1
|
Lazăr AR, Pușcaș A, Tanislav AE, Mureșan V. Bioactive compounds delivery and bioavailability in structured edible oils systems. Compr Rev Food Sci Food Saf 2024; 23:e70020. [PMID: 39437192 DOI: 10.1111/1541-4337.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The health benefits of bioactive compounds are dependent on the amount of intake as well as on the amount of these compounds that become bioavailable and bioaccessible. Various systems have been developed to deliver and increase the bioaccessibility of bioactive compounds. This review explores the impact of gelled (oleogels, bigels, emulgels, emulsions, hydrogels, and hydrogel beads), micro-(gels, particles, spheres, capsules, emulsions, and solid lipid microparticles) and nanoencapsulated systems (nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, liposomes, and nanoliposomes) on the digestibility and bioavailability of lipophilic and hydrophilic bioactives. Structurant molecules, the oil type, antioxidants, emulsifiers, and coatings in delivery systems with promising potential in food applications are critically discussed. The release and bio-accessibility of bioactive compounds in gelled systems are influenced by various factors, such as the type and concentration of gelators, the gelator-to-oil ratio, the type of antioxidant, the network of the system, and its hydrophobicity. The stability, bioaccessibility, and controlled release of bioactives were improved in structured emulsions. Several variables, including wall material, oil/water ratios, encapsulation process, and pH conditions, can affect the bioactives release in microencapsulated systems. Factors like coating type and core-to-wall ratio impact the stability and release of core components. The encapsulating material, the encapsulation technology, and the nature of the nanomaterials all have an impact on the bioaccessibility of nanoencapsulated systems. Nanoliposomes provide enhanced stability and absorption. In general, all encapsulated systems have shown great potential in improving the distribution and availability of bioactive compounds.
Collapse
Affiliation(s)
- Alexandra Raluca Lazăr
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Anda Elena Tanislav
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Nitthikan N, Preedalikit W, Supadej K, Chaichit S, Leelapornpisid P, Kiattisin K. Exploring the Wound Healing Potential of a Cuscuta chinensis Extract-Loaded Nanoemulsion-Based Gel. Pharmaceutics 2024; 16:573. [PMID: 38794235 PMCID: PMC11124339 DOI: 10.3390/pharmaceutics16050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Cuscuta chinensis (C. chinensis) presents many pharmacological activities, including antidiabetic effects, and antioxidant, anti-inflammatory, and antitumor properties. However, the wound care properties of this plant have not yet been reported. Therefore, this research aimed to evaluate the antioxidant, anti-inflammatory, and antibacterial activities of ethanol and ethyl acetate C. chinensis extracts. The phytochemical markers in the extracts were analyzed using high-performance liquid chromatography (HPLC). Then, the selected C. chinensis extract was developed into a nanoemulsion-based gel for wound care testing in rats. The results showed that both of the C. chinensis extracts exhibited antioxidant activity when tested using 2,2-Diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and lipid peroxidation inhibition assays. They reduced the expression of IL-1β, IL-6, and TNF-α in RAW264.7 cells induced with lipopolysaccharide (LPS). The ethyl acetate extract also had antibacterial properties. Kaempferol was found in both extracts, whereas hyperoside was found only in the ethanol extract. These compounds were found to be related to the biological activities of the extracts, confirmed via molecular docking. The C. chinensis extract-loaded nanoemulsions had a small particle size, a narrow polydispersity index (PDI), and good stability. Furthermore, the C. chinensis extract-loaded nanoemulsion-based gel had a positive effect on wound healing, presenting a better percentage wound contraction Fucidin cream. In conclusion, this formulation has the potential for use as an alternative wound treatment and warrants further study in clinical trials.
Collapse
Affiliation(s)
- Nichcha Nitthikan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.N.); (S.C.); (P.L.)
| | - Weeraya Preedalikit
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Kanittapon Supadej
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Siripat Chaichit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.N.); (S.C.); (P.L.)
| | - Pimporn Leelapornpisid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.N.); (S.C.); (P.L.)
| | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.N.); (S.C.); (P.L.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Kadota K, Kämäräinen T, Sakuma F, Ueda K, Higashi K, Moribe K, Uchiyama H, Minoura K, Tozuka Y. Unveiling the flavone-solubilizing effects of α-glucosyl rutin and hesperidin: probing structural differences through NMR and SAXS analyses. Food Funct 2023; 14:10493-10505. [PMID: 37938858 DOI: 10.1039/d3fo03261b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Flavonoids often exhibit broad bioactivity but low solubility and bioavailability, limiting their practical applications. The transglycosylated materials α-glucosyl rutin (Rutin-G) and α-glucosyl hesperidin (Hsp-G) are known to enhance the dissolution of hydrophobic compounds, such as flavonoids and other polyphenols. In this study, the effects of these materials on flavone solubilization were investigated by probing their interactions with flavone in aqueous solutions. Rutin-G and Hsp-G prepared via solvent evaporation and spray-drying methods were evaluated for their ability to dissolve flavones. Rutin-G had a stronger flavone-solubilizing effect than Hsp-G in both types of composite particles. The origin of this difference in behavior was elucidated by small-angle X-ray scattering (SAXS) and nuclear magnetic resonance analyses. The different self-association structures of Rutin-G and Hsp-G were supported by SAXS analysis, which proved that Rutin-G formed polydisperse aggregates, whereas Hsp-G formed core-shell micelles. The observation of nuclear Overhauser effects (NOEs) between flavone and α-glucosyl materials suggested the existence of intermolecular hydrophobic interactions. However, flavone interacted with different regions of Rutin-G and Hsp-G. In particular, NOE correlations were observed between the protons of flavone and the α-glucosyl protons of Rutin-G. The different molecular association states of Rutin-G or Hsp-G could be responsible for their different effects on the solubility of flavone. A better understanding of the mechanism of flavone solubility enhancement via association with α-glucosyl materials would permit the application of α-glucosyl materials to the solubilization of other hydrophobic compounds including polyphenols such as flavonoids.
