1
|
Naraginti S, Kuppusamy S, Lavanya K, Zhang F, Liu X. Sunlight-driven intimately coupled photocatalysis and biodegradation (SDICPB): A sustainable approach for enhanced detoxification of triclosan. CHEMOSPHERE 2023:139210. [PMID: 37315856 DOI: 10.1016/j.chemosphere.2023.139210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/20/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Triclosan is considered as recalcitrant contaminant difficult to degrade from the contaminated wastewater. Thus, promising, and sustainable treatment method is necessary to remove triclosan from the wastewater. Intimately coupled photocatalysis and biodegradation (ICPB) is an emerging, low-cost, efficient, and eco-friendly method for the removal of recalcitrant pollutants. In this study BiOI photocatalyst coated bacterial biofilm developed at carbon felt for efficient degradation and mineralization of triclosan was studied. Based on the characterization of BiOI prepared using methanol had lower band gap 1.85 eV which favors lower recombination of electron-hole pair and higher charge separation which ascribed to enhanced photocatalytic activity. ICPB exhibits 89% of triclosan degradation under direct sunlight exposure. The results showed that production of reactive oxygen species hydroxyl radical and superoxide radical anion played crucial role in the degradation of triclosan into biodegradable metabolites further the bacterial communities mineralized the biodegradable metabolites into water and carbon dioxide. The confocal laser scanning electron microscope results emphasized that interior of the biocarrier shows a large number of live bacterial cells existing in the photocatalyst-coated carrier, where the little toxic effect on bacterial biofilm occurred on the exterior of the carrier. The extracellular polymeric substances characterization result remarkable confirms that which could act as sacrificial agent of photoholes further helped by preventing the toxicity to the bacterial biofilm from the reactive oxygen species and triclosan. Hence, this promising approach can be a possible alternative method for the wastewater treatment polluted with triclosan.
Collapse
Affiliation(s)
| | - Sathishkumar Kuppusamy
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Kubendiran Lavanya
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636 011, India
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai, 602105, Tamilnadu, India.
| |
Collapse
|
2
|
Zuarez-Chamba M, Rajendran S, Herrera-Robledo M, Priya AK, Navas-Cárdenas C. Bi-based photocatalysts for bacterial inactivation in water: Inactivation mechanisms, challenges, and strategies to improve the photocatalytic activity. ENVIRONMENTAL RESEARCH 2022; 209:112834. [PMID: 35122745 DOI: 10.1016/j.envres.2022.112834] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Bi-based photocatalysts have been considered suitable materials for water disinfection under natural solar light due to their outstanding optical and electronic properties. However, until now, there are not extensive reviews about the development of Bi-based materials and their application in bacterial inactivation in aqueous solutions. For this reason, this work has focused on summarizing the state of the art related to the inactivation of Gram- and Gram + pathogenic bacteria under visible light irradiation using different Bi-based micro and nano structures. In this sense, the photocatalytic bacterial inactivation mechanisms are analyzed, considering several modifications. The factors that can affect the photocatalytic performance of these materials in real conditions and at a large scale (e.g., water characteristics, pH, light intensity, photocatalyst dosage, and bacteria level) have been studied. Furthermore, current alternatives for improving the photocatalytic antibacterial activity and reuse of Bi-based materials (e.g., surface engineering, crystal facet engineering, doping, noble metal coupling, heterojunctions, Z-scheme junctions, coupling with graphene derivatives, magnetic composites, immobilization) have been explored. According to several reports, inactivation rate values higher than 90% can be achieved by using the modified Bi-based micro/nano structures, which become them excellent candidates for photocatalytic water disinfection. However, these innovative photocatalytic materials bring a variety of future difficulties and opportunities in water disinfection.
Collapse
Affiliation(s)
| | - Saravanan Rajendran
- Department of Mechanical Engineering, Faculty of Engineering, University of Tarapaca, Avda. General Velásquez, Arica, Chile
| | | | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
| | - Carlos Navas-Cárdenas
- School of Chemical Sciences and Engineering, Universidad Yachay Tech, Urcuquí, Ecuador.
| |
Collapse
|
3
|
Zahid AH, Han Q. A review on the preparation, microstructure, and photocatalytic performance of Bi 2O 3 in polymorphs. NANOSCALE 2021; 13:17687-17724. [PMID: 34734945 DOI: 10.1039/d1nr03187b] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, the semiconductor bismuth oxide (Bi2O3) has attracted increasing attention as a potential visible-light-driven photocatalyst due to its simple composition, relatively narrow bandgap (2.2-2.8 eV), and high oxidation ability with deep valence band levels. Owing to the symmetry of its unit cell, Bi2O3 exists in more than one crystal form and exhibits phase-dependent photocatalytic properties. However, the phase-selective synthesis of Bi2O3 is a complex process, and its phase transformation usually occurs in a wide temperature range. Therefore, the development of Bi2O3 phases with a controllable microstructure and good photocatalytic properties is a great challenge. Hundreds of articles have been reported on the phase-selective synthesis and photocatalytic performance of Bi2O3. However, an interacting and critical review has rarely been reported, and thus it is essential to fill the gap in the literature. In this review, the phase-dependent photocatalytic performance of Bi2O3 is presented in detail. The phase-selective synthesis and temperature-dependent phase stability of highly active Bi2O3 are explored. The phase junction in Bi2O3 is reviewed, and the future perspective with an outlook on contemporary challenges is provided finally.
Collapse
Affiliation(s)
- Abdul Hannan Zahid
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, PR China.
| | - Qiaofeng Han
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, PR China.
| |
Collapse
|
4
|
Arumugam M, Yu Y, Jung HJ, Yeon S, Lee H, Theerthagiri J, Lee SJ, Choi MY. Solvent-mediated synthesis of BiOI with a tunable surface structure for effective visible light active photocatalytic removal of Cr(VI) from wastewater. ENVIRONMENTAL RESEARCH 2021; 197:111080. [PMID: 33775677 DOI: 10.1016/j.envres.2021.111080] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
The present study investigated the effect of various solvents on the tunable surface morphology and photocatalytic activity (PCA) of bismuth oxyiodide (BiOI), which could be used for the reduction of Cr(VI) under visible light irradiation (VLI). BiOI samples exhibiting different morphologies, i.e., two-dimensional square-like nanosheet and three-dimensional hierarchical flower-like morphology, were synthesized by a hydro/solvothermal process using different solvents, namely H2O, MeOH, EtOH, and ethylene glycol (EG). The crystal structure, surface morphology, surface area, light-absorption capability, and recombination rate of the photogenerated charge carriers were examined by X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller analysis, UV-vis diffuse reflectance spectroscopy, photoluminescence, and transient photocurrent analyses, respectively. The BiOI sample fabricated in EG showed excellent photocatalytic efficiency (~99%) for the reduction of Cr(VI) after 90 min under VLI. The enhanced PCA demonstrated that the high surface area and well-structured surface characteristics of flower-like 3D BiOI microspheres played important roles in the photoreduction process. Moreover, a plausible mechanism for the reduction of Cr(VI) over the EG-BiOI photocatalyst was proposed. The results of the PCA evaluation and recycle test revealed that 3D EG-BiOI microspheres could serve as promising materials for the efficient removal of Cr(VI) from wastewater. Additionally, EG-BiOI could be utilized in other environmental remediation processes.
Collapse
Affiliation(s)
- Malathi Arumugam
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yiseul Yu
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyeon Jin Jung
- Nano Materials & Nano Technology Center, Electronic Convergence Division, Korea Institute of Ceramic Engineering & Technology, