1
|
Jiang Y, Guo M, Shao Y, Du Y, Wang J, Huang Z, Li J, Wang Y, Liu G. Molecular characterization on the fractionation of organic phosphorus induced by iron oxide adsorption using ESI-FT-ICR MS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116910. [PMID: 39191134 DOI: 10.1016/j.ecoenv.2024.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
The interaction between organic phosphorus (OP) and iron oxide significantly influences the phosphorus cycle in the natural environment. In shallow lakes, intense oxidation-reduction fluctuations constantly alter the existing form of iron oxides, but little is known about their impact on the adsorption and fractionation of OP molecules. In this study, electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS) was used to investigate the fractionation of OP from alkali-extracted sediment induced by crystalline goethite and amorphous ferrihydrite adsorption at a molecular scale. The results showed that ferrihydrite and goethite both exhibited high OP adsorption, and the adsorption amount decreased as the pH increased. The adsorption kinetics matched the pseudo-second-order equation. The ESI-FT-ICR MS analysis showed that 91 P-containing formulas were detected in the alkaline-extracted sediment solution. Ferrihydrite and goethite adsorbed 51 and 24 P-containing formulas, respectively, with adsorption rates of 56.0 % and 26.4 %. Ferrihydrite could adsorb more OP compounds than goethite, but no obvious molecular species selectivity was observed during the adsorption. The P-containing compounds, including unsaturated hydrocarbons-, lignin/carboxyl-rich alicyclic molecule (CRAM)-, tannin-, and carbohydrate-like molecular compounds, were more suitable for iron oxide adsorption. The double bond equivalence (DBE) is a valuable parameter that indicates OP fractionation during adsorption, and P-containing compounds with lower DBE values such as lipid- and protein-like molecular were prone to remain in the solution after adsorption. These research results provide insights into the biogeochemical cycling process of P in the natural environment.
Collapse
Affiliation(s)
- Yongcan Jiang
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou, Zhejiang Province 311122, China; Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, HangZhou, Zhejiang Province 310058, China.
| | - Minli Guo
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinlong Shao
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou, Zhejiang Province 311122, China
| | - Yunling Du
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou, Zhejiang Province 311122, China
| | - Jie Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zekai Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianfeng Li
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou, Zhejiang Province 311122, China
| | - Yi Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanglong Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Lai JL, Li ZG, Wang Y, Xi HL, Luo XG. Tritium and Carbon-14 Contamination Reshaping the Microbial Community Structure, Metabolic Network, and Element Cycle in the Seawater Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5305-5316. [PMID: 36952228 DOI: 10.1021/acs.est.3c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The potential ecological risks caused by entering radioactive wastewater containing tritium and carbon-14 into the sea require careful evaluation. This study simulated seawater's tritium and carbon-14 pollution and analyzed the effects on the seawater and sediment microenvironments. Tritium and carbon-14 pollution primarily altered nitrogen and phosphorus metabolism in the seawater environment. Analysis by 16S rRNA sequencing showed changes in the relative abundance of microorganisms involved in carbon, nitrogen, and phosphorus metabolism and organic matter degradation in response to tritium and carbon-14 exposure. Metabonomics and metagenomic analysis showed that tritium and carbon-14 exposure interfered with gene expression involving nucleotide and amino acid metabolites, in agreement with the results seen for microbial community structure. Tritium and carbon-14 exposure also modulated the abundance of functional genes involved in carbohydrate, phosphorus, sulfur, and nitrogen metabolic pathways in sediments. Tritium and carbon-14 pollution in seawater adversely affected microbial diversity, metabolic processes, and the abundance of nutrient-cycling genes. These results provide valuable information for further evaluating the risks of tritium and carbon-14 in marine environments.
Collapse
Affiliation(s)
- Jin-Long Lai
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhan-Guo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
3
|
Solhtalab M, Moller SR, Gu AZ, Jaisi D, Aristilde L. Selectivity in Enzymatic Phosphorus Recycling from Biopolymers: Isotope Effect, Reactivity Kinetics, and Molecular Docking with Fungal and Plant Phosphatases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16441-16452. [PMID: 36283689 PMCID: PMC9670850 DOI: 10.1021/acs.est.2c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Among ubiquitous phosphorus (P) reserves in environmental matrices are ribonucleic acid (RNA) and polyphosphate (polyP), which are, respectively, organic and inorganic P-containing biopolymers. Relevant to P recycling from these biopolymers, much remains unknown about the kinetics and mechanisms of different acid phosphatases (APs) secreted by plants and soil microorganisms. Here we investigated RNA and polyP dephosphorylation by two common APs, a plant purple AP (PAP) from sweet potato and a fungal phytase from Aspergillus niger. Trends of δ18O values in released orthophosphate during each enzyme-catalyzed reaction in 18O-water implied a different extent of reactivity. Subsequent enzyme kinetics experiments revealed that A. niger phytase had 10-fold higher maximum rate for polyP dephosphorylation than the sweet potato PAP, whereas the sweet potato PAP dephosphorylated RNA at a 6-fold faster rate than A. niger phytase. Both enzymes had up to 3 orders of magnitude lower reactivity for RNA than for polyP. We determined a combined phosphodiesterase-monoesterase mechanism for RNA and terminal phosphatase mechanism for polyP using high-resolution mass spectrometry and 31P nuclear magnetic resonance, respectively. Molecular modeling with eight plant and fungal AP structures predicted substrate binding interactions consistent with the relative reactivity kinetics. Our findings implied a hierarchy in enzymatic P recycling from P-polymers by phosphatases from different biological origins, thereby influencing the relatively longer residence time of RNA versus polyP in environmental matrices. This research further sheds light on engineering strategies to enhance enzymatic recycling of biopolymer-derived P, in addition to advancing environmental predictions of this P recycling by plants and microorganisms.
Collapse
Affiliation(s)
- Mina Solhtalab
- Department
of Biological and Environmental Engineering, College of Agriculture
and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Spencer R. Moller
- Department
of Plant and Soil Sciences, University of
Delaware, Newark, Delaware 19716, United States
| | - April Z. Gu
- School
of Civil and Environmental Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Deb Jaisi
- Department
of Plant and Soil Sciences, University of
Delaware, Newark, Delaware 19716, United States
| | - Ludmilla Aristilde
- Department
of Biological and Environmental Engineering, College of Agriculture
and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Wang J, Li F, Wang M, Wang H, Elgarhy AH, Liu G, Zhang L, Hu R. The effect of iron oxide types on the photochemical transformation of organic phosphorus in water. CHEMOSPHERE 2022; 307:135900. [PMID: 35944668 DOI: 10.1016/j.chemosphere.2022.135900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Iron oxides play an important role in the transport and transformation of organic phosphorus in aquatic environments. However, the effect of different types of iron oxide on the environmental fate of organic phosphorus has remained unclear. In this study, the photodegradation of the organic phosphorus compound adenosine triphosphate (ATP) via the activity of crystalline (goethite) and amorphous (ferrihydrite) iron oxides was investigated. It was found that ATP was photodegraded by goethite, resulting in the release of dissolved inorganic phosphate under simulated sunlight irradiation. The concentration of ATP on goethite decreased by 75% after 6 h of simulated sunlight irradiation, while the concentration of ATP on ferrihydrite decreased by only 22%. ATR-FTIR spectroscopy revealed that the intensity of the peaks for the P-O and PO stretching vibrations in the goethite-ATP complex decreased significantly more after simulated sunlight irradiation than did those for the ferrihydrite treatment. Combined with the higher TOC/TOC0 values for the goethite treatment, the results indicate that a more vigorous photochemical reaction took place in the presence of goethite than with ferrihydrite. Reactive oxygen species analysis also showed that hydroxyl and superoxide anion radicals were generated when goethite was exposed to simulated sunlight irradiation, while ferrihydrite did not exhibit this ability. Overall, this study highlights that the type of iron oxide is an important factor in the transformation of organic phosphorus in aquatic environments.
Collapse
Affiliation(s)
- Jie Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fengjie Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Mi Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hualing Wang
- Academy of Agricultural Sciences of Shiyan, Shiyan, 442000, Hubei, China
| | - Abdelbaky Hossam Elgarhy
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanglong Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lichao Zhang
- Jiangxi Academy of Water Science and Engineering, Nanchang, 330029, Jiangxi, China
| | - Ronggui Hu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Jin Z, Wang J, Jiang S, Yang J, Qiu S, Chen J. Fuel from within: Can suspended phosphorus maintain algal blooms in Lake Dianchi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119964. [PMID: 36007791 DOI: 10.1016/j.envpol.2022.119964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Extensive algal bloom in the surface water is a pressing issue in Lake Dianchi that causes lake restoration to be difficult owing to complex and variable phosphorus (P) sources in the water column. P released from algae, suspended particles (SS), and sediment can provide sustainable P sources for algal blooms. However, little is known regarding the dynamic of P speciation in these substances from different sources. In this study, solution 31P nuclear magnetic resonance (31P NMR) and chemical sequential extraction were employed to identify P speciation in algae, SS, and sediment during different periods. Results showed that dissolved inorganic P (Pi) directly accumulated in algae in the form of orthophosphate (ortho-P) and pyrophosphate (pyro-P). Algae preferentially utilized Pi, followed by organic P (Po) in the water column when the Pi was insufficient during growth and reproduction. The 31P NMR spectra demonstrated that ortho-P, orthophosphate monoesters (mono-P), orthophosphate diesters (diester-P), and pyro-P dominated the P compounds across the samples tested. Increasing remineralization of SS mono-P driven by intense alkaline phosphatase activities was caused by increasing P needs of algae and pressure of P supply in the water column. The higher ratios of diester-P to mono-P in sediment (mean 0.55) than those in algae (mean 0.07) and SS (mean 0.11 in surface water, 0.14 in bottom water) suggested that the degradation and regeneration occurred within these P compounds during or after sedimentation. Pi content in algae during growth and reproduction was controlled by its P absorption and utilization strategies. Results of this study provide insights into the dynamic cycling of P in algae, SS, and sediment, explaining the reason for algal blooms in the surface water with low concentrations of dissolved P.