Collapse
Affiliation(s)
- Kazunori Kadota
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Tero Kämäräinen
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Fumie Sakuma
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiromasa Uchiyama
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Katsuhiko Minoura
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Yuichi Tozuka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
4
|
Srivastav AK, Karpathak S, Rai MK, Kumar D, Misra DP, Agarwal V. Lipid based drug delivery systems for oral, transdermal and parenteral delivery: Recent strategies for targeted delivery consistent with different clinical application. J Drug Deliv Sci Technol 2023; 85:104526. [DOI: 10.1016/j.jddst.2023.104526] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
5
|
Řepka D, Kurillová A, Murtaja Y, Lapčík L. Application of Physical-Chemical Approaches for Encapsulation of Active Substances in Pharmaceutical and Food Industries. Foods 2023; 12:foods12112189. [PMID: 37297434 DOI: 10.3390/foods12112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Encapsulation is a valuable method used to protect active substances and enhance their physico-chemical properties. It can also be used as protection from unpleasant scents and flavors or adverse environmental conditions. METHODS In this comprehensive review, we highlight the methods commonly utilized in the food and pharmaceutical industries, along with recent applications of these methods. RESULTS Through an analysis of numerous articles published in the last decade, we summarize the key methods and physico-chemical properties that are frequently considered with encapsulation techniques. CONCLUSION Encapsulation has demonstrated effectiveness and versatility in multiple industries, such as food, nutraceutical, and pharmaceuticals. Moreover, the selection of appropriate encapsulation methods is critical for the effective encapsulation of specific active compounds. Therefore, constant efforts are being made to develop novel encapsulation methods and coating materials for better encapsulation efficiency and to improve properties for specific use.
Collapse
Affiliation(s)
- David Řepka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Antónia Kurillová
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Yousef Murtaja
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lubomír Lapčík
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin, Czech Republic
| |
Collapse
|
6
|
Manzoor M, Sharma P, Murtaza M, Jaiswal AK, Jaglan S. Fabrication, characterization, and interventions of protein, polysaccharide and lipid-based nanoemulsions in food and nutraceutical delivery applications: A review. Int J Biol Macromol 2023; 241:124485. [PMID: 37076071 DOI: 10.1016/j.ijbiomac.2023.124485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The fabrication and application of nanoemulsions for incorporating and delivering diverse bioactive compounds, particularly hydrophobic substances, is becoming an increasing focus of research with the potential to improve the nutritional and health status of individuals. Constant advancements in nanotechnological approaches aid in the creation of nanoemulsions using diverse biopolymers such as proteins, peptides, polysaccharides, and lipids to improve the stability, bioactivity, and bioavailability of active hydrophilic and lipophilic compounds. This article provides a comprehensive overview of various techniques used to create and characterize nanoemulsions as well as theories for understanding their stability. The article also highlights the advancement of nanoemulsions in boosting the bioaccessibility of nutraceuticals to help advance their potential use in various food and pharmaceutical formulations.
Collapse
Affiliation(s)
- Mehnaza Manzoor
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, Punjab 144411, India.
| | - Priyanshu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, Punjab 144411, India
| | - Mohd Murtaza
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
7
|
Lal DK, Kumar B, Saeedan AS, Ansari MN. An Overview of Nanoemulgels for Bioavailability Enhancement in Inflammatory Conditions via Topical Delivery. Pharmaceutics 2023; 15:pharmaceutics15041187. [PMID: 37111672 PMCID: PMC10145625 DOI: 10.3390/pharmaceutics15041187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The anti-inflammatory drugs that are generally available possess the disadvantage of hydrophobicity, which leads to poor permeability and erratic bioavailability. Nanoemulgels (NEGs) are novel drug delivery systems that aim to improve the solubility and permeability of drugs across the biological membrane. The nano-sized droplets in the nanoemulsion enhance the permeation of the formulation, along with surfactants and co-surfactants that act as permeation enhancers and can further improve permeability. The hydrogel component of NEG helps to increase the viscosity and spreadability of the formulation, making it ideal for topical application. Moreover, oils that have anti-inflammatory properties, such as eucalyptus oil, emu oil and clove oil, are used as oil phases in the preparation of the nanoemulsion, which shows a synergistic effect with active moiety and enhances its overall therapeutic profile. This leads to the creation of hydrophobic drugs that possess enhanced pharmacokinetic and pharmacodynamic properties, and simultaneously avoid systemic side effects in individuals with external inflammatory disorders. The nanoemulsion's effective spreadability, ease of application, non-invasive administration, and subsequent ability to achieve patient compliance make it more suitable for topical application in the combat of many inflammatory disorders, such as dermatitis, psoriasis, rheumatoid arthritis, osteoarthritis and so on. Although the large-scale practical application of NEG is limited due to problems regarding its scalability and thermodynamic instability, which arise from the use of high-energy approaches during the production of the nanoemulsion, these can be resolved by the advancement of an alternative nanoemulsification technique. Considering the potential advantages and long-term benefits of NEGs, the authors of this paper have compiled a review that elaborates the potential significance of utilizing nanoemulgels in a topical delivery system for anti-inflammatory drugs.
Collapse
Affiliation(s)
- Diwya Kumar Lal
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Abdulaziz S Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
8
|
Rathod NB, Meral R, Siddiqui SA, Nirmal N, Ozogul F. Nanoemulsion-based approach to preserve muscle food: A review with current knowledge. Crit Rev Food Sci Nutr 2023; 64:6812-6833. [PMID: 36789616 DOI: 10.1080/10408398.2023.2175347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Muscle foods are regarded as nutritionally dense foods while they are prone to spoilage by action of microorganism and oxidation. Recently, the consumer's preference is mostly toward minimally processed foods as well as preserved with natural preservatives. However, natural extract directly to the food matrix has several drawbacks. Hence development and applications of nanoemulsion has gained importance for the preservation of muscle foods to meet consumer requirements with enhanced food safety. Nanoemulsion utilizes natural extracts at much lower concentration with higher preservative abilities over original components. Nanoemulsions offer protection to the active component from degradation and ensure longer bioavailability. Novel techniques used for formulation of nanoemulsion provide stability to the emulsion with desirable qualities to improve their impacts. The application of nanoemulsion is known to enhance the preservative action of nanoemulsions by improving the microbial safety and oxidative stability in nanoform. This review provides recent updates on different methods used for formulation of nanoemulsions from different sources. Besides, successful application of nanoemulsion derived using natural agents for muscle food preservation and shelf life extension are reviewed. Thus, the application of nanoemulsion to extend shelf life and maintain quality is suggested for muscle foods.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post-Harvest Technology and Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth) Roha, Raigad, Maharashtra, India
| | - Raciye Meral
- Faculty of Engineering, Department of Food Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
| |
Collapse
|
9
|
Enhancement of oral bioavailability of insulin using a combination of surface-modified inclusion complex and SNEDDS. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Zupančič O, Spoerk M, Paudel A. Lipid-based solubilization technology via hot melt extrusion: promises and challenges. Expert Opin Drug Deliv 2022; 19:1013-1032. [PMID: 35943158 DOI: 10.1080/17425247.2022.2112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). The excipients of SEDDS enable permeation through the mucus and gastro-intestinal barrier, inhibiting efflux transporters (e.g. P-glycoprotein) of drugs. Poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug payload, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) holds the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED The review begins with the rationale why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION HME can be a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters in successfully preparing SEDDS via HME are identified.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
11
|
van Staden D, Haynes RK, Viljoen JM. Adapting Clofazimine for Treatment of Cutaneous Tuberculosis by Using Self-Double-Emulsifying Drug Delivery Systems. Antibiotics (Basel) 2022; 11:antibiotics11060806. [PMID: 35740212 PMCID: PMC9219976 DOI: 10.3390/antibiotics11060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/10/2022] Open
Abstract
Although chemotherapeutic treatment regimens are currently available, and considerable effort has been lavished on the development of new drugs for the treatment of tuberculosis (TB), the disease remains deeply intractable and widespread. This is due not only to the nature of the life cycle and extraordinarily disseminated habitat of the causative pathogen, principally Mycobacterium tuberculosis (Mtb), in humans and the multi-drug resistance of Mtb to current drugs, but especially also to the difficulty of enabling universal treatment of individuals, immunocompromised or otherwise, in widely differing socio-economic environments. For the purpose of globally eliminating TB by 2035, the World Health Organization (WHO) introduced the "End-TB" initiative by employing interventions focusing on high impact, integrated and patient-centered approaches, such as individualized therapy. However, the extraordinary shortfall in stipulated aims, for example in actual treatment and in TB preventative treatments during the period 2018-2022, latterly and greatly exacerbated by the COVID-19 pandemic, means that even greater pressure is now placed on enhancing our scientific understanding of the disease, repurposing or repositioning old drugs and developing new drugs as well as evolving innovative treatment methods. In the specific context of multidrug resistant Mtb, it is furthermore noted that the incidence of extra-pulmonary TB (EPTB) has significantly increased. This review focusses on the potential of utilizing self-double-emulsifying drug delivery systems (SDEDDSs) as topical drug delivery systems for the dermal route of administration to aid in treatment of cutaneous TB (CTB) and other mycobacterial infections as a prelude to evaluating related systems for more effective treatment of CTB and other mycobacterial infections at large. As a starting point, we consider here the possibility of adapting the highly lipophilic riminophenazine clofazimine, with its potential for treatment of multi-drug resistant TB, for this purpose. Additionally, recently reported synergism achieved by adding clofazimine to first-line TB regimens signifies the need to consider clofazimine. Thus, the biological effects and pharmacology of clofazimine are reviewed. The potential of plant-based oils acting as emulsifiers, skin penetration enhancers as well as these materials behaving as anti-microbial components for transporting the incorporated drug are also discussed.
Collapse
|
12
|
|
13
|
de Oliveira MC, Bruschi ML. Self-Emulsifying Systems for Delivery of Bioactive Compounds from Natural Origin. AAPS PharmSciTech 2022; 23:134. [PMID: 35534702 DOI: 10.1208/s12249-022-02291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/24/2022] [Indexed: 12/14/2022] Open
Abstract
Nature has been used as therapeutic resources in the treatment of diseases for many years. However, some natural compounds have poor water solubility. Therefore, physicochemical strategies and technologies are necessary for development of systems for carrying these substances. The self-emulsifying drug delivery systems (SEDDS) have been used as carriers of hydrophobic compounds in order to increase the solubility and absorption, improving their bioavailability. SEDDS are constituted with a mixture of oils and surfactants which, when come into contact with an aqueous medium under mild agitation, can form emulsions. In the last years, a wide variety of self-emulsifying formulations containing bioactive compounds from natural origin has been developed. This review provides a comprehensive overview of the main excipients and natural bioactive compounds composing SEDDS. In addition, applications, new technologies and innovation are reviewed as well. Examples of self-emulsifying formulations administered in different sites are also considered for a better understanding of the use of this strategy to modify the delivery of compounds from natural origin.
