1
|
Ahmad A, Hassan A, Roy PG, Zhou S, Irfan A, Chaudhry AR, Kanwal F, Begum R, Farooqi ZH. Recent developments in chitosan based microgels and their hybrids. Int J Biol Macromol 2024; 260:129409. [PMID: 38224801 DOI: 10.1016/j.ijbiomac.2024.129409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Chitosan based microgels have gained great attention because of their chemical stability, biocompatibility, easy functionalization and potential uses in numerous fields. Production, properties, characterization and applications of chitosan based microgels have been systematically reviewed in this article. Some of these systems exhibit responsive behavior towards external stimuli like pH, light, temperature, glucose, etc. in terms of swelling/deswelling in an aqueous medium depending upon the functionalities present in the network which makes them a potential candidate for various applications in the fields of biomedicine, agriculture, catalysis, sensing and nanotechnology. Current research development and critical overview in this field accompanying by future possibilities is presented. The discussion is concluded with recommended possible future works for further progress in this field.
Collapse
Affiliation(s)
- Azhar Ahmad
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ahmad Hassan
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Prashun Ghosh Roy
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Farah Kanwal
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
2
|
Aycan D, Gül İ, Yorulmaz V, Alemdar N. Gelatin microsphere-alginate hydrogel combined system for sustained and gastric targeted delivery of 5-fluorouracil. Int J Biol Macromol 2024; 255:128022. [PMID: 37972837 DOI: 10.1016/j.ijbiomac.2023.128022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
In the current study, novel gelatin microspheres/methacrylated alginate hydrogel combined system (5-FU-GELms/Alg-MA) was developed for gastric targeted delivery of 5-fluorouracil as an anticancer agent. While water-in-oil emulsification method was used for the production of 5-FU-GELms, Alg-MA was synthesized through methacrylation reaction occurred by epoxide ring-opening mechanism. Then, 5-FU-GELms/Alg-MA hydrogel system was fabricated by the encapsulation of 5-FU-GELms into Alg-MA hydrogel network via UV-crosslinking. To evaluate applicability of fabricated 5-FU-GELms/Alg-MA as gastric targeted drug delivery vehicle, both swelling and in vitro drug release experiments were carried out at pH 1.2 medium resembling gastric fluid. Compared to drug release directly from 5-FU-GELms, 5-FU-GELms/Alg-MA hydrogel system showed more controlled and sustained drug release profile with lower amount of cumulative release starting from early stages, since hydrogel matrix created a barrier to the diffusion of 5-FU included in microspheres. Drug release kinetic results obtained by applying various kinetic models to release data showed that the mechanism of 5-FU release from 5-FU-GELms/Alg-MA hydrogel system is controlled by Fickian diffusion. All results revealed that 5-FU-GELms/Alg-MA hydrogel integrated system could be potentially utilized as gastric targeted drug carrier to enhance therapeutic efficacy and reduce systemic side effects in gastric cancer treatments for future studies.
Collapse
Affiliation(s)
- Didem Aycan
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey
| | - İnanç Gül
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey
| | - Valeria Yorulmaz
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey
| | - Neslihan Alemdar
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey.