Collapse
Affiliation(s)
- Zuxue Jin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Shihao Jiang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Jiaojiao Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shuoru Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
6
|
Atyaksheva LF, Ibrahimzade TI, Kasyanov IA. Adsorption and catalytic properties of enzymes on the surface of silicalite-1. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Manzoor A, Dippold MA, Loeppmann S, Blagodatskaya E. Two-Phase Conceptual Framework of Phosphatase Activity and Phosphorus Bioavailability. FRONTIERS IN PLANT SCIENCE 2022; 13:935829. [PMID: 35928705 PMCID: PMC9343760 DOI: 10.3389/fpls.2022.935829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/15/2022] [Indexed: 06/02/2023]
Abstract
The activity of extracellular phosphatases is a dynamic process controlled by both plant roots and microorganisms, which is responsible for the mineralization of soil phosphorus (P). Plants regulate the availability of soil P through the release of root mucilage and the exudation of low-molecular weight organic acids (LMWOAs). Mucilage increases soil hydraulic conductivity as well as pore connectivity, both of which are associated with increased phosphatase activity. The LMWOAs, in turn, stimulate the mineralization of soil P through their synergistic effects of acidification, chelation, and exchange reactions. This article reviews the catalytic properties of extracellular phosphatases and their interactions with the rhizosphere interfaces. We observed a biphasic effect of root metabolic products on extracellular phosphatases, which notably altered their catalytic mechanism. In accordance with the proposed conceptual framework, soil P is acquired by both plants and microorganisms in a coupled manner that is characterized by the exudation of their metabolic products. Due to inactive or reduced root exudation, plants recycle P through adsorption on the soil matrix, thereby reducing the rhizosphere phosphatase activity. The two-phase conceptual framework might assist in understanding P-acquisition (substrate turnover) and P-restoration (phosphatase adsorption by soil) in various terrestrial ecosystems.
Collapse
Affiliation(s)
- Aamir Manzoor
- Biogeochemistry of Agroecosystems, University of Goettingen, Goettingen, Germany
| | - Michaela A. Dippold
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Sebastian Loeppmann
- Biogeochemistry of Agroecosystems, University of Goettingen, Goettingen, Germany
- Institute of Plant Nutrition and Soil Science, Christian–Albrechts University, Kiel, Germany
| | | |
Collapse
|
8
|
Ni Z, Li Y, Wang S. Cognizing and characterizing the organic phosphorus in lake sediments: Advances and challenges. WATER RESEARCH 2022; 220:118663. [PMID: 35661507 DOI: 10.1016/j.watres.2022.118663] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Organic phosphorus (OP) is one of the main forms of phosphorus in lake ecosystems. Mounting evidence has shown that sediment OP has become a major but underestimated issue in addressing lake eutrophication and algal bloom. However, a holistic view of sediment OP remains missing. This review aims to provide an overview of progress on the studies of OP in lake sediments, focusing on the contribution of OP to internal P loading, its potential role in algal bloom, and the migration and transformation. In addition, this work systematically summarized current methods for characterizing OP content, chemical fraction, composition, bioavailability, and assessment of OP release in sediment, with the pros and cons of each method being discussed. In the end, this work pointed out following efforts needed to deepen the understanding of sediment OP, namely: (1) In-depth literature review from a global perspective regarding the contribution of sediment OP to internal P loading with further summary about its pattern of distribution, accumulation and historical changes; (2) better mathematical models for describing drivers and the linkages between the biological pump of algal bloom and the replenishment of sediment OP; (3) fully accounting the composition and molecular size of OP for better understanding its transformation process and mechanism; ; (4) developing direct, high-sensitivity and combined techniques to improve the precision for identifying OP in sediments; (5) establishing the response of OP molecular properties and chemical reactivity to OP biodegradability and designing a comprehensive and accurate composite index to deepen the understanding for the bioavailability of OP; and (6) integrating fundamental processes of OP in current models to better describe the release and exchange of P in sediment-water interface (SWI). This work is expected to provide critical information about OP properties and deliver perspectives of novel characterization methods.
Collapse
Affiliation(s)
- Zhaokui Ni
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yu Li
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shengrui Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake Watershed, Kunming 650034, China.
| |
Collapse
|
9
|
Chlorella potential to purify domestic garbage leachate for biomass production and community structure responses of wastewater-borne bacteria. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Park Y, Solhtalab M, Thongsomboon W, Aristilde L. Strategies of organic phosphorus recycling by soil bacteria: acquisition, metabolism, and regulation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:3-24. [PMID: 35001516 PMCID: PMC9306846 DOI: 10.1111/1758-2229.13040] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Critical to meeting cellular phosphorus (P) demand, soil bacteria deploy a number of strategies to overcome limitation in inorganic P (Pi ) in soils. As a significant contributor to P recycling, soil bacteria secrete extracellular enzymes to degrade organic P (Po ) in soils into the readily bioavailable Pi . In addition, several Po compounds can be transported directly via specific transporters and subsequently enter intracellular metabolic pathways. In this review, we highlight the strategies that soil bacteria employ to recycle Po from the soil environment. We discuss the diversity of extracellular phosphatases in soils, the selectivity of these enzymes towards various Po biomolecules and the influence of the soil environmental conditions on the enzyme's activities. Moreover, we outline the intracellular metabolic pathways for Po biosynthesis and transporter-assisted Po and Pi uptake at different Pi availabilities. We further highlight the regulatory mechanisms that govern the production of phosphatases, the expression of Po transporters and the key metabolic changes in P metabolism in response to environmental Pi availability. Due to the depletion of natural resources for Pi , we propose future studies needed to leverage bacteria-mediated P recycling from the large pools of Po in soils or organic wastes to benefit agricultural productivity.
Collapse
Affiliation(s)
- Yeonsoo Park
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| | - Mina Solhtalab
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| | - Wiriya Thongsomboon
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Chemistry, Faculty of ScienceMahasarakham UniversityMahasarakham44150Thailand
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| |
Collapse
|
11
|
Bai X, Zhou Y, Ye W, Zhao H, Wang J, Li W. Response of organic phosphorus in lake water to environmental factors: A simulative study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147275. [PMID: 33940417 DOI: 10.1016/j.scitotenv.2021.147275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Transformation of organic phosphorus (P) is directly related to a range of environmental factors, therefore exploring their relationships is vital to understanding the biogeochemical cycling of P and its significance in eutrophication of lake waters. In this study, a series of experiments were conducted to simulate the organic P transformation in the water under the influence of dissolved oxygen (DO), temperature and phytoplankton growth. Results showed that the transformation rate of total organic P increased with temperature, ranging from 0.02 to 0.25 mg L-1 day-1 at 5 °C, and from 0.04 to 0.72 mg L-1 day-1at 30 °C. The transformation rate of total organic P was significantly higher under anaerobic conditions than that under aerobic conditions at 20 °C and 30 °C, indicating that DO is a more important factor for the transformation of total organic P at the high temperature. However, different compounds of organic P responded differently to environmental factors. The change of orthophosphate monoester (Mono-P) content was consistent with that of total organic P when the temperature and DO were the same, but the transformation rates of phosphonate and DNA in the water were less affected by changes of temperature and DO. Additionally, the transformation rate of Mono-P was increased by the growth of phytoplankton when it was used as a P source. Although the relationships between alkaline phosphatase (ALP) activity and organic P are complex, ALP may be the main factor affecting the transformation of organic P at lower temperatures.
Collapse
Affiliation(s)
- Xiuling Bai
- College of Environment and Planning, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Yunkai Zhou
- College of Environment and Planning, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China.
| | - Wenna Ye
- College of Environment and Planning, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Hongyan Zhao
- College of Environment and Planning, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Jiehua Wang
- College of Environment and Planning, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Wenchao Li
- College of Environment and Planning, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| |
Collapse
|
12
|
Solhtalab M, Klein AR, Aristilde L. Hierarchical Reactivity of Enzyme-Mediated Phosphorus Recycling from Organic Mixtures by Aspergillus niger Phytase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2295-2305. [PMID: 33305954 DOI: 10.1021/acs.jafc.0c05924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biological recycling of inorganic phosphorus (Pi) from organic phosphorus (Po) compounds by phosphatase-type enzymes, including phytases, is an important contributor to the pool of bioavailable P to plants and microorganisms. However, studies of mixed-substrate reactions with these enzymes are lacking. Here, we explore the reactivity of a phytase extract from the fungus Aspergillus niger toward a heterogeneous mixture containing, in addition to phytate, different structures of environmentally relevant Po compounds such as ribonucleotides and sugar phosphates. Using a high-resolution liquid chromatography-mass spectrometry method to monitor simultaneously the parent Po compounds and their by-products, we captured sequential substrate-specific evolution of Pi from the mixture, with faster hydrolysis of multiphosphorylated compounds (phytate, diphosphorylated sugars, and di- and tri-phosphorylated ribonucleotides) than hydrolysis of monophosphorylated compounds (monophosphorylated sugars and monophosphorylated ribonucleotides). The interaction mechanisms and energies revealed by molecular docking simulations of each Po compound within the enzyme's active site explained the substrate hierarchy observed experimentally. Specifically, the favorable orientation for binding of the negatively charged phosphate moieties with respect to the positive potential surface of the active site was important. Collectively, our findings provide mechanistic insights about the broad but hierarchical role of phytase-type enzymes in Pi recycling from the heterogeneous assembly of Po compounds in agricultural soils or wastes.
Collapse
Affiliation(s)
- Mina Solhtalab
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Annaleise R Klein
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Feng W, Yang F, Zhang C, Liu J, Song F, Chen H, Zhu Y, Liu S, Giesy JP. Composition characterization and biotransformation of dissolved, particulate and algae organic phosphorus in eutrophic lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114838. [PMID: 32563804 DOI: 10.1016/j.envpol.2020.114838] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/03/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Characteristics and transformation of organic phosphorus in water are vital to biogeochemical cycling of phosphorus and support of blooms of phytoplankton and cyanobacteria. Using solution 31P nuclear magnetic resonance (NMR), combined with field surveys and lab analyses, composition and structural characteristics of dissolved phosphorus (DP), particulate phosphorus (PP) and organic P in algae were studied in two eutrophic lakes in China, Tai Lake and Chao Lake. Factors influencing migration and transformation of these constituents in lake ecosystems were also investigated. A method was developed to extract, flocculate and concentrate DP and PP from lake water samples. Results showed that orthophosphate (Ortho-P) constituted 32.4%-81.3% of DP and 43.7%-54.9% of PP, respectively; while monoester phosphorus (Mono-P) was 13.2%-54.0% of DP and 32.9%-43.7% of PP, respectively. Phosphorus in algae was mostly organic P, especially Mono-P, which was ≥50% of TP. Environmental factors and water quality parameters such as temperature (T), electrical conductivity (EC), pH, secchi depth (SD), dissolved oxygen (DO), chemical oxygen demand (CODcr), chlorophyll-a (Chl-a), affected the absolute and relative concentrations of various P components in the two lakes. Increased temperature promoted bioavailable P (Ortho-P and Mono-P) release to the lake waters. The results can provide an important theoretical basis for the mutual conversion process of organic P components between various media in the lake water environment.
Collapse
Affiliation(s)
- Weiying Feng
- School of Space and Environment, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Fang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Chen Zhang
- Quality Inspection and Standard Research Center, Postal Scientific Research and Planning Academy, Beijing, 100096, China
| | - Jing Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haiyan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuanrong Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shasha Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - John P Giesy
- Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; Department of Environmental Science, Baylor, University, Waco, TX, USA; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
14
|
Xomphoutheb T, Jiao S, Guo X, Mabagala FS, Sui B, Wang H, Zhao L, Zhao X. The effect of tillage systems on phosphorus distribution and forms in rhizosphere and non-rhizosphere soil under maize (Zea mays L.) in Northeast China. Sci Rep 2020; 10:6574. [PMID: 32313140 PMCID: PMC7171091 DOI: 10.1038/s41598-020-63567-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/02/2020] [Indexed: 11/09/2022] Open
Abstract
An appropriate tillage method must be implemented by maize growers to improve phosphorus dynamics in the soil in order to increase phosphorus uptake by plant. The objective of this study was to investigate the effects of tillage systems on phosphorus and its fractions in rhizosphere and non-rhizosphere soils under maize. An experimental field was established, with phosphate fertilizers applied to four treatment plots: continuous rotary tillage (CR), continuous no-tillage (CN), plowing-rotary tillage (PR), and plowing-no tillage (PN). Under the different tillage methods, the available P was increased in the non-rhizosphere region. However, the concentration of available P was reduced in the rhizosphere soil region. The soil available P decreased with the age of the crop until the maize reached physiological maturity. The non-rhizosphere region had 132.9%, 82.5%, 259.8%, and 148.4% more available P than the rhizosphere region under the CR, PR, CN, and PN treatments, respectively. The continuous no-tillage method (CN) improved the uptake of soil phosphate by maize. The concentrations of Ca2-P, Ca8-P, Fe-P, Al-P and O-P at the maturity stage were significantly lower than other seedling stages. However, there was no significant relationship between total P and the P fractions. Therefore, a continuous no-tillage method (CN) can be used by farmers to improve phosphorus availability for spring maize. Soil management practices minimizing soil disturbance can be used to impove phosphorus availability for maize roots, increase alkaline phosphatase activity in the rhizosphere soil and increase the abundance of different phosphorus fractions.
Collapse
Affiliation(s)
- Thidaphone Xomphoutheb
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, P.R. China
| | - Shuai Jiao
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, P.R. China
| | - Xinxin Guo
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, 31900, Malaysia
| | - Frank Stephano Mabagala
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, P.R. China
| | - Biao Sui
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, P.R. China
| | - Hongbin Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, P.R. China
| | - Lanpo Zhao
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, P.R. China
| | - Xingmin Zhao
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, P.R. China.
| |
Collapse
|
15
|
Wang X, Peng X, Yue P, Qi H, Liu J, Li L, Guo C, Xie H, Zhou X, Yu X. A novel CPC composite cement reinforced by dopamine coated SCPP fibers with improved physicochemical and biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110544. [PMID: 32228928 DOI: 10.1016/j.msec.2019.110544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 11/13/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
Traditional CPC cements have attracted wide attentions in repairing bone defects for injectability, easy plasticity and good osseointegration. However, its further application was limited by poor mechanical properties, long setting time and unsatisfactory biocompatibility. To solve these problems, polydopamine (DOPA) coated strontium-doped calcium polyphosphate (SCPP) fibers were added into CPC cements for the first time. A doping amount at fiber weight fraction of 0%, 1%, 2% and 5% was designed to develop a multifunctional composite fitting for bone tissues' regeneration and reconstruction and the optimum amount was selected through subsequent physicochemical and biological characterizations. The results implied DOPA coating successfully formed stable connections between SCPP fibers and CPC matrix, which simultaneously reinforced biomechanical strength and tenacity (5% SCPP/D/CPC samples exhibited more prominent mechanical property than others). In addition, 5% D/SCPP fibers doped composite cements were characterized as markedly-improved cytocompatibility: Sr2+ introduction induced cytoactive and significantly accelerated proliferation, attachment and spreading of osteoblasts. Besides, it also stimulated the secretion of OT, Col-I and ALP from seeded MG63, which was a critical character for further inducing osteogenic process, mineralization and bone tissues formation. The promoted cytocompatibility and improved osteogenesis-related growth factors' secretion could be attributed to constant and controllable release of Sr2+ and this deduction was approved by ICP analysis. In addition, Sr doping made this novel cement had a potential efficacy to inhibit aseptic loosening. In a word, present studies all demonstrated 5% SCPP/D/CPC composites could be a potential candidate material employed in bone regeneration and reconstruction for excellent mechanical property and cytocompatibility.
Collapse
Affiliation(s)
- Xu Wang
- Sichuan University, College of Polymer Science and Engineering, Chengdu, Sichuan province, 610065, PR China; Chengdu University of TCM, College of Acupuncture and Massage College,No. 37, Twelve Bridge Road, Chengdu,Sichuan province,610075,PR China
| | - Xu Peng
- Sichuan University, College of Polymer Science and Engineering, Chengdu, Sichuan province, 610065, PR China; Sichuan University,Laboratory animal center, No.24 South Section 1, Yihuan Road, Chengdu ,Sichuan province,610065, PR China
| | - Pengfei Yue
- West China Hospital of Sichuan University, Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, No.17 People's South Road,Chengdu,Sichuan province,610041, PR China
| | - Hao Qi
- Sichuan University, College of Polymer Science and Engineering, Chengdu, Sichuan province, 610065, PR China
| | - Jingwang Liu
- Sichuan University, College of Polymer Science and Engineering, Chengdu, Sichuan province, 610065, PR China
| | - Li Li
- The 452 Hospital of Chinese PLA, Department of Oncology, No.317 Jiuyanqiao shunjiang Road,Chengdu, Sichuan province, 610021, PR China
| | - Chengrui Guo
- Sichuan University, College of Polymer Science and Engineering, Chengdu, Sichuan province, 610065, PR China
| | - Huixu Xie
- West China Hospital of Sichuan University, Department of Head and neck oncology, No.17 People's South Road,Chengdu, Sichuan province, 610021, PR China
| | - Xiong Zhou
- Sichuan University, College of Polymer Science and Engineering, Chengdu, Sichuan province, 610065, PR China
| | - Xixun Yu
- Sichuan University, College of Polymer Science and Engineering, Chengdu, Sichuan province, 610065, PR China.
| |
Collapse
|
16
|
Zhao G, Sheng Y, Li C, Liu Q. Effects of macro metals on alkaline phosphatase activity under conditions of sulfide accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134151. [PMID: 31491633 DOI: 10.1016/j.scitotenv.2019.134151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Alkaline phosphatase (AP) is commonly found in aquatic ecosystems as an extracellular enzyme closely related to the biogeochemical cycling of phosphorus. Although the AP activity (APA) is conventionally thought to be a main response to PO43- starvation, significant effects of macro metal elements (Al, Fe, and Ca) and S on the APA were found in this study. The APA was reduced by Al primarily through the adsorption of the enzyme onto AlOOH colloids. Fe2+ inhibited the APA via a mechanism involving free radical oxidation. The main mechanism by which Ca2+ inhibited the APA was by competing with Mg2+ and Zn2+ for the active sites of the enzyme. Excessive S2- could reduce the APA by removing Zn2+ from the active sites of the enzyme. The inhibition of APA could be reversed if some metal ions (e.g., Fe2+) were precipitated by S2- under reducing conditions. Therefore, in anaerobic ecosystems, the effects of macro metals on APA under conditions of sulfide accumulation may have innovative implications for phosphorus management.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yanqing Sheng
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Changyu Li
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Qunqun Liu
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Ki JS, Ebenezer V, Lim WA. Yellow clay modulates carbohydrate and glutathione responses in the harmful dinoflagellate Cochlodinium polykrikoides and leads to sedimentation. Eur J Protistol 2019; 71:125642. [PMID: 31654920 DOI: 10.1016/j.ejop.2019.125642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022]
Abstract
The marine dinoflagellate Cochlodinium polykrikoides is a harmful algal bloom (HAB) species that severely impacts the environment and causes huge economic losses. Yellow clay (YC), considered to be a non-toxic and naturally-occurring material, represents an important step towards the direct control of HABs. In the present study, we evaluated the physiological and biochemical effects of YC on C. polykrikoides after exposures of up to 72 h. We observed little physiological changes in growth rate, chlorophyll a, lipid peroxidation, antioxidant enzymatic activities of superoxide dismutase and catalase, and activity of alkaline phosphatase after exposure to YC. Interestingly, YC significantly increased total carbohydrate and glutathione levels, affecting the physiology of the cells. These results indicate that total carbohydrate content may play an important role in cell-clay aggregation and it could be the main underlying mechanism that mitigates HAB cells via sedimentation.
Collapse
Affiliation(s)
- Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea.
| | - Vinitha Ebenezer
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Weol-Ae Lim
- Ocean Climate and Ecology Research Division, National Institute of Fisheries Science (NIFS), Busan 46083, South Korea
| |
Collapse
|
18
|
Zhao Q, Wang J, Wang J, Wang JXL. Seasonal dependency of controlling factors on the phytoplankton production in Taihu Lake, China. J Environ Sci (China) 2019; 76:278-288. [PMID: 30528019 DOI: 10.1016/j.jes.2018.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 06/09/2023]
Abstract
In this study, 44 profiles of gross primary productivity (GPP) and sunlight, along with water temperature, Chlorophyll-a (Chla) and nutrients, were observed in Meiliang Bay of Taihu Lake, China, in the spring, summer, and fall seasons. Effects of water temperature, light, and nutrient concentration were examined in relation to the GPP-unit-Chla (GPP of algae per Chla). The results showed that the optimum temperature for the GPP of phytoplankton was 27.9°C, the optimal PNA-unit-Chla (photon number absorbed by phytoplankton per Chla) was 0.25 (mol), and the HSCN-unit-Chla and HSCP-unit-Chla (half-saturation constants of nitrogen and phosphorus of algae per Chla) were 0.005 (mg/L) and 0.0004 (mg/L), respectively. The seasonal dependency of the effect of different factors on the GPP was analyzed. Compared with temperature and nutrients, light was found to be the most important factor affecting the GPP during the three seasons. The effect of temperature and nutrients on the GPP of phytoplankton has obvious seasonal change. In spring, temperature was the secondary factor affecting the GPP of phytoplankton, and the effect of nutrients may be negligible in the eutrophic lake on account of temperature limit, which showed that the GPP of algae was only affected by the physical process. In summer and fall, temperature didn't affect the GPP of algae, and the presence of nutrients was the secondary factor affecting the GPP of phytoplankton. From summer to fall, effect of phosphorus was weakened and effect of nitrogen was enhanced.