Collapse
|
14
|
Ling JKU, Chan YS, Nandong J. Insights into the release mechanisms of antioxidants from nanoemulsion droplets. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1677-1691. [PMID: 35531405 PMCID: PMC9046499 DOI: 10.1007/s13197-021-05128-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 05/03/2023]
Abstract
The therapeutic effects of antioxidant-loaded nanoemulsion can be often optimized by controlling the release rate in human body. Release kinetic models can be used to predict the release profile of antioxidant compounds and allow identification of key parameters that affect the release rate. It is known that one of the critical aspects in establishing a reliable release kinetic model is to understand the underlying release mechanisms. Presently, the underlying release mechanisms of antioxidants from nanoemulsion droplets are not yet fully understood. In this context, this review scrutinized the current formulation strategies to encapsulate antioxidant compounds and provide an outlook into the future of this research area by elucidating possible release mechanisms of antioxidant compounds from nanoemulsion system.
Collapse
Affiliation(s)
- Jordy Kim Ung Ling
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| | - Yen San Chan
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| | - Jobrun Nandong
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| |
Collapse
|
15
|
Poudwal S, Shende P. Multi-strategic approaches for enhancing active transportation using self-emulsifying drug delivery system. J Drug Target 2022; 30:726-736. [PMID: 35451898 DOI: 10.1080/1061186x.2022.2069783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oral delivery is the most desired route of drug administration and it can be more beneficial for patients suffering from chronic diseases wherein frequent parenteral administration of proteins such as insulin and calcitonin is required. The BCS class II drugs show low aqueous solubility and high permeability whereas BCS class IV drugs suffer from low aqueous solubility and low permeability. Additionally, biologic drugs are highly sensitive to presence of bioenzymes and bile salts when administered orally. Self-emulsifying drug delivery system (SEDDS) is a thermodynamically stable lipid formulation that enhances oral absorption of active ingredients via the opening of tight junctions, increasing the membrane fluidity, and thus overcomes the physiological barriers like viscous mucus layer, strong acid conditions and enzymatic degradation. An understanding of different theories that govern SEDDS formation and drug release can help in formulating a highly stable and effective drug delivery system. Poorly permeable drugs such as chlorpromazine require modification using methods like hydrophobic ion pairing, complexation with phospholipids, etc. to enable high entrapment efficiency which is discussed in the article. Additionally, the article gives an overview of the influence of polymers, length of fatty acids chain and zeta potential in enhancing permeation across the intestinal membrane.
Collapse
Affiliation(s)
- Swapna Poudwal
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
16
|
Witika BA, Poka MS, Demana PH, Matafwali SK, Melamane S, Malungelo Khamanga SM, Makoni PA. Lipid-Based Nanocarriers for Neurological Disorders: A Review of the State-of-the-Art and Therapeutic Success to Date. Pharmaceutics 2022; 14:836. [PMID: 35456669 PMCID: PMC9031624 DOI: 10.3390/pharmaceutics14040836] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Neurodegenerative disorders including Alzheimer's, Parkinson's, and dementia are chronic and advanced diseases that are associated with loss of neurons and other related pathologies. Furthermore, these disorders involve structural and functional defections of the blood-brain barrier (BBB). Consequently, advances in medicines and therapeutics have led to a better appreciation of various pathways associated with the development of neurodegenerative disorders, thus focusing on drug discovery and research for targeted drug therapy to the central nervous system (CNS). Although the BBB functions as a shield to prevent toxins in the blood from reaching the brain, drug delivery to the CNS is hindered by its presence. Owing to this, various formulation approaches, including the use of lipid-based nanocarriers, have been proposed to address shortcomings related to BBB permeation in CNS-targeted therapy, thus showing the potential of these carriers for translation into clinical use. Nevertheless, to date, none of these nanocarriers has been granted market authorization following the successful completion of all stages of clinical trials. While the aforementioned benefits of using lipid-based carriers underscores the need to fast-track their translational development into clinical practice, technological advances need to be initiated to achieve appropriate capacity for scale-up and the production of affordable dosage forms.
Collapse
Affiliation(s)
- Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Madan Sai Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Patrick Hulisani Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| | - Siyabonga Melamane
- Stutterheim Hospital, No.1 Hospital Street, Stutterheim 4930, South Africa;
| | | | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
17
|
Dedhia N, Marathe SJ, Singhal RS. Food polysaccharides: A review on emerging microbial sources, bioactivities, nanoformulations and safety considerations. Carbohydr Polym 2022; 287:119355. [DOI: 10.1016/j.carbpol.2022.119355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
|
18
|
Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Seo EB, du Plessis LH, Viljoen JM. Solidification of Self-Emulsifying Drug Delivery Systems as a Novel Approach to the Management of Uncomplicated Malaria. Pharmaceuticals (Basel) 2022; 15:ph15020120. [PMID: 35215233 PMCID: PMC8877057 DOI: 10.3390/ph15020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Malaria affects millions of people annually, especially in third-world countries. The mainstay of treatment is oral anti-malarial drugs and vaccination. An increase in resistant strains of malaria parasites to most of the current anti-malarial drugs adds to the global burden. Moreover, existing and new anti-malarial drugs are hampered by significantly poor aqueous solubility and low permeability, resulting in low oral bioavailability and patient noncompliance. Lipid formulations are commonly used to increase solubility and efficacy and decrease toxicity. The present review discusses the findings from studies focusing on specialised oral lipophilic drug delivery systems, including self-emulsifying drug delivery systems (SEDDSs). SEDDSs facilitate the spontaneous formation of liquid emulsions that effectively solubilise the incorporated drugs into the gastrointestinal tract and thereby improve the absorption of poorly-soluble anti-malaria drugs. However, traditional SEDDSs are normally in liquid dosage forms, which are delivered orally to the site of absorption, and are hampered by poor stability. This paper discusses novel solidification techniques that can easily and economically be up-scaled due to already existing industrial equipment that could be utilised. This method could, furthermore, improve product stability and patient compliance. The possible impact that solid oral SEDDSs can play in the fight against malaria is highlighted.
Collapse
|
20
|
Rehman A, Qunyi T, Sharif HR, Korma SA, Karim A, Manzoor MF, Mehmood A, Iqbal MW, Raza H, Ali A, Mehmood T. Biopolymer based nanoemulsion delivery system: An effective approach to boost the antioxidant potential of essential oil in food products. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Solid self emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos. J Control Release 2021; 337:646-660. [PMID: 34384795 DOI: 10.1016/j.jconrel.2021.08.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022]
Abstract
A significant proportion of recently approved drug molecules possess poor aqueous solubility which further restrains their desired bioavailability. Poor aqueous solubility of these drugs poses significant hurdles in development of novel drug delivery systems and achieving target response. Self-emulsifying drug delivery systems (SEDDS) emerged as an insightful approach for delivering highly hydrophobic entities to enhance their bioavailability. Conventional SEDDS were developed in a liquid form which owned numerous shortcomings like low stability and drug loading efficiency, fewer choices of dosage forms and irreversible precipitation of drug or excipients. To address these curbs solid-SEDDS (S-SEDDS) was introduced as an efficient strategy that combined advantages of solid dosage forms such as increased stability, portability and patient compliance along with substantial improvement in the bioavailability. S-SEDDS are isotropic mixtures of oil, surfactant, solvent and co-solvents generated by solidification of liquid or semisolid self-emulsifying ingredients onto powders. The present review highlights components of S-SEDDS, their peculiarities to be considered while designing solid dosage forms and various methods of fabrication. Lastly, key challenges faced during development, applications and future directions for the research in this area are thoroughly summarized.
Collapse
|
22
|
Gonçalves A, Estevinho BN, Rocha F. Methodologies for simulation of gastrointestinal digestion of different controlled delivery systems and further uptake of encapsulated bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Mandić J, Kosmač I, Kovačević M, Hodnik B, Hodnik Ž, Vrečer F, Gašperlin M, Perissutti B, Zvonar Pobirk A. Evaluation of solid carvedilol-loaded SMEDDS produced by the spray drying method and a study of related substances. Int J Pharm 2021; 605:120783. [PMID: 34111547 DOI: 10.1016/j.ijpharm.2021.120783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/16/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
In this study, various formulations of solidified carvedilol-loaded SMEDDS with high SMEDDS loading (up to 67% w/w) were produced with the spray drying process using various porous silica-based carriers. The process yield was improved with higher atomization gas flow rate during the spray drying process and with prolonged mixing time of dispersion of liquid SMEDDS and solid porous carriers prior to the spray drying process. Depending on the choice of the carrier and the SMEDDS:carrier ratio in solid SMEDDS, different drug loading, self-microemulsifying properties, drug release rates, and released drug fractions were obtained. The products exhibited fast drug release due to preserved self-microemulsifying properties and the absence of crystalline carvedilol, which was confirmed with XRD and Raman mapping. A decrease in drug content during the stability study was observed and investigated. This was at least partially attributed to the chemical degradation of the drug. Key degradation products determined by the LC-MS method were amides formed by in situ reaction of carvedilol with fatty acids present in the oily phase of SMEDDS.
Collapse
Affiliation(s)
- J Mandić
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - I Kosmač
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - M Kovačević
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - B Hodnik
- Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - Ž Hodnik
- Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - F Vrečer
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - M Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - B Perissutti
- University of Trieste, Dept. of Chemical and Pharmaceutical Sciences, P.le Europa 1, Trieste, Italy
| | - A Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
24
|
Design, Preparation, and Characterization of Effective Dermal and Transdermal Lipid Nanoparticles: A Review. COSMETICS 2021. [DOI: 10.3390/cosmetics8020039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Limited permeability through the stratum corneum (SC) is a major obstacle for numerous skin care products. One promising approach is to use lipid nanoparticles as they not only facilitate penetration across skin but also avoid the drawbacks of conventional skin formulations. This review focuses on solid lipid nanoparticles (SLNs), nanostructured lipid nanocarriers (NLCs), and nanoemulsions (NEs) developed for topical and transdermal delivery of active compounds. A special emphasis in this review is placed on composition, preparation, modifications, structure and characterization, mechanism of penetration, and recent application of these nanoparticles. The presented data demonstrate the potential of these nanoparticles for dermal and transdermal delivery.
Collapse
|
25
|
Morphology and coalescence stability of high internal phase emulsions formed in natural gas pipelines. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Tripathi AD, Sharma R, Agarwal A, Haleem DR. Nanoemulsions based edible coatings with potential food applications. INTERNATIONAL JOURNAL OF BIOBASED PLASTICS 2021. [DOI: 10.1080/24759651.2021.1875615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., India
| | - Ruchi Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Sonepat, Haryana, India
| | - Aparna Agarwal
- Department of Food & Nutrition and Food Technology, Lady Irwin College, New Delhi, India
| | - Dr Rizwana Haleem
- Department of Food Technology, Bhaskaracharya College of Applied Sciences, Dwarka, New Delhi, India
| |
Collapse
|
27
|
Powder coating and dissolution rate modification of L-leucine supplements with hydrophilic fumed SiO2 nanoparticles by ultrasonic irradiation in high-pressure liquid CO2. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
García-Armenta E, Picos-Corrales LA, Gutiérrez-López GF, Gutiérrez-Dorado R, Perales-Sánchez JX, García-Pinilla S, Reynoso-García F, Martínez-Audelo JM, Armenta-Manjarrez MA. Preparation of surfactant-free emulsions using amaranth starch modified by reactive extrusion. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Chaurasiya C, Gupta J, Kumar S. Herbal nanoemulsion in topical drug delivery and skin disorders: Green approach. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2021. [DOI: 10.4103/jrptps.jrptps_64_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Mishra V, Nayak P, Yadav N, Singh M, Tambuwala MM, Aljabali AAA. Orally administered self-emulsifying drug delivery system in disease management: advancement and patents. Expert Opin Drug Deliv 2020; 18:315-332. [PMID: 33232184 DOI: 10.1080/17425247.2021.1856073] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Oral administration of a drug is the most common, ideal and preferred route of administration. The main problem of oral drug formulations is their low bioavailability arises from poor aqueous solubility of drug. Aqueous solubility of lipophilic drugs can be improved by various techniques like salt formation, complexation, addition of co-solvent etc. but self-emulsifying drug-delivery system (SEDDS) is getting more attention for increasing the solubility of such drugs. The SEDDS is an isotropic mixture of drug, lipids, and emulsifiers, usually with one or more hydrophilic co-solvents/co-emulsifiers. This system is having ability to generate oil-in-water (o/w) emulsions or microemulsions upon gentle agitation followed by dilution with aqueous phase. The SEDDSs are relatively newer, lipid-based technological innovations possessing unparalleled potential in improving oral bioavailability of poorly water-soluble drugs.Areas covered: This review provides updated information regarding the types of SEDDS, their preparation techniques, drug delivery and related recent patents along with marketed formulations.Expert opinion: The SEDDS has been explored for improving bioavailability, rising intra-subject heterogeneity, and increasing solubility. SEDDS offers the benefit of a protective effect against the hostile environment in the gut. The unique fabrication techniques provide specific strategy to overcome the low bioavailability and poor solubility problems.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pallavi Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nishika Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Manvendra Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| |
Collapse
|
31
|
Baghel P, Roy A, Verma S, Satapathy T, Bahadur S. Amelioration of lipophilic compounds in regards to bioavailability as self-emulsifying drug delivery system (SEDDS). FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00042-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
High lipophilicity and poor aqueous solubility are the endemic problems of new drug molecules. Sixty to seventy percent of these drugs are unable to solubilize completely in aqueous media, or have very low permeability. This hampers their oral absorption and further leads to their poor bioavailability. Various researches are in progress to overcome these limitations. Novel technologies like nano-carrier systems have become popular for improving the solubility of drugs.
Main body
Lipid-based formulations, among nano systems, are taking pace for the enhancement of solubility, oral absorption, and hence the bioavailability of drugs. Among the lipid formulations, self-emulsification systems are gaining popularity by offering various advantages to delivery systems. Self-emulsifying drug delivery systems (SEDDS) are isotropic blends of oil and surfactant/co-surfactants. These ingredients upon gentle agitation in aqueous media results in the formation of o/w emulsion. In spite of many works published in SEDDS, the major concerns of this article are to discuss the various approaches to formulate a good lipid-based carrier system for poorly aqueous soluble drugs, role of various polymers, and their categories used in the formulation along-with the modern technologies used for enhancing the stability of liquid SEDDS. This review majorly focuses upon the problems related to the poor aqueous solubility of the newer lipid molecules and the solutions to overcome their solubility and in addition bioavailability.
Conclusion
As per the researches done in formulation and optimization of SEDDS for the enhancement of bioavailability of lipophilic molecules, it can be stated that the aqueous solubility as well as bioavailability can be increased by many folds compared to their marketed or other oral formulations.
Collapse
|
32
|
Mandić J, Pirnat V, Luštrik M, German Ilić I, Vrečer F, Gašperlin M, Zvonar Pobirk A. Solidification of SMEDDS by fluid bed granulation and manufacturing of fast drug release tablets. Int J Pharm 2020; 583:119377. [PMID: 32339633 DOI: 10.1016/j.ijpharm.2020.119377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/05/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022]
Abstract
Solidification of self-microemulsifying drug delivery systems (SMEDDS) is a rising experimental field with important potential for pharmaceutical industry, however fluid-bed granulation with SMEDDS is yet an unexplored solidification technique. The aim of the study was to solidify carvedilol-loaded SMEDDS utilizing fluid bed granulation process and to investigate how the formulation variables (type of solid carrier, optimization of granulation dispersion) and fluid-bed granulation process variables can be optimized in order to achieve suitable agglomeration process, high drug loading and appropriate product characteristics. Obtained granulates exhibited complete drug release, comparable to liquid SMEDDS and superior to crystalline carvedilol, nevertheless compromise between large SMEDDS loading and appropriate flow properties of the granules has to be made. Representative granulates with highest drug loading were further compressed into tablets. It was shown that the optimal excipient selection of compression mixture and compression force can lead to fast carvedilol release even from the tablets. Selfmicroemulsifying properties were not impaired neither after the solidification process and nor after the compression of solid SMEDDS into tablets. This suggests that fluid-bed granulation with SMEDDS offers a perspective alternative for solidification of the SMEDDS, enabling preservation of self-microemulsifying properties, acceptable drug loading and complete drug release.
Collapse
Affiliation(s)
- Jelena Mandić
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d., Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - Vesna Pirnat
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Matevž Luštrik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Ilija German Ilić
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Franc Vrečer
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d., Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - Mirjana Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
33
|
Development of Topical/Transdermal Self-Emulsifying Drug Delivery Systems, Not as Simple as Expected. Sci Pharm 2020. [DOI: 10.3390/scipharm88020017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) originated as an oral lipid-based drug delivery system with the sole purpose of improving delivery of highly lipophilic drugs. However, the revolutionary drug delivery possibilities presented by these uniquely simplified systems in terms of muco-adhesiveness and zeta-potential changing capacity lead the way forward to ground-breaking research. Contrarily, SEDDSs destined for topical/transdermal drug delivery have received limited attention. Therefore, this review is focused at utilising principles, established during development of oral SEDDSs, and tailoring them to fit evaluation strategies for an optimised topical/transdermal drug delivery vehicle. This includes a detailed discussion of how the authentic pseudo-ternary phase diagram is employed to predict phase behaviour to find the self-emulsification region most suitable for formulating topical/transdermal SEDDSs. Additionally, special attention is given to the manner of characterising oral SEDDSs compared to topical/transdermal SEDDSs, since absorption within the gastrointestinal tract and the multi-layered nature of the skin are two completely diverse drug delivery territories. Despite the advantages of the topical/transdermal drug administration route, certain challenges such as the relatively undiscovered field of skin metabolomics as well as the obstacles of choosing excipients wisely to establish skin penetration enhancement might prevail. Therefore, development of topical/transdermal SEDDSs might be more complicated than expected.
Collapse
|
34
|
Innovative technological systems to optimize the delivery and therapeutic activity of antimicrobial drugs. ADVANCES AND AVENUES IN THE DEVELOPMENT OF NOVEL CARRIERS FOR BIOACTIVES AND BIOLOGICAL AGENTS 2020. [DOI: 10.1016/b978-0-12-819666-3.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
35
|
|
36
|
Snela A, Jadach B, Froelich A, Skotnicki M, Milczewska K, Rojewska M, Voelkel A, Prochaska K, Lulek J. Self-emulsifying drug delivery systems with atorvastatin adsorbed on solid carriers: formulation and in vitro drug release studies. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Gonçalves A, Estevinho BN, Rocha F. Formulation approaches for improved retinoids delivery in the treatment of several pathologies. Eur J Pharm Biopharm 2019; 143:80-90. [PMID: 31446044 DOI: 10.1016/j.ejpb.2019.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/25/2019] [Accepted: 08/21/2019] [Indexed: 01/07/2023]
Abstract
Retinoid acid (RA) and other retinoids are extensively used as therapeutic agents in the treatment of several types of cancer and skin disorders. However, the efficiency of these medical agents is compromised due to the unsatisfactory concentration of retinoids in the target cells/tissues. Furthermore, severe side-effects are related to retinoids administration. Incorporation of retinoids into carrier-based delivery systems using encapsulation technology has been proposed in order to overcome the limitations of using free retinoids in the treatment of several pathologies. The present work starts exploring the competences and the difficulties of using retinoids in health care. The metabolism and the main considerations about the mechanism of action of retinoids are also discussed. The final sections are focused on the most recent studies about RA controlled delivery systems to be used in the medical field.
Collapse
Affiliation(s)
- Antónia Gonçalves
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta N Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
38
|
Yin X, Pan H, Liu H. A Novel Micron-Size Particulate Formulation of Felodipine with Improved Release and Enhanced Oral Bioavailability Fabricated by Coaxial Electrospray. AAPS PharmSciTech 2019; 20:282. [PMID: 31407104 DOI: 10.1208/s12249-019-1495-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022] Open
Abstract
The antihypertensive drug felodipine (FD) is a typical biopharmaceutics classification system (BCS) II drug; thus, improving the dissolution rate of FD is very important to enhance its bioavailability. Besides, according to the in situ "close loop" perfusion assay, we found that the jejunum is the main absorptive site, then the duodenum and ileum. Consequently, a novel micron-size particulate of FD in a core-shell structure was fabricated by a coaxial electrospray technique; within the drug delivery system, Hypromellose K4M (HPMC K4M) was selected as a sheath material to prolong the retention time in the upper GI tract, while povidone K30 (PVP K30) was mixed with FD in the inner layer. The dissolution study in three different media (0.02% Tween-80 solution; phosphate buffer containing 0.02% Tween-80, pH 6.8; and HCl solution containing 0.02% Tween-80, pH 1.2) demonstrated that FD-loaded coaxial electrospray particles (F-COES) could greatly improve the dissolution of FD. Furthermore, in vivo pharmacokinetics revealed that F-COES emerged no changes in the half-life but significantly prolonged the tmax and increased the oral bioavailability. Collectively, this work supplies a promising drug release system that will improve the dissolution and enhance the bioavailability simultaneously for those poorly water-soluble drugs mainly absorbed in the upper GI tract.
Collapse
Affiliation(s)
- Xuezhi Yin
- Zhejiang Tianyu Pharmaceutical CO., Ltd, Zhejiang, China
| | - Hao Pan
- College of Pharmacy, Liaoning University, Shenyang, 110036, China
| | - Hongfei Liu
- College of Pharmacy, Jiangsu University, No.301, Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
39
|
Mandić J, Luštrik M, Vrečer F, Gašperlin M, Zvonar Pobirk A. Solidification of carvedilol loaded SMEDDS by swirling fluidized bed pellet coating. Int J Pharm 2019; 566:89-100. [DOI: 10.1016/j.ijpharm.2019.05.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/06/2019] [Accepted: 05/20/2019] [Indexed: 01/11/2023]
|
40
|
Saleem MA, Nazar MF, Yameen B, Khan AM, Hussain SZ, Khalid MR. Structural Insights into the Microemulsion-Mediated Formation of Fluoroquinolone Nanoantibiotics. ChemistrySelect 2018. [DOI: 10.1002/slct.201801925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Muhammad A. Saleem
- Department of Chemistry; Hafiz Hayat Campus; University of Gujrat; Gujrat 50700 Pakistan
- CCL Pharmaceuticals (Pvt.) Ltd; Lahore- 54000 Pakistan
| | - Muhammad F. Nazar
- Department of Chemistry; Hafiz Hayat Campus; University of Gujrat; Gujrat 50700 Pakistan
| | - Basit Yameen
- Department of Chemistry; Syed Babar Ali School of Science and Engineering (SBASSE); Lahore University of Management Sciences (LUMS); Lahore- 54792 Pakistan
| | - Asad M. Khan
- Department of Chemistry; COMSATS Institute of Information Technology; Abbottabad- 22060 Pakistan
| | - Syed Z. Hussain
- Department of Chemistry; Syed Babar Ali School of Science and Engineering (SBASSE); Lahore University of Management Sciences (LUMS); Lahore- 54792 Pakistan
| | | |
Collapse
|
41
|
Pisoschi AM, Pop A, Cimpeanu C, Turcuş V, Predoi G, Iordache F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. Eur J Med Chem 2018; 157:1326-1345. [DOI: 10.1016/j.ejmech.2018.08.076] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
|
42
|
|
43
|
Yoon HJ, Zhang X, Kang MG, Kim GJ, Shin SY, Baek SH, Lee BN, Hong SJ, Kim JT, Hong K, Bae H. Cytotoxicity Evaluation of Turmeric Extract Incorporated Oil-in-Water Nanoemulsion. Int J Mol Sci 2018; 19:E280. [PMID: 29342111 PMCID: PMC5796226 DOI: 10.3390/ijms19010280] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 02/02/2023] Open
Abstract
To overcome the drawbacks of conventional drug delivery system, nanoemulsion have been developed as an advanced form for improving the delivery of active ingredients. However, safety evaluation is crucial during the development stage before the commercialization. Therefore, the aim of this study was to evaluate the cytotoxicity of two types of newly developed nanoemulsions. Turmeric extract-loaded nanoemulsion powder-10.6 (TE-NEP-10.6, high content of artificial surfactant Tween 80), which forms the optimal nanoemulsion, and the TE-NEP-8.6 made by increasing the content of natural emulsifier (lecithin) to reduce the potential toxicity of nanoemulsion were cultured with various cells (NIH3T3, H9C2, HepG2, hCPC, and hEPC) and the changes of each cell were observed followed by nanoemulsion treatment. As a result, the two nanoemulsions (TE-NEP-10.6 and TE-NEP-8.6) did not show significant difference in cell viability. In the case of cell line (NIH3T3, H9C2, and HepG2), toxicity was not observed at an experimental concentration of less than 1 mg/mL, however, the cell survival rate decreased in a concentration dependent manner in the case of primary cultured cells. These results from our study can be used as a basic data to confirm the cell type dependent toxicity of nanoemulsion.
Collapse
Affiliation(s)
- Hee Jeong Yoon
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Korea.
| | - Xiaowei Zhang
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Korea.
| | - Min Gyeong Kang
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Korea.
| | - Gyeong Jin Kim
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Korea.
| | - Sun Young Shin
- Laboratory of Cardiovascular Regeneration, Division of Cardiology, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul 02841, Korea.
| | - Sang Hong Baek
- Laboratory of Cardiovascular Regeneration, Division of Cardiology, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul 02841, Korea.
| | - Bom Nae Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Korea.
| | - Su Jung Hong
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Korea.
| | - Jun Tae Kim
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Korea.
| | - Kwonho Hong
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Korea.
| | - Hojae Bae
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
44
|
Gharibzahedi SMT, George S, Greiner R, Estevinho BN, Frutos Fernández MJ, McClements DJ, Roohinejad S. New Trends in the Microencapsulation of Functional Fatty Acid-Rich Oils Using Transglutaminase Catalyzed Crosslinking. Compr Rev Food Sci Food Saf 2018; 17:274-289. [DOI: 10.1111/1541-4337.12324] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | - Saji George
- Dept. of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, Macdonald Campus; McGill Univ.; Ste-Anne de Bellevue Quebec Canada
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Inst.; Federal Research Inst. of Nutrition and Food; Haid-und-Neu-Straße 9 76131 Karlsruhe Germany
| | - Berta N. Estevinho
- LEPABE, Dept. de Engenharia Química; Faculdade de Engenharia da Univ. do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | | | | | - Shahin Roohinejad
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Inst.; Federal Research Inst. of Nutrition and Food; Haid-und-Neu-Straße 9 76131 Karlsruhe Germany
- Burn and Wound Healing Research Center, Div. of Food and Nutrition; Shiraz Univ. of Medical Sciences; Shiraz Iran
| |
Collapse
|