1
|
Mohammadi S, Hemmat A, Afifi H, Mahmoudi Alemi F. Improvement of the Rheological Behavior of Viscoelastic Surfactant Fracturing Fluids by Metallic-Type Nanoparticles. ACS OMEGA 2024; 9:28676-28690. [PMID: 38973834 PMCID: PMC11223126 DOI: 10.1021/acsomega.4c03000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
The use of nanotechnology in the field of acidizing, particularly in fracturing fluids, has garnered significant attention over the past decade. Viscoelastic surfactants (VESs) are utilized as one of the most effective fracturing fluids, possessing both elasticity and viscosity properties. These fluids are crucial additives in acidizing packages, enhancing their performance. However, various factors, such as salinity, temperature, pressure, and concentration, can sometimes weaken the efficacy of these fluids. To address this, the integration of nanoparticles has been explored to improve fluid retention in reservoirs and enhance the efficiency. This study focuses on investigating the impact of the main metallic-type nanoparticles on the rheological behavior of VES fluids. Iron oxide, magnesium oxide, and zinc oxide nanoparticles were utilized, and the microscopic-scale rheological behavior of the fluids was thoroughly evaluated. The highest performance for enhancing fluid gelation, stability, and rheological characteristics of VES fluids was found for Fe2O3 nanoparticles at an optimum concentration of 500 ppm. At this concentration and shear rate of 100 s-1, the viscosity of the fluid reached 169.61 cP. For iron oxide nanoparticles at a concentration of 500 ppm, by increasing the temperature from 25 to 85 °C, the gelation state of the fluid increased from 7 h and 50 min to 17 h and 45 min. This improvement is attributed to their high surface area and the increased density of entanglement points within the micelles, leading to a more interconnected structure with enhanced viscoelastic properties. Furthermore, iron oxide nanoparticles significantly enhance gelation by physically connecting the micelles, thereby improving stability and structure. The absorption of surfactant molecules by the nanoparticles additionally contributes to micelle reconstruction and shape alteration. The presence of iron oxide nanoparticles helps maintain the gel structure even at elevated temperatures, preventing rapid viscosity decrease. Our findings may provide new insights for development of high-performance, economical, and environment-friendly fracturing fluids used in well stimulation operations.
Collapse
Affiliation(s)
- Saber Mohammadi
- Petroleum
Engineering Department, Research Institute
of Petroleum Industry (RIPI), Tehran 14665-1998, Iran
| | - Alimohammad Hemmat
- Department
of Chemical Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Hamidreza Afifi
- Petroleum
Engineering Department, Research Institute
of Petroleum Industry (RIPI), Tehran 14665-1998, Iran
| | - Fatemeh Mahmoudi Alemi
- Petroleum
Engineering Department, Research Institute
of Petroleum Industry (RIPI), Tehran 14665-1998, Iran
| |
Collapse
|
2
|
Xu Y, Liu X. Fabrication and Enzymatic Disorganization of Multiresponse Worm-Like Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:896-905. [PMID: 38134447 DOI: 10.1021/acs.langmuir.3c03057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
How to fabricate multiresponse worm-like micelles (WLMs) and the corresponding green disposal is still challenging. A strategy of fabricating the surfactant-based WLMs that can respond simultaneously to light, heat, and pH was developed by using triple-response sodium (E)-2-(4-(phenyldiazenyl)phenoxy) acetate (AzoNa) and butyrylcholinesterase (BChE)-hydrolyzable palmitoylcholine bromide (PCB). Under the optimal molar ratio of AzoNa to PCB (∼0.5), the PCB-AzoNa WLMs formed with a maximum zero-shear viscosity (η0) value of about 2.1 × 105 mPa·s and an average diameter (D) of 4.1 ± 0.6 nm under conditions of 37 °C and pH 7.4. After irradiated with 365 nm UV light for 80 min, AzoNa underwent the trans-to-cis transition, by which the PCB-AzoNa WLMs was destroyed; however, the PCB-AzoNa WLMs could be reformed upon the irradiation of 455 nm blue light for 18 h or heating at 70 °C for 45 min due to the cis-to-trans isomerization of AzoNa. When pH changed from 7.4 to 2.0, the PCB-AzoNa WLMs was destroyed rapidly because of the conversion of AzoNa to the acid form of AzoH, whereas the PCB-AzoNa WLMs could be reformed after pH was restored to 7.4. The multiple responsiveness of the PCB-AzoNa WLMs was reversible due to the reversible trans-cis isomerization or protonation of AzoNa. Besides, the average D values of light, heat, and pH-regenerated PCB-AzoNa WLMs were 4.2 ± 0.7, 4.0 ± 0.7, and 4.0 ± 0.6 nm, respectively. Finally, the PCB-AzoNa WLMs could be enzymatically disorganized under conditions of 37 °C and pH 7.4 due to the BChE-catalyzed hydrolysis of PCB. We hope that the fabrication and enzymatic disorganization strategies for PCB-based multiresponse WLMs presented here will find potential applications in the formulation of antimicrobial household and personal care products containing PCB and in the green disposal of viscous waste containing PCB.
Collapse
Affiliation(s)
- Yanjie Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xuefeng Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
3
|
Zika A, Agarwal M, Schweins R, Gröhn F. Double-Wavelength-Switchable Molecular Self-Assembly of a Photoacid and Spirooxazine in an Aqueous Solution. J Phys Chem Lett 2023; 14:9563-9568. [PMID: 37861686 DOI: 10.1021/acs.jpclett.3c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Quadruple-switchable nanoscale assemblies are built by combining two types of water-soluble molecular photoswitches through dipole-dipole interaction. Uniting the wavelength-specific proton dissociation of a photoacid and ring-opening of an anionic spirooxazine results in an assembly that can be addressed by irradiation with two different wavelengths: pH and darkness.
Collapse
Affiliation(s)
- Alexander Zika
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Mohit Agarwal
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
- DS/LSS Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20 156, 38042 Grenoble CEDEX 9, France
| | - Ralf Schweins
- DS/LSS Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20 156, 38042 Grenoble CEDEX 9, France
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| |
Collapse
|
4
|
Bhat B, Pahari S, Kwon JSI, Akbulut MES. Stimuli-responsive viscosity modifiers. Adv Colloid Interface Sci 2023; 321:103025. [PMID: 37871381 DOI: 10.1016/j.cis.2023.103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/01/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Stimuli responsive viscosity modifiers entail an important class of materials which allow for smart material formation utilizing various stimuli for switching such as pH, temperature, light and salinity. They have seen applications in the biomedical space including tissue engineering and drug delivery, wherein stimuli responsive hydrogels and polymeric vessels have been extensively applied. Applications have also been seen in other domains like the energy sector and automobile industry, in technologies such as enhanced oil recovery. The chemistry and microstructural arrangements of the aqueous morphologies of dissolved materials are usually sensitive to the aforementioned stimuli which subsequently results in rheological sensitivity as well. Herein, we overview different structures capable of viscosity modification as well as go over the rheological theory associated with classical systems studied in literature. A detailed analysis allows us to explore correlations between commonly discussed models such as molecular packing parameter, tube reptation and stress relaxation with structural and rheological changes. We then present five primary mechanisms corresponding to stimuli responsive viscosity modification: (i) packing parameter modification via functional group conditioning and (ii) via dynamic bond formation, (iii) mesh formation by interlinking of network nodes, (iv) viscosity modification by chain conformation changes and (v) viscosity modification by particle jamming. We also overview several recent examples from literature that employ the concepts discussed to create novel classes of intriguing stimuli responsive structures and their corresponding rheological properties. Furthermore, we also explore systems that are responsive to multiple stimuli which can provide enhanced functionality and versatility by providing multi-level and precise actuation. Such systems have been used for programmed site-specific drug delivery.
Collapse
Affiliation(s)
- Bhargavi Bhat
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Silabrata Pahari
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Joseph Sang-Il Kwon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Texas A&M Energy Institute, College Station, TX 77843, USA
| | - Mustafa E S Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA; Texas A&M Energy Institute, College Station, TX 77843, USA.
| |
Collapse
|
5
|
Younis M, Ahmad S, Atiq A, Amjad Farooq M, Huang MH, Abbas M. Recent Progress in Azobenzene-Based Supramolecular Materials and Applications. CHEM REC 2023; 23:e202300126. [PMID: 37435961 DOI: 10.1002/tcr.202300126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/31/2023] [Indexed: 07/13/2023]
Abstract
Azobenzene-containing small molecules and polymers are functional photoswitchable molecules to form supramolecular nanomaterials for various applications. Recently, supramolecular nanomaterials have received enormous attention in material science because of their simple bottom-up synthesis approach, understandable mechanisms and structural features, and batch-to-batch reproducibility. Azobenzene is a light-responsive functional moiety in the molecular design of small molecules and polymers and is used to switch the photophysical properties of supramolecular nanomaterials. Herein, we review the latest literature on supramolecular nano- and micro-materials formed from azobenzene-containing small molecules and polymers through the combinatorial effect of weak molecular interactions. Different classes including complex coacervates, host-guest systems, co-assembled, and self-assembled supramolecular materials, where azobenzene is an essential moiety in small molecules, and photophysical properties are discussed. Afterward, azobenzene-containing polymers-based supramolecular photoresponsive materials formed through the host-guest approach, polymerization-induced self-assembly, and post-polymerization assembly techniques are highlighted. In addition to this, the applications of photoswitchable supramolecular materials in pH sensing, and CO2 capture are presented. In the end, the conclusion and future perspective of azobenzene-based supramolecular materials for molecular assembly design, and applications are given.
Collapse
Affiliation(s)
- Muhammad Younis
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Sadia Ahmad
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Atia Atiq
- Division of Science and Technology, Department of Physics, University of Education, 54770, Lahore, Pakistan
| | - Muhammad Amjad Farooq
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Mu-Hua Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
6
|
Dowlati S, Mokhtari R, Hohl L, Miller R, Kraume M. Advances in CO 2-switchable surfactants towards the fabrication and application of responsive colloids. Adv Colloid Interface Sci 2023; 315:102907. [PMID: 37086624 DOI: 10.1016/j.cis.2023.102907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
CO2-switchable surfactants have selective surface-activity, which can be activated or deactivated either by adding or removing CO2 from the solution. This feature enables us to use them in the fabrication of responsive colloids, a group of dispersed systems that can be controlled by changing the environmental conditions. In chemical processes, including extraction, reaction, or heterogeneous catalysis, colloids are required in some specific steps of the processes, in which maximum contact area between immiscible phases or reactants is desired. Afterward, the colloids must be broken for the postprocessing of products, solvents, and agents, which can be facilitated by using CO2-switchable surfactants in surfactant-stabilized colloids. These surfactants are mainly cationic and can be activated by the protonation of a nitrogen-containing group upon sparging CO2 gas. Also, CO2-switchable superamphiphiles can be formed by non-covalent bonding between components at least one of which is CO2-switchable. So far, CO2-switchable surfactants have been used in CO2-switchable spherical and wormlike micelles, vesicles, emulsions, foams, and Pickering emulsions. Here, we review the fabrication procedure, chemical structure, switching scheme, stability, environmental conditions, and design philosophy of such responsive colloids. Their fields of application are wide, including emulsion polymerization, catalysis, soil washing, drug delivery, extraction, viscosity control, and oil transportation. We also emphasize their application for the CO2-assisted enhanced oil recovery (EOR) process as a promising approach for carbon capture, utilization, and storage to combat climate change.
Collapse
Affiliation(s)
- Saeid Dowlati
- Chair of Chemical and Process Engineering, Technical University of Berlin, Ackerstraße 76, D-13355 Berlin, Germany.
| | - Rasoul Mokhtari
- Danish Offshore Technology Centre, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lena Hohl
- Chair of Chemical and Process Engineering, Technical University of Berlin, Ackerstraße 76, D-13355 Berlin, Germany
| | - Reinhard Miller
- Institute for Condensed Matter Physics, Technical University of Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Matthias Kraume
- Chair of Chemical and Process Engineering, Technical University of Berlin, Ackerstraße 76, D-13355 Berlin, Germany
| |
Collapse
|
7
|
Hao LS, Yuan C, Zhong HL, Ling JW, Wang HX, Nan YQ. Triple-Stimuli-Responsive Hydrogels Based on an Aqueous Mixed Sodium Stearate and Cetyltrimethylammonium Bromide System. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Zhang J, Xu Q, Jiang J. Redox and pH dual-stimuli responsive wormlike micelles based on CTAB and sodium dithiodibenzoate. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jianxin Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Qianqian Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Lv M, Wang G, Jiang J. CO2/N2 and light dual-stimuli responsive wormlike micelles based on CTAB and conventional compounds. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2036184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Miao Lv
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Guozheng Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
10
|
Li N, Yun L, Ji X, Mukherjee S, Wang C, Chen Y. Construction of photoresponsive azobenzene-decorated cationic surfactant-based self-assembled vesicles and controlled drug release. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Li M, Kang W, Li Z, Yang H, Kang X, Jia R, Xie A, Sarsenbekuly B, Gabdullin M. Fluid state transition mechanism of a ternary component aqueous solution based on dynamic covalent bond. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Chen S, Costil R, Leung FK, Feringa BL. Self-Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media. Angew Chem Int Ed Engl 2021; 60:11604-11627. [PMID: 32936521 PMCID: PMC8248021 DOI: 10.1002/anie.202007693] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 12/22/2022]
Abstract
Amphiphilic molecules, comprising hydrophobic and hydrophilic moieties and the intrinsic propensity to self-assemble in aqueous environment, sustain a fascinating spectrum of structures and functions ranging from biological membranes to ordinary soap. Facing the challenge to design responsive, adaptive, and out-of-equilibrium systems in water, the incorporation of photoresponsive motifs in amphiphilic molecular structures offers ample opportunity to design supramolecular systems that enables functional responses in water in a non-invasive way using light. Here, we discuss the design of photoresponsive molecular amphiphiles, their self-assembled structures in aqueous media and at air-water interfaces, and various approaches to arrive at adaptive and dynamic functions in isotropic and anisotropic systems, including motion at the air-water interface, foam formation, reversible nanoscale assembly, and artificial muscle function. Controlling the delicate interplay of structural design, self-assembling conditions and external stimuli, these responsive amphiphiles open several avenues towards application such as soft adaptive materials, controlled delivery or soft actuators, bridging a gap between artificial and natural dynamic systems.
Collapse
Affiliation(s)
- Shaoyu Chen
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| | - Romain Costil
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| | - Franco King‐Chi Leung
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
- Present address: State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong KongChina
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| |
Collapse
|
13
|
Chen S, Costil R, Leung FK, Feringa BL. Self‐Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shaoyu Chen
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| | - Romain Costil
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| | - Franco King‐Chi Leung
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
- Present address: State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hong Kong China
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| |
Collapse
|
14
|
Triple-responsive wormlike micelles based on cationic surfactant and sodium trans-o-methoxycinnamic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Mukhopadhyay RD, Choi S, Sen SK, Hwang IC, Kim K. Transient Self-assembly Processes Operated by Gaseous Fuels under Out-of-Equilibrium Conditions. Chem Asian J 2020; 15:4118-4123. [PMID: 33135872 DOI: 10.1002/asia.202001183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Herein we report transient out-of-equilibrium self-assembly of molecules operated by gaseous fuel mixtures. The combination of an active gaseous chemical fuel and an inert gas or compressed air, which assists the degassing of the gaseous fuel from the solution, drives the transient self-assembly process. The gaseous nature of the fuel as well as the exhaust helps in their easy removal and thereby prevents their accumulation within the system and helps in maintaining the efficiency of the transient self-assembly process. The strategy is executed with a rather simple experimental set up and operates at ambient temperatures. Our approach may find use in the development of smart materials suitable for applications such as temporally active gas sensing and sequestration.
Collapse
Affiliation(s)
- Rahul Dev Mukhopadhyay
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Seoyeon Choi
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Shovan Kumar Sen
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - In-Chul Hwang
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
16
|
Chen S, Leung FKC, Stuart MCA, Wang C, Feringa BL. Dynamic Assemblies of Molecular Motor Amphiphiles Control Macroscopic Foam Properties. J Am Chem Soc 2020; 142:10163-10172. [PMID: 32379449 PMCID: PMC7273467 DOI: 10.1021/jacs.0c03153] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Indexed: 11/30/2022]
Abstract
Stimuli-responsive supramolecular assemblies controlling macroscopic transformations with high structural fluidity, i.e., foam properties, have attractive prospects for applications in soft materials ranging from biomedical systems to industrial processes, e.g., textile coloring. However, identifying the key processes for the amplification of molecular motion to a macroscopic level response is of fundamental importance for exerting the full potential of macroscopic structural transformations by external stimuli. Herein, we demonstrate the control of dynamic supramolecular assemblies in aqueous media and as a consequence their macroscopic foam properties, e.g., foamability and foam stability, by large geometrical transformations of dual light/heat stimuli-responsive molecular motor amphiphiles. Detailed insight into the reversible photoisomerization and thermal helix inversion at the molecular level, supramolecular assembly transformations at the microscopic level, and the stimuli-responsive foam properties at the macroscopic level, as determined by UV-vis absorption and NMR spectroscopies, electron microscopy, and foamability and in situ surface tension measurements, is presented. By selective use of external stimuli, e.g., light or heat, multiple states and properties of macroscopic foams can be controlled with very dilute aqueous solutions of the motor amphiphiles (0.2 weight%), demonstrating the potential of multiple stimuli-responsive supramolecular systems based on an identical molecular amphiphile and providing opportunities for future soft materials.
Collapse
Affiliation(s)
- Shaoyu Chen
- Center
for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Key
Laboratory of Eco-Textile, Ministry of Education, College of Textiles
Science and Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People’s
Republic of China
| | - Franco King-Chi Leung
- Center
for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Marc C. A. Stuart
- Center
for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Chaoxia Wang
- Key
Laboratory of Eco-Textile, Ministry of Education, College of Textiles
Science and Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People’s
Republic of China
| | - Ben L. Feringa
- Center
for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
17
|
Zhang J, Xu Q, Wang F, Jiang J. pH and Redox Dual-Stimulated Wormlike Micelles Based on Cystamine and Conventional Anionic Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15242-15248. [PMID: 31663749 DOI: 10.1021/acs.langmuir.9b02651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Redox-responsive soft materials have attracted considerable concerns throughout the last few decades. Herein, we report the preparation of dual-stimulated wormlike micelles (WLMs) based on N,N,N',N'-tetramethylcystamine dihydrochloride (TMCDD) and a conventional anionic surfactant, sodium dodecyl sulfate (SDS). The WLMs can be reversibly switched on and off by adjusting pH, resulting from the reversible protonation of TMCDD. Moreover, the WLMs can be destroyed by a redox reaction after addition of dithiothreitol (DTT), originating from the cleavage of the disulfide bonds in TMCDD. The dual responsiveness of the WLMs allowed for the smart control of the "sol-gel" transition or thickening of viscoelastic solutions, and the micelles will have a wider range of applications in the development of functional materials for pharmaceutical or biomedical materials.
Collapse
Affiliation(s)
- Jiayu Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P. R. China
| | - Qianqian Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P. R. China
| | - Fang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P. R. China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P. R. China
| |
Collapse
|
18
|
Synthesis and viscoelastic properties of gemini surfactants containing redox-active ferrocenyl groups. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Tu Y, Chen Q, Shang Y, Teng H, Liu H. Photoresponsive Behavior of Wormlike Micelles Constructed by Gemini Surfactant 12-3-12·2Br - and Different Cinnamate Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4634-4645. [PMID: 30855972 DOI: 10.1021/acs.langmuir.8b04290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The photoresponsive wormlike micelles constructed by Gemini surfactants and cinnamate derivatives play a great role in the field of smart materials. However, how the structure of cinnamate derivatives affects the photoresponsive behavior of micelles is still a hotspot for scientists to research. Here, three kinds of aromatic salts with different ortho-substituted groups including trans- o-methoxy cinnamate ( trans-OMCA), trans- o-hydroxy cinnamate ( trans-OHCA), and trans-cinnamate ( trans-CA) were introduced into Gemini surfactant 12-3-12·2Br- aqueous solutions to construct photoresponsive wormlike micelles through their noncovalent interactions. Their properties were researched using the rheological method, cryo-transmission electron microscopy, and 1H NMR and two-dimensional nuclear Overhauser effect spectra. The results show that these cinnamate derivatives could well construct wormlike micelles with 12-3-12·2Br-. Furthermore, subtle differences in the ortho substituents' structure have a significant effect on the photoresponsive behavior of formed wormlike micelles. Specifically, the zero viscosity (η0) of 40 mM 12-3-12·2Br-/24 mM trans-OHCA mixed solution decreases from 26.72 to 2.6 Pa·s with the shortening of the length of wormlike micelles after UV irradiation. Correspondingly, the η0 for the same ratio of 12-3-12·2Br-/ trans-OMCA decreases from 2.42 to 0.06 Pa·s and the wormlike micelles are transited into rodlike micelles and even spherical micelles after the same UV irradiation time. However, the variation of wormlike micelles in the 12-3-12·2Br-/ trans-CA system induced by UV light is not obvious with η0 being maintained at around 2.89 Pa·s. This study will help us better understand the effects of chemical groups on macrophenomena and microinteraction for micellar systems. It provides a theoretical basis for the construction of photoresponsive micelles, thus widening their application in the field of soft materials.
Collapse
Affiliation(s)
- Yan Tu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Qizhou Chen
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Hongni Teng
- Department of Applied Chemistry, College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266510 , China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|