Collapse
Affiliation(s)
- Qiaohua Zhao
- College of Hydrometeorology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Jing Wang
- College of Hydrometeorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianjian Wang
- College of Hydrometeorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Julian X L Wang
- Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA
| |
Collapse
|
19
|
Adsorption of phosphate by sediments in a eutrophic lake: Isotherms, kinetics, thermodynamics and the influence of dissolved organic matter. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Liu W, Zhang L, Zhang J, Liu X, Huang W, Huang D, Zheng Z. Effects of modified sediments from a eutrophic lake in removing phosphorus and inhibiting phosphatase activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1723-1732. [PMID: 30448953 DOI: 10.1007/s11356-018-3754-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Phosphorus is one of the main limiting and strong influencing factors of eutrophication, and phosphorus controlling in lake is of great significance for eutrophication. To do this, sediment materials were taken from Dianchi Lake, a typically eutrophic lake, and modified by hexadecyltrimethylammonium bromide (CTAB) and ZnSO4 to remove phosphorus and inhibit alkaline phosphatase activity (APA). Results indicated that phosphorus removal efficiencies of sediments modified by CTAB (S-CTAB), ZnSO4 (S-Zn), and oxidized sediments (OS) were higher than that of the raw sediment (RS). Ability to absorb phosphorus varied, following the order S-Zn>S-CTAB>OS>RS. Sorption was influenced by ionic strength, with the former decreasing with the increase of the latter. Freundlich model well described the sorption isotherm, with an R2 ranging from 0.9168 to 0.9958. Furthermore, compared with the raw sediments, the maximum phosphorus sorption capacities of S-Zn and S-CTAB increased by 12.2% and 124.5%, respectively. Results of desorption studies suggest that the desorption rate of S-Zn was from 3.88 to 13.76%, lower than that of other sediment materials. APA was inhibited by S-CTAB and S-Zn at the same time, with inhibition rates from 29.6% and 61.0% when the concentrations of S-CTAB and S-Zn were 10 nmol L-1 and 0.2 nmol L-1, respectively. This study provides new insights into phosphorus removal and phosphatase activity inhibition in water treatment.
Collapse
Affiliation(s)
- Wenli Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Liangjie Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China.
| | - Xing Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Wei Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai, China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Zhang C, Feng W, Chen H, Zhu Y, Wu F, Giesy JP, He Z, Wang H, Sun F. Characterization and sources of dissolved and particulate phosphorus in 10 freshwater lakes with different trophic statuses in China by solution
31
P nuclear magnetic resonance spectroscopy. Ecol Res 2018. [DOI: 10.1111/1440-1703.1006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing China
| | - Weiying Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing China
| | - Haiyan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing China
| | - Yuanrong Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing China
| | - John P. Giesy
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing China
- Department of Biomedical Veterinary Sciences and Toxicology Centre University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Zhongqi He
- USDA‐ARS Southern Regional Research Center New Orleans Louisiana
| | - Hao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing China
| |
Collapse
|
22
|
Tan X, He Y, Wang Z, Li C, Kong L, Tian H, Shen W, Megharaj M, He W. Soil mineral alters the effect of Cd on the alkaline phosphatase activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:78-84. [PMID: 29859411 DOI: 10.1016/j.ecoenv.2018.05.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
The toxicity of heavy metals (HMs) to soil enzymes is directly influenced by the status of the enzyme (free vs. immobilized on minerals) and the duration of exposure. However, little information is available on the interaction effect of HMs, mineral, and exposure time on soil enzyme activities. We investigated the interaction mechanism of alkaline phosphatase (ALP) with minerals (montmorillonite and goethite) and the response of free and immobilized ALP to cadmium (Cd) toxicity under different exposure times. The adsorption isotherms of ALP on both minerals were L-type. The maximum adsorption capacity of goethite for ALP was 3.96 times than montmorillonite, although both had similar adsorption constant (K). Goethite showed a greater inhibitory effect on ALP activity than montmorillonite. The toxicity of Cd to free- and goethite-ALP was enhanced with increasing exposure time, indicating a time-dependent inhibition. However, Cd toxicity to montmorillonite-ALP was not affected by the exposure time. The inhibition of Cd to soil enzyme activity is influenced by the properties of mineral complexes and the duration of exposure. A further understanding of the time pattern of HMs toxicity is helpful for accurately assessing the hazards of HMs to soil enzyme activity.
Collapse
Affiliation(s)
- Xiangping Tan
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yike He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Ziquan Wang
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Chenghui Li
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Long Kong
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Weijun Shen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
23
|
Feng W, Wu F, He Z, Song F, Zhu Y, Giesy JP, Wang Y, Qin N, Zhang C, Chen H, Sun F. Simulated bioavailability of phosphorus from aquatic macrophytes and phytoplankton by aqueous suspension and incubation with alkaline phosphatase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1431-1439. [PMID: 29074246 DOI: 10.1016/j.scitotenv.2017.10.172] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Bioavailability of phosphorus (P) in biomass of aquatic macrophytes and phytoplankton and its possible relationship with eutrophication were explored by evaluation of forms and quantities of P in aqueous extracts of dried macrophytes. Specifically, effects of hydrolysis of organically-bound P by the enzyme alkaline phosphatase were studied by use of solution 31P-nuclear magnetic resonance (NMR) spectroscopy. Laboratory suspensions and incubations with enzymes were used to simulate natural releases of P from plant debris. Three aquatic macrophytes and three phytoplankters were collected from Tai Lake, China, for use in this simulation study. The trend of hydrolysis of organic P (Po) by alkaline phosphatase was similar for aquatic macrophytes and phytoplankton. Most monoester P (15.3% of total dissolved P) and pyrophosphate (1.8%) and polyphosphate (0.4%) and DNA (3.2%) were transformed into orthophosphate (14.3%). The major forms of monoester P were glycerophosphate (8.8%), nucleotide (2.5%), phytate (0.4%) and other monoesters P (3.6%). Proportions of Po including condensed P hydrolyzed in phytoplankton and aquatic macrophytes were different, with the percentage of 22.6% and 6.0%, respectively. Proportion of Po hydrolyzed in debris from phytoplankton was approximately four times greater than that of Po from aquatic macrophytes, and could be approximately twenty-five times greater than that of Po in sediments. Thus, release and hydrolysis of Po, derived from phytoplankton debris would be an important and fast way to provide bioavailable P to support cyanobacterial blooming in eutrophic lakes.