| |
Collapse
|
3
|
Nasef SM, Khozemy EE, Mahmoud GA. pH-responsive chitosan/acrylamide/gold/nanocomposite supported with silver nanoparticles for controlled release of anticancer drug. Sci Rep 2023; 13:7818. [PMID: 37188828 DOI: 10.1038/s41598-023-34870-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023] Open
Abstract
In this study, we prepared a pH-responsive nanocomposite hydrogel based on chitosan grafted with acrylamide monomer and gold nanoparticles using gamma irradiation method (Cs-g-PAAm/AuNPs). The nanocomposite was enhanced with a layer coating of silver nanoparticles to improve the controlled release of the anticancer drug fluorouracil while increasing antimicrobial activity and decreasing the cytotoxicity of silver nanoparticles in nanocomposite hydrogel by combining with gold nanoparticles to enhance the ability to kill a high number of liver cancer cells. The structure of the nanocomposite materials was studied using FTIR spectroscopy and XRD patterns, which demonstrated the entrapment of gold and silver nanoparticles within the prepared polymer matrix. Dynamic light scattering data revealed the presence of gold and silver in the nanoscale with the polydispersity indexes in the mid-range values, indicating that distribution systems work best. Swelling experiments at various pH levels revealed that the prepared Cs-g-PAAm/Au-Ag-NPs nanocomposite hydrogels were highly responsive to pH changes. Bimetallic pH-responsive Cs-g-PAAm/Au-Ag-NPs nanocomposites exhibit strong antimicrobial activity. The presence of AuNPs reduced the cytotoxicity of AgNPs while increasing their ability to kill a high number of liver cancer cells.Cs-g-PAAm/Au-Ag-NPs has a high amount of fluorouracil drug loaded at pH 7.4 reaching 95 mg/g with a maximum drug release of 97% within 300 min. Cs-g-PAAm/Au-Ag-NPs have been recommended to use as oral delivery of anticancer drugs because they secure the encapsulated drug in the acidic medium of the stomach and release it in the intestinal pH.
Collapse
Affiliation(s)
- Shaimaa M Nasef
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Ehab E Khozemy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ghada A Mahmoud
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
4
|
Yusefi M, Shameli K, Lee-Kiun MS, Teow SY, Moeini H, Ali RR, Kia P, Jie CJ, Abdullah NH. Chitosan coated magnetic cellulose nanowhisker as a drug delivery system for potential colorectal cancer treatment. Int J Biol Macromol 2023; 233:123388. [PMID: 36706873 DOI: 10.1016/j.ijbiomac.2023.123388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Polysaccharide-based magnetic nanocomposites can eminently illuminate several attractive features as anticancer drug carriers. In this study, rice straw-based cellulose nanowhisker (CNW) was used as solid support for Fe3O4 nanofillers to synthesize magnetic CNW. Then, cross-linked chitosan-coated magnetic CNW for 5-fluorouracil carrier abbreviated as CH/MCNW/5FU. Fourier-transform infrared, X-Ray diffraction, and X-ray photoelectron spectroscopy analysis indicated successful fabrication and multifunctional properties of the CH/MCNW/5FU nanocomposites. In addition, CH/MCNW/5FU nanocomposites showed hydrodynamic diameter and zeta potential value of 181.31 ± 3.46 nm and +23 ± 1.8 mV, respectively. Based on images of transmission electron microscopy, magnetic CNW as reinforcement was coated with chitosan to obtain almost spherical CH/MCNW/5FU nanocomposites with an average diameter of 37.16 ± 3.08. The nanocomposites indicated desired saturation magnetization and thermal stability, high drug encapsulation efficiency, and pH-dependent swelling and drug release performance. CH/MCNW/5FU nanocomposites showed potent killing effects against colorectal cancer cells in both 2D monolayer and 3D spheroid models. These findings suggest CH/MCNW as a potential carrier for anticancer drugs with high tumour-penetrating capacity.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia; Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia; Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany.
| | - Michiele Soon Lee-Kiun
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Sin-Yeang Teow
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Quhai, Wenzhou 325060, Zhejiang Province, China
| | - Hassan Moeini
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Roshafima Rasit Ali
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | - Pooneh Kia
- Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Chia Jing Jie
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | - Nurul Hidayah Abdullah
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Theoretical investigation of Chitosan-Assisted Controlled Release of Digestive System Antitumor Drug Fluorouracil. J Pharm Sci 2022; 111:2049-2055. [PMID: 35122829 DOI: 10.1016/j.xphs.2022.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/22/2022]
Abstract
5-Fluorouracil (5-FU) has been applied to treat pancreatic cancer, which is one of the most common types of digestive system tumors. However, due to poor tumor selectivity, 5-FU's therapeutic effect has certain limitations. 5-FU's activity and selectivity against tumor cells can be improved by chitosan assisted drug delivery systems. Understanding the atomic interaction mechanism between chitosan and 5-FU is important. In this work, the interactions between 5-FU and different types of chitosan were systematically investigated by using molecular dynamics (MD) simulation. Based on the radial distribution function and the free energy calculation, our results demonstrate that the functional groups of chitosan could greatly regulate the interaction behavior between chitosan and 5-FU. Moreover, 5-FU could gradually release from chitosan at a more acidic pH (tumor tissues) environment. These results revealed the underlying atomic interaction mechanism between 5-FU and chitosan at various pH levels, and may be helpful in the design of chitosan-based drug delivery systems.
Collapse
|
6
|
A novel modified chitosan/collagen coated-gold nanoparticles for 5-fluorouracil delivery: Synthesis, characterization, in vitro drug release studies, anti-inflammatory activity and in vitro cytotoxicity assay. Carbohydr Polym 2022; 277:118858. [PMID: 34893265 DOI: 10.1016/j.carbpol.2021.118858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
We report herein the development of the novel nanohybrids of gold nanoparticles reduced/stabilized/coated with collagen (AuNPs@collagen) in the first layer and subsequently modified with biotin-quat188-chitosan (Bi-QCS) in the outer layer for 5-fluorouracil (5-FU) delivery to improve cellular uptake and promote specific cell targeting of the nanocarrier. The fabrication of the layer-by-layer technique on the surface of gold nanoparticles (AuNPs) can overcome the limitation of poor drug loading capacity of the classic AuNPs from 64.67% to 87.46%. The AuNPs@collagen coated by the Bi-QCS exhibits strong electrostatic interactions between drug anion (5-FU) and amine groups of the modified chitosan as well as hydrogen bonding. Furthermore, the Bi-QCS-AuNPs@collagen demonstrated a significantly higher anti-inflammatory activity in RAW264.7 macrophage cell line. The Bi-QCS-AuNPs@collagen enhanced the activity of 5-FU approximately 3.3-fold (HeLa) and 6.2-fold (A549), compared to the free 5-Fluorouracil. According to these results, it is very promising that Bi-QCS-AuNPs@collagen can be used as an effective drug delivery carrier in the future.
Collapse
|
7
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics 2021; 13:1876. [PMID: 34834291 PMCID: PMC8620438 DOI: 10.3390/pharmaceutics13111876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature. Due to the growing interest in the utilization of thermoresponsive polymers in the biological context, it is necessary to increase the knowledge of the key principles of thermoresponsivity in order to obtain comparable results between different studies or applications. In the present review, we provide an overview of the basic principles of thermoresponsivity, as well as a description of the main polysaccharides and thermoresponsive materials, with a special focus on chitosan and poly-N-Vinyl caprolactam (PNVCL) and their biomedical applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|
8
|
Shang H, Ma C, Li C, Zhao J, Elmer W, White JC, Xing B. Copper Oxide Nanoparticle-Embedded Hydrogels Enhance Nutrient Supply and Growth of Lettuce ( Lactuca sativa) Infected with Fusarium oxysporum f. sp. lactucae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13432-13442. [PMID: 34236843 DOI: 10.1021/acs.est.1c00777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of nanotechnology to suppress crop diseases has attracted increasing attention in agriculture. The present work investigated the antifungal efficacy of copper oxide nanoparticle (CuO NP)-embedded hydrogels, which were synthesized by loading CuO nanoparticles (NPs) in hydrogels formed from cross-linked interaction between chitosan and acrylic acid, against Fusarium wilt of lettuce (Lactuca sativa) caused by Fusarium oxysporum f. sp. lactucae. In comparison with CuO NPs, 7-day Cu dissolution from CuO NP-embedded hydrogels was 34.2-94.8% slower regardless of media type, including water, potato dextrose broth, or a soil extract. In a greenhouse study, upon exposure to CuO NP-embedded hydrogels, CuO NPs, or Kocide 3000 with equivalent amounts of Cu (31 mg/kg), the fresh shoot biomass was significantly increased by 40.5, 26.1 and 27.2%, respectively, as compared to that of the infected control. Notably, CuO NP-embedded hydrogels enhanced uptake of P, Mn, Zn, and Mg and increased the levels of organic acids as compared to the diseased control. Increased salicylic acid (SA) and decreased jasmonic acid (JA) and abscisic acid (ABA) levels with the addition of different forms of Cu may have enhanced disease resistance. Taken together, our findings provide useful information and approach for improving the delivery efficiency of agrichemicals via nanoenabled strategies and an advanced understanding of plant defense mechanisms triggered by Cu-based NPs.
