1
|
Dhama N, Chaudhary K, Yadav R, Masram DT. Spectroscopic characterization of triazine based covalent organic framework tempted changes in the structure of hemoglobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 327:125320. [PMID: 39490178 DOI: 10.1016/j.saa.2024.125320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
The present study aims to understand changes in the Hemoglobin (Hb) structure in the presence of a triazine based covalent organic framework (COF) through spectroscopic characterization. Covalent Organic Frameworks (COFs) due to their unique properties have been utilized in diverse fields including bio-applications. Utilization of COFs for conjugate formation with proteins will lead to the integration of biology and framework materials that can help in the development of bioconjugates for advanced bio-based applications such as diagnostics, therapeutics, and bioengineering. However, vital is to have a fundamental understanding of protein conformation in protein-COF conjugate. Herein, a triazine based COF has been synthesized via solvothermal method, termed TATF-COF which has been utilized for the formation of a conjugate with hemoglobin (Hb). Thereafter, studies have been performed to understand Hb structure in the presence of TATF-COF. Results from UV-vis, Fluorescence, and UV-CD spectroscopy studies revealed that in the presence of TATF-COF, there was a slight alteration in the Hb structure due to binding interactions between them and conjugate formation. Moreover, micrographs obtained from electron microscopy displayed formation of conjugate between Hb and TATF-COF result of binding interactions. DLS and zeta potential results also revealed conjugate formation due to binding interactions between TATF-COF and Hb. Thermal stability of Hb was also maintained as TATF-COF had insignificant effect on the Tm value of Hb. Overall, there was a slight alternation in the Hb native conformation due to binding interactions, however, TATF-COF was compatible with Hb as the protein's native structure was well-preserved.
Collapse
Affiliation(s)
- Nitanshu Dhama
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Karan Chaudhary
- Department of Chemistry, University of Delhi, Delhi 110 007, India; Department of Forensic Sciences, National Forensic Sciences University, 110085 Delhi, India
| | - Rohit Yadav
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Dhanraj T Masram
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
2
|
Chaudhary K, Dhama N, Rarokar N, Chaudhary RG, Tangde VM, Masram DT. Biocompatibility assessment of chemically modified GONRs with hemoglobin and histopathological studies for its toxicity evaluation. Dalton Trans 2023; 53:50-55. [PMID: 38063056 DOI: 10.1039/d3dt03299j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Transition metal-Schiff base complexes are found to be important for biomedical applications but have demerits of being homogeneous complexes, thus their synthesis on the surface of graphene oxide nanoribbons (GONRs), materials of specific interest, can be beneficial for preparing advanced graphene-based materials for biomedical applications. Of foremost importance is their safety and biocompatibility with biological systems. In this study, a transition metal-Schiff base complex has been synthesized on the surface of a GONR (Ni-S-GNR) using 3-aminopropyltriethoxysilane and pyridine-2-carbaldehyde and complexing nickel. This Ni-S-GNR was characterized well by various physicochemical techniques. The evaluation of biocompatibility of Ni-S-GNR with hemoglobin confirmed binding interactions and influence on the native structure of hemoglobin. It was found that there was alteration in the secondary and tertiary structures of hemoglobin. In addition, histopathological studies on the liver and kidney cells of rats revealed non-toxicity of Ni-S-GNR towards these cells. Overall, Ni-S-GNR was found to be compatible with protein as the native structure was not destroyed and was non-toxic to cells.
Collapse
Affiliation(s)
- Karan Chaudhary
- Department of Chemistry, University of Delhi, Delhi-110007, India.