Collapse
Affiliation(s)
- Weiying Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhongqi He
- USDA-ARS, Southern Regional Research Center, New Orleans LA70124, USA
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuanrong Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - John P Giesy
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon SKS7N 5B3, Canada
| | - Ying Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ning Qin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haiyan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
24
|
Huang R, Wan B, Hultz M, Diaz JM, Tang Y. Phosphatase-Mediated Hydrolysis of Linear Polyphosphates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1183-1190. [PMID: 29359927 DOI: 10.1021/acs.est.7b04553] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyphosphates are a group of phosphorus (P) containing molecules that are produced by a wide range of microorganisms and human activities. Although polyphosphates are ubiquitous in aquatic environments and are of environmental significance, little is known about their transformation and cycling. This study characterized the polyphopshate-hydrolysis mechanisms of several representative phosphatase enzymes and evaluated the effects of polyphosphate chain length, light condition, and calcium (Ca2+). 31P nuclear magnetic resonance (NMR) spectroscopy was used to monitor the dynamic changes of P molecular configuration during polyphosphate hydrolysis and suggested a terminal-only degradation pathway by the enzymes. Such mechanism enabled the quantification of the hydrolysis rates by measuring orthophosphate production over time. At the same initial concentration of polyphosphate molecules, the hydrolysis rates were independent of chain length. The hydrolysis of polyphosphate was also unaffected by light condition, but was reduced by the presence of Ca2+. The released orthophosphates formed Ca-phosphate precipitates in the presence of Ca2+, likely in amorphous phases. Results from this study lay the foundation for better understanding the chemical processes governing polyphosphate transport and transformation in various environmental settings.
Collapse
Affiliation(s)
- Rixiang Huang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30324-0340, United States
| | - Biao Wan
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30324-0340, United States
| | - Margot Hultz
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30324-0340, United States
| | - Julia M Diaz
- Department of Marine Sciences, Skidaway Institute of Oceanography, University of Georgia , Savannah, Georgia 31411, United States
| | - Yuanzhi Tang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30324-0340, United States
| |
Collapse
|
25
|
Liu J, Wu Y, Wu C, Muylaert K, Vyverman W, Yu HQ, Muñoz R, Rittmann B. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. BIORESOURCE TECHNOLOGY 2017; 241:1127-1137. [PMID: 28651870 DOI: 10.1016/j.biortech.2017.06.054] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/09/2017] [Accepted: 06/11/2017] [Indexed: 06/07/2023]
Abstract
Innovative and cost-effective technologies for advanced nutrient removal from surface water are urgently needed for improving water quality. Conventional biotechnologies, such as ecological floating beds, or constructed wetlands, are not effective in removing nutrients present at low-concentration. However, microalgae-bacteria consortium is promising for advanced nutrient removal from wastewater. Suspended algal-bacterial systems can easily wash out unless the hydraulic retention time is long, attached microalgae-bacteria consortium is more realistic. This critical review summarizes the fundamentals and status of attached microalgae-bacteria consortium for advanced nutrient removal from surface water. Key advantages are the various nutrient removal pathways, reduction of nutrients to very low concentration, and diversified photobioreactor configurations. Challenges include poor identification of functional species, poor control of the community composition, and long start-up times. Future research should focus on the selection and engineering of robust microbial species, mathematical modelling of the composition and functionality of the consortium, and novel photobioreactor configurations.
Collapse
Affiliation(s)
- Junzhuo Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Koenraad Muylaert
- Laboratory Aquatic Biology, KU Leuven Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium
| | - Han-Qing Yu
- Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineerings, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| |
Collapse
|
26
|
Forms and Lability of Phosphorus in Algae and Aquatic Macrophytes Characterized by Solution 31P NMR Coupled with Enzymatic Hydrolysis. Sci Rep 2016; 6:37164. [PMID: 27849040 PMCID: PMC5111050 DOI: 10.1038/srep37164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/25/2016] [Indexed: 12/03/2022] Open
Abstract
Solution Phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy coupled with enzymatic hydrolysis (EH) with commercially available phosphatases was used to characterize phosphorus (P) compounds in extracts of the dominant aquatic macrophytes and algae in a eutrophic lake. Total extractable organic P (Po) concentrations ranged from 504 to 1643 mg kg−1 and 2318 to 8395 mg kg−1 for aquatic macrophytes and algae, respectively. Using 31P NMR spectroscopy, 11 Po species were detected in the mono- and diester region. Additionally, orthophosphate, pyrophosphate and phosphonates were also detected. Using EH, phytate-like P was identified as the prevalent class of enzyme-labile Po, followed by labile monoester- and diester-P. Comparison of the NMR and EH data indicated that the distribution pattern of major P forms in the samples determined by the two methods was similar (r = 0.712, p < 0.05). Additional 31P NMR spectroscopic analysis of extracts following EH showed significant decreases in the monoester and pyrophosphate regions, with a corresponding increase in the orthophosphate signal, as compared to unhydrolyzed extracts. Based on these quantity and hydrolysis data, we proposed that recycling of Po in vegetative biomass residues is an important mechanism for long-term self-regulation of available P for algal blooming in eutrophic lakes.
Collapse
|