Collapse
Affiliation(s)
- Heping Shang
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Li
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jian Zhao
- IInstitute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Wade Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
9
|
Yusefi M, Chan HY, Teow SY, Kia P, Lee-Kiun Soon M, Sidik NABC, Shameli K. 5-Fluorouracil Encapsulated Chitosan-Cellulose Fiber Bionanocomposites: Synthesis, Characterization and In Vitro Analysis towards Colorectal Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1691. [PMID: 34203241 PMCID: PMC8305564 DOI: 10.3390/nano11071691] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022]
Abstract
Cellulose and chitosan with remarkable biocompatibility and sophisticated physiochemical characteristics can be a new dawn to the advanced drug nano-carriers in cancer treatment. This study aims to synthesize layer-by-layer bionanocomposites from chitosan and rice straw cellulose encapsulated 5-Fluorouracil (CS-CF/5FU BNCs) using the ionic gelation method and the sodium tripolyphosphate (TPP) cross-linker. Data from X-ray and Fourier-transform infrared spectroscopy showed successful preparation of CS-CF/5FU BNCs. Based on images of scanning electron microscopy, 48.73 ± 1.52 nm was estimated for an average size of the bionanocomposites as spherical chitosan nanoparticles mostly coated rod-shaped cellulose reinforcement. 5-Fluorouracil indicated an increase in thermal stability after its encapsulation in the bionanocomposites. The drug encapsulation efficiency was found to be 86 ± 2.75%. CS-CF/5FU BNCs triggered higher drug release in a media simulating the colorectal fluid with pH 7.4 (76.82 ± 1.29%) than the gastric fluid with pH 1.2 (42.37 ± 0.43%). In in vitro cytotoxicity assays, cellulose fibers, chitosan nanoparticles and the bionanocomposites indicated biocompatibility towards CCD112 normal cells. Most promisingly, CS-CF/5FU BNCs at 250 µg/mL concentration eliminated 56.42 ± 0.41% of HCT116 cancer cells and only 8.16 ± 2.11% of CCD112 normal cells. Therefore, this study demonstrates that CS-CF/5FU BNCs can be considered as an eco-friendly and innovative nanodrug candidate for potential colorectal cancer treatment.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| | - Hui-Yin Chan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (H.-Y.C.); (S.-Y.T.); (M.L.-K.S.)
| | - Sin-Yeang Teow
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (H.-Y.C.); (S.-Y.T.); (M.L.-K.S.)
| | - Pooneh Kia
- Institute of Bio Science, University Putra Malaysia, Serdang 43400, Malaysia;
| | - Michiele Lee-Kiun Soon
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (H.-Y.C.); (S.-Y.T.); (M.L.-K.S.)
| | - Nor Azwadi Bin Che Sidik
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| |
Collapse
|
10
|
González-Urías A, Manzanares-Guevara LA, Licea-Claveríe Á, Ochoa-Terán A, Licea-Navarro AF, Bernaldez-Sarabia J, Zapata-González I. Stimuli responsive nanogels with intrinsic fluorescence: Promising nanovehicles for controlled drug delivery and cell internalization detection in diverse cancer cell lines. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Esfahani RE, Zahedi P, Zarghami R. 5-Fluorouracil-loaded poly(vinyl alcohol)/chitosan blend nanofibers: morphology, drug release and cell culture studies. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00882-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Preparation of degradable magnetic temperature- and redox-responsive polymeric/Fe3O4 nanocomposite nanogels in inverse miniemulsions for loading and release of 5-fluorouracil. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124363] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Rezaei M, Abbasi A, Dinarvand R, Jeddi-Tehrani M, Janczak J. Design and Synthesis of a Biocompatible 1D Coordination Polymer as Anti-Breast Cancer Drug Carrier, 5-Fu: In Vitro and in Vivo Studies. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17594-17604. [PMID: 29771107 DOI: 10.1021/acsami.8b03111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Designable coordination polymers with suitable chemical diversities and biocompatible structures have been proposed as a promising class of vehicles for drug delivery systems. Here, we hydrothermally synthesized a novel one-dimensional (1D) coordination polymer, [Zn(H2O)6K2(H2BTC)2(H2O)4](H2BTC)2·2H2O, where H3BTC = benzene-1,3,5-tricarboxylic acid (trimesic acid), cp.1. As the hydrogen bonds stabilized 1D chains in three dimensions, the cp.1 could be a good candidate for delivering small-molecule chemotherapeutics such as 5-fluorouracil (5-Fu). The synthesized cp.1 showed a remarkable 5-Fu loading of 66% with encapsulation efficiency of 98% and almost complete release process. The 5-Fu-loaded cp.1 displayed a time-dependent cytotoxicity effect against breast cancer cell lines MCF-7 and 4T1. The cellular uptake of cp.1 particles was investigated via confocal laser scanning microscopy using fluorescein isothiocyanate and LysoTracker Red staining. Furthermore, the in vivo antitumor impact of 5-Fu-loaded cp.1 was studied on 4T1 breast cancer BALB/c mice model. The intratumor treatment of 5-Fu-loaded cp.1 demonstrated beneficial antitumor efficacy by postponing tumor growth. These results suggest that the 5-Fu-loaded cp.1 microparticles with a great locoregional delivery can be efficient anticancer drug carriers for further clinical treatments.
Collapse
Affiliation(s)
- Mahsa Rezaei
- School of Chemistry, College of Science , University of Tehran , Tehran 14155-6455 , Iran
| | - Alireza Abbasi
- School of Chemistry, College of Science , University of Tehran , Tehran 14155-6455 , Iran
| | | | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR , Tehran 19615-1177 , Iran
| | - Jan Janczak
- Institute of Low Temperature and Structure Research , Polish Academy of Sciences , P.O. Box 1410, Wroclaw 50-950 , Poland
| |
Collapse
|
14
|
Argüelles-Monal WM, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota MT, Montiel-Herrera M. Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials. Polymers (Basel) 2018; 10:E342. [PMID: 30966377 PMCID: PMC6414943 DOI: 10.3390/polym10030342] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022] Open
Abstract
The functionalization of polymeric substances is of great interest for the development of innovative materials for advanced applications. For many decades, the functionalization of chitosan has been a convenient way to improve its properties with the aim of preparing new materials with specialized characteristics. In the present review, we summarize the latest methods for the modification and derivatization of chitin and chitosan under experimental conditions, which allow a control over the macromolecular architecture. This is because an understanding of the interdependence between chemical structure and properties is an important condition for proposing innovative materials. New advances in methods and strategies of functionalization such as the click chemistry approach, grafting onto copolymerization, coupling with cyclodextrins, and reactions in ionic liquids are discussed.
Collapse
Affiliation(s)
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Sonora, Mexico.
| | - Daniel Fernández-Quiroz
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | | | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| |
Collapse
|
15
|
PNIPAM-MAPOSS Hybrid Hydrogels with Excellent Swelling Behavior and Enhanced Mechanical Performance: Preparation and Drug Release of 5-Fluorouracil. Polymers (Basel) 2018; 10:polym10020137. [PMID: 30966173 PMCID: PMC6414838 DOI: 10.3390/polym10020137] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/18/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) is a widely-studied polymers due to its excellent temperature sensitivity. PNIPAM-MAPOSS hybrid hydrogel, based on the introduction of acrylolsobutyl polyhedral oligomeric silsesquioxane (MAPOSS) into the PNIPAM matrix in the presence of polyethylene glycol, was prepared via radical polymerization. The modified hydrogels exhibited a thick, heterogeneous porous structure. PEG was used as a pore-forming agent to adjust the pore size. MAPOSS reduced the swelling ratios of gels, and decreased the LCST, causing the hydrogels to shrink at lower temperatures. However, its hydrophobicity helped to improve the temperature response rate. The incorporation of rigid MAPOSS into the polymer network greatly increased the compressive modulus of the hydrogel. It is worth noting that, by adjusting the amount of MAPOSS and PEG, the hydrogel could have both ideal mechanical properties and swelling behavior. In addition, hydrogel containing 8.33 wt % MAPOSS could achieve stable and sustained drug release. Thus, the prepared PNIPAM-MAPOSS hybrid hydrogel can serve as drug carrier for 5-fluorouracil and may have potential application in other biomedical fields.
Collapse
|
16
|
Jiang X, Wang Q, Liu Y, Fu X, Luo Y, Lyu Y. A nanoscale porous glucose-based polymer for gas adsorption and drug delivery. NEW J CHEM 2018. [DOI: 10.1039/c8nj03160f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A glucose-based nanoporous organic polymer with the –OH group shows significant CO2 uptake capacities and good drug release behaviour.
Collapse
Affiliation(s)
- Xiaowei Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Qiuliang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Yunfei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Xiaohui Fu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Yali Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Yinong Lyu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| |
Collapse
|
17
|
Don TM, Lu KY, Lin LJ, Hsu CH, Wu JY, Mi FL. Temperature/pH/Enzyme Triple-Responsive Cationic Protein/PAA-b-PNIPAAm Nanogels for Controlled Anticancer Drug and Photosensitizer Delivery against Multidrug Resistant Breast Cancer Cells. Mol Pharm 2017; 14:4648-4660. [DOI: 10.1021/acs.molpharmaceut.7b00737] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Trong-Ming Don
- Department
of Chemical and Materials Engineering, Tamkang University, New Taipei City 25137, Taiwan
| | - Kun-Ying Lu
- Graduate
Institute of Biomedical Materials and Tissue Engineering, College
of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Jie Lin
- Department
of Chemical and Materials Engineering, Tamkang University, New Taipei City 25137, Taiwan
| | - Chun-Hua Hsu
- Department
of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jui-Yu Wu
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department
of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Fwu-Long Mi
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department
of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
18
|
|
19
|
Anirudhan TS, Binusreejayan B, Christa J. Multi-polysaccharide based stimuli responsive polymeric network for the in vitro release of 5-fluorouracil and levamisole hydrochloride. NEW J CHEM 2017. [DOI: 10.1039/c7nj01745f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-polysaccharide-based core shell system is reported for the first time for the delivery of dual drugs.
Collapse
Affiliation(s)
| | - Binusreejayan Binusreejayan
- Department of Chemistry
- School of Physical and Mathematical Sciences
- University of Kerala
- Thiruvananthapuram
- India
| | - John Christa
- Department of Chemistry
- School of Physical and Mathematical Sciences
- University of Kerala
- Thiruvananthapuram
- India
| |
Collapse
|
20
|
Maltas E, Gubbuk IH, Yildiz S. Development of doxorubicin loading platform based albumin-sporopollenin as drug carrier. Biochem Biophys Rep 2016; 7:201-205. [PMID: 28955907 PMCID: PMC5613350 DOI: 10.1016/j.bbrep.2016.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/01/2016] [Accepted: 06/14/2016] [Indexed: 02/08/2023] Open
Abstract
Albumin is thought as an drug carrier for doxorubicin (DOX). The binding of doxorubicin to albumin was studied on the surface of sporopolleninin (SP) to produce a new drug system based natural materials. Human serum albumin (HSA) was immobilized on SPIONs in 20 mM Tris buffer, 7.4 of pH. Data showed that binding amount of HSA has been found to be as 285.53 µg to the 25 mg of Sporopolleninin which also bounded 319.76 µM of DOX. Binding of protein and drug to Sp were clarified by SEM, EDX and FT-IR analysis.
Collapse
Affiliation(s)
- Esra Maltas
- Department of Chemistry, Selcuk University, 42075 Konya, Turkey
- Department of Biochemistry, Selcuk University, 42075 Konya, Turkey
| | | | - Salih Yildiz
- Department of Chemistry, Selcuk University, 42075 Konya, Turkey
| |
Collapse
|