- Forensic Chemistry and Toxicology Laboratory, Department of Forensic Sciences, National Forensic Sciences University, 110085, Delhi, India
| | - Nitanshu Dhama
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Nilesh Rarokar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur-440033, India
| | - Ratiram G Chaudhary
- Seth Kesarimal Porwal College of Arts, Science and Commerce, Kamptee 441001, India
| | - Vijay M Tangde
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur-440033, India
| | - Dhanraj T Masram
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
3
|
Kong J, Li M, Chen Y, Li Y, Liu M, Zhang Q, Xuan H, Liu J. Hydrophobic interaction of four bile salts with hemoglobin induces unfolding of protein and evades protein degeneration induced by urea. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Wani FA, Behera K, Patel R. Amphiphilic Micelles as Superior Nanocarriers in Drug Delivery: from Current Preclinical Surveys to Structural Frameworks. ChemistrySelect 2022. [DOI: 10.1002/slct.202201928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Farooq Ahmad Wani
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
- Department of Chemistry Jamia Millia Islamia (A Central University) New Delhi 110025 India
| | - Kamalakanta Behera
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
| | - Rajan Patel
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
| |
Collapse
|
5
|
Aggregation, wettability and radical scavenging activity of choline based ionic liquids in aqueous solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Alzahrani KA, Patel R. Dissociation of the DCF-Hb complex in presence of cationic micelles: A spectroscopic and computational approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Wani FA, Ahmad R, Patel R. Synthesis and Interfacial Properties of Novel Benzimidazolium Based Gemini Surfactants and Their Binding with Crocin. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Farooq Ahmad Wani
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
- Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Rabia Ahmad
- Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
8
|
Exploring interaction dynamics of designed organic cocrystal charge transfer complex of 2-hydroxypyridine and oxalic acid with human serum albumin: Single crystal, spectrophotometric, theoretical and antimicrobial studies. Bioorg Chem 2020; 100:103872. [DOI: 10.1016/j.bioorg.2020.103872] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/20/2020] [Indexed: 01/29/2023]
|
9
|
Aslam J, Lone IH, Radwan NRE, Siddiqui MF, Parveen S, Alnoman RB, Aslam R. Molecular Interaction of Amino Acid-Based Gemini Surfactant with Human Serum Albumin: Tensiometric, Spectroscopic, and Molecular Docking Study. ACS OMEGA 2019; 4:22152-22160. [PMID: 31891097 PMCID: PMC6933778 DOI: 10.1021/acsomega.9b03315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Binding effect and interaction of N,N'-dialkyl cystine based gemini surfactant (GS); 2(C12Cys) with human serum albumin (HSA) were systematically investigated by the techniques such as surface tension measurement, UV-visible spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking studies. The surface tension measurement exhibited that HSA shifted the critical micelle concentration of the 2(C12Cys) GS to the higher side that confirms the complex formation among 2(C12Cys) GS and HSA which was also verified by UV-visible, fluorescence, and CD spectroscopy. Increase in the concentration of 2(C12Cys) GS increases the absorption of the HSA protein but has a reverse effect on the fluorescence intensity. The analysis of UV-visible study with the help of a static quenching method showed that the value acquired for the bimolecular quenching constant (k q) quenches the intrinsic fluorescence of the HSA protein. Synchronous fluorescence spectrometry declared that the induced-binding conformational changes in HSA and CD results explained the variations in the secondary arrangement of the protein in presence of 2(C12Cys) GS. The present study revealed that the interaction between 2(C12Cys) GS and HSA is important for the preparation and properties of medicines. Molecular docking study provides insight into the specific binding site of 2(C12Cys) GS into the sites of HSA.
Collapse
Affiliation(s)
- Jeenat Aslam
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | - Irfan Hussain Lone
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | - Nagi R. E. Radwan
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | | | - Shazia Parveen
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | - Rua B. Alnoman
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | - Ruby Aslam
- Corrosion
Research Laboratory, Department of Applied Chemistry, Faculty of Engineering
and Technology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
10
|
Maurya N, Alzahrani KA, Patel R. Probing the Intercalation of Noscapine from Sodium Dodecyl Sulfate Micelles to Calf Thymus Deoxyribose Nucleic Acid: A Mechanistic Approach. ACS OMEGA 2019; 4:15829-15841. [PMID: 31592453 PMCID: PMC6777008 DOI: 10.1021/acsomega.9b01543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/09/2019] [Indexed: 06/07/2023]
Abstract
Noscapine (NOS) is efficient in inhibiting cellular proliferation and induces apoptosis in nonsmall cell, lung, breast, lymphatic, and prostate cancers. The micelle-assisted drug delivery is a well-known phenomenon; however, the proper mechanism is still unclear. Therefore, in the present study, we have shown a mechanistic approach for the delivery of NOS from sodium dodecyl sulfate (SDS) micelles to calf thymus deoxyribose nucleic acid (ctDNA) base-pairs using various spectroscopic techniques. The absorption and emission spectroscopy results revealed that NOS interacts with the SDS micelle and resides in its hydrophobic core. Further, the intercalation of NOS from SDS micelles to ctDNA was also shown by these techniques. The anisotropy and quenching results further confirmed the relocation of NOS from SDS micelles to ctDNA. The CD analysis suggested that SDS micelles do not perturb the structure of ctDNA, which supported that SDS micelles can be used as a safe delivery vehicle for NOS. This work may be helpful for the invention of advanced micelle-based vehicles for the delivery of an anticancer drug to their specific target site.
Collapse
Affiliation(s)
- Neha Maurya
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
11
|
The effect of Pseudomonas fluorescens biosurfactant pseudofactin II on the conformational changes of bovine serum albumin: Pharmaceutical and biomedical applications. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Li Y, Lee JS. Staring at protein-surfactant interactions: Fundamental approaches and comparative evaluation of their combinations - A review. Anal Chim Acta 2019; 1063:18-39. [DOI: 10.1016/j.aca.2019.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
|
13
|
Khil’ko SL, Kotenko AA, Grebenyuk SA, Zarechnaya OM, Mikhailov VA. Tensiometric and Rheological Properties of Functionalized Imidazolium Surfactants at a Liquid–Gas Interface. COLLOID JOURNAL 2019. [DOI: 10.1134/s1061933x19030074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Bhat IA, Roy B, Hazra P, Kabir-Ud-Din. Conformational and solution dynamics of hemoglobin (Hb) in presence of a cleavable gemini surfactant: Insights from spectroscopy, atomic force microscopy, molecular docking and density functional theory. J Colloid Interface Sci 2019; 538:489-498. [PMID: 30537662 DOI: 10.1016/j.jcis.2018.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/19/2018] [Accepted: 12/02/2018] [Indexed: 12/30/2022]
Abstract
Herein, we have explored the conformational alterations of hemoglobin (Hb) in presence of a cleavable gemini surfactant (C16-C4O2-C16). The concerned surfactant was found to induce significant structural perturbations in Hb. UV-vis spectroscopy, steady-state/time-resolved fluorescence, and other utilized techniques have authenticated the complexation of Hb with the gemini surfactant. CD has demonstrated the alterations in secondary structural elements (α-helicity, β-sheet, β-turn, and random coil) of Hb upon C16-C4O2-C16 addition. Atomic force microscopy (AFM) has revealed the existence of unique star-shaped gemini surfactant microstructures aligned to Hb in a necklace pattern. The 1H NMR peak broadening and lower delta values hint at the binding of the concerned gemini surfactant to Hb. Molecular docking and DFT calculations have further substantiated the Hb-gemini complex formation and the involvement of electrostatic/hydrophobic forces therein. In future, these results might pave-the-way to construct self-assembled, sustainable, and green surfactant-protein mixtures for their end-use in industrial, engineering, biomedical, drug delivery, gene transfection, and other relevant excipient formulations.
Collapse
Affiliation(s)
- Imtiyaz Ahmad Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India.
| | - Bibhisan Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Partha Hazra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Kabir-Ud-Din
- Department of Chemistry, Arba Minch University, Ethiopia
| |
Collapse
|
15
|
ud din Parray M, Maurya N, Ahmad Wani F, Borse MS, Arfin N, Ahmad Malik M, Patel R. Comparative effect of cationic gemini surfactant and its monomeric counterpart on the conformational stability of phospholipase A2. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.07.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Seal P, Sikdar J, Ghosh N, Biswas P, Haldar R. Exploring the binding dynamics of etoricoxib with human hemoglobin: A spectroscopic, calorimetric, and molecular modeling approach. J Biomol Struct Dyn 2018; 37:3018-3028. [DOI: 10.1080/07391102.2018.1508369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Paromita Seal
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Jyotirmoy Sikdar
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Niladri Ghosh
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Payel Biswas
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Rajen Haldar
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| |
Collapse
|
17
|
Solution behaviour of lysozyme in the presence of novel biodegradable gemini surfactants. Int J Biol Macromol 2018; 117:301-307. [DOI: 10.1016/j.ijbiomac.2018.05.186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022]
|
18
|
Patel R, Maurya N, Parray MUD, Farooq N, Siddique A, Verma KL, Dohare N. Esterase activity and conformational changes of bovine serum albumin toward interaction with mephedrone: Spectroscopic and computational studies. J Mol Recognit 2018; 31:e2734. [DOI: 10.1002/jmr.2734] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/26/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); New Delhi India
| | - Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); New Delhi India
| | - Mehraj ud din Parray
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); New Delhi India
| | - Nida Farooq
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); New Delhi India
| | - Abrar Siddique
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); New Delhi India
| | - Kanak Lata Verma
- Department of Chemistry, Regional Forensic Science Laboratory; Government of NCT of Delhi; New Delhi India
| | - Neeraj Dohare
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); New Delhi India
| |
Collapse
|
19
|
Maurya N, Ud Din Parray M, Maurya JK, Kumar A, Patel R. Interaction of promethazine and adiphenine to human hemoglobin: A comparative spectroscopic and computational analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:32-42. [PMID: 29562212 DOI: 10.1016/j.saa.2018.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/27/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
The binding nature of amphiphilic drugs viz. promethazine hydrochloride (PMT) and adiphenine hydrochloride (ADP), with human hemoglobin (Hb) was unraveled by fluorescence, absorbance, time resolved fluorescence, fluorescence resonance energy transfer (FRET) and circular dichroism (CD) spectral techniques in combination with molecular docking and molecular dynamic simulation methods. The steady state fluorescence spectra indicated that both PMT and ADP quenches the fluorescence of Hb through static quenching mechanism which was further confirmed by time resolved fluorescence spectra. The UV-Vis spectroscopy suggested ground state complex formation. The activation energy (Ea) was observed more in the case of Hb-ADP than Hb-PMT interaction system. The FRET result indicates the high probability of energy transfer from β Trp37 residue of Hb to the PMT (r=2.02nm) and ADP (r=2.33nm). The thermodynamic data reveal that binding of PMT with Hb are exothermic in nature involving hydrogen bonding and van der Waal interaction whereas in the case of ADP hydrophobic forces play the major role and binding process is endothermic in nature. The CD results show that both PMT and ADP, induced secondary structural changes of Hb and unfold the protein by losing a large helical content while the effect is more pronounced with ADP. Additionally, we also utilized computational approaches for deep insight into the binding of these drugs with Hb and the results are well matched with our experimental results.
Collapse
Affiliation(s)
- Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mehraj Ud Din Parray
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Jitendra Kumar Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore 562112, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
20
|
Effect of cationic gemini surfactant and its monomeric counterpart on the conformational stability and esterase activity of human serum albumin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.070] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Xie Y, Li J, Li Z, Sun T, Wang Y, Qu G. The adsorption and aggregation properties of dendritic cationic tetrameric surfactants. RSC Adv 2018; 8:36015-36024. [PMID: 35558498 PMCID: PMC9088746 DOI: 10.1039/c8ra06900j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/16/2018] [Indexed: 11/21/2022] Open
Abstract
A series of dendritic cationic tetrameric surfactants (4CntetraQ, n = 12, 14, 16) were synthesized with raw materials that are commercially available.
Collapse
Affiliation(s)
- Yangchun Xie
- College of Chemistry and Chemical Engineering
- Northeast Petroleum University
- Daqing
- P. R. China
| | - Jie Li
- College of Chemistry and Chemical Engineering
- Northeast Petroleum University
- Daqing
- P. R. China
| | - Zuofeng Li
- Natural Gas Branch Testing Center
- Daqing Oil Field Co. Ltd
- Daqing
- China
| | - Tong Sun
- College of Chemistry and Chemical Engineering
- Northeast Petroleum University
- Daqing
- P. R. China
| | - Yipeng Wang
- College of Chemistry and Chemical Engineering
- Northeast Petroleum University
- Daqing
- P. R. China
| | - Guangmiao Qu
- College of Chemistry and Chemical Engineering
- Northeast Petroleum University
- Daqing
- P. R. China
| |
Collapse
|
22
|
Akram M, Anwar S, Bhat IA, Kabir-ud-Din. In vitro evaluation of the non-covalent interactions of hemoglobin with distinctively modified gemini surfactants: Effect of structural variation. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Shahraki S, Saeidifar M, Shiri F, Heidari A. Synthesis, Characterization, Cytotoxicity and Detailed HSA Interaction of New Zinc(II) Complexes Containing Dithiocarbamate and Heterocyclic N-donor Ligands. Polycycl Aromat Compd 2017. [DOI: 10.1080/10406638.2017.1302972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | | | - Ameneh Heidari
- Department of Chemistry, University of Zabol, Zabol, Iran
| |
Collapse
|
24
|
Akram M, Anwar S, Bhat IA, Kabir-Ud-Din. Unraveling the interaction of hemoglobin with a biocompatible and cleavable oxy-diester-functionalized gemini surfactant. Int J Biol Macromol 2016; 96:474-484. [PMID: 27986633 DOI: 10.1016/j.ijbiomac.2016.11.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
Surfactant-protein mixtures have attracted considerable research interest in recent years at the interface of chemical biology and medicinal chemistry. Herein, the interaction between a green gemini surfactant (C16-E2O-C16) and a redox protein hemoglobin was examined through a series of in vitro experimental techniques with an attempt to provide a comprehensive knowledge of the surfactant-protein binding interactions. Quantitative appraisal of the fluorescence/CV data showed that the binding of C16-E2O-C16 to Hb leads to the formation of thermodynamically favorable non-covalent adduct with 1:1 stoichiometry. UV-vis spectra demonstrated that the effect of C16-E2O-C16 on Hb is highly concentration dependent. Far-UV and near-UV CD spectra together elucidated the formation of molten globule state of Hb upon C16-E2O-C16 addition. Temperature dependent CD explicated the effect of C16-E2O-C16 on the thermal stability of Hb. Furthermore, the structural investigation of Hb via pyrene/synchronous/three-dimensional fluorescence and FT-IR spectroscopy provided the complementary information related to its microenvironmental and conformational changes. Computational studies delineated that C16-E2O-C16 binds in the vicinity of β-37 Trp at the α1β2 interface of Hb. Overall, this study is expected to clarify the binding mechanism between Hb/other congeners and surfactant at the molecular level that are known to have immense potential in biomedical and industrial areas.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Sana Anwar
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Imtiyaz Ahmad Bhat
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Kabir-Ud-Din
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
25
|
The characterization of 1-(4-bromophenyl)-5-phenyl-1H-1,2,3-triazole on acute toxicity, antimicrobial activities, photophysical property, and binding to two globular proteins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:191-203. [PMID: 27693762 DOI: 10.1016/j.jphotobiol.2016.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022]
Abstract
1-(4-Bromophenyl)-5-phenyl-1H-1,2,3-triazole (BPT) was a newly synthesized compound. The acute toxicities of BPT to mice by intragastric administration have been determined and the result indicates that the intragastric administration of BPT did not produce any significant toxic effect on Kunming strain mice. It is also evaluated for the antimicrobial activity of BPT against three kinds of plant mycoplasma, Fusarium Wilt (race 4), Colletotrichum gloeosporioides Penz. and Xanthomonas oryzae by different method in vitro. The compound exhibited distinct inhibitory activities against Fusarium Wilt (race 4) and Colletotrichum gloeosporioides Penz. by mycelium growth rate test and the values of EC50 were 29.34 and 12.53μg/mL respectively. And BPT had also the most potent inhibitory activities against Xanthomonas oryzae when compared with that of control drugs by the agar well diffusion method. In addition, the structural and photophysical properties of BPT including ionization energy, electron affinities, and theoretical spectrum was studied by quantum-chemical methods. Then the interaction of BPT with two kinds of globular proteins, human immunoglobulin (HIg) and bovine hemoglobin (BHg) was investigated by using UV-vis absorption spectra, synchronous fluorescence, 3D fluorescence spectra, and fluorescence titration in combination with molecular modeling. UV-vis absorption, 3D and synchronous fluorescence measurements show that BPT has influence on the microenvironment surrounding HIg or BHg in aqueous solution and the fluorescence experiments show that BPT quenches the fluorescence intensity of HIg or BHg through a static mechanism. The binding parameters including the binding constants, the number of binding site and average binding distance between BPT and HIg or BHg at different temperatures were calculated. The thermodynamic parameters suggest that the hydrophobic interaction is the predominant intermolecular forces in stabilizing the BPT-HIg or BPT-BHg complex. Molecular docking was performed to reveal that the BPT moiety binds to the hydrophobic cavity of HIg or BHg and they are in good agreement with the spectroscopic measurements.
Collapse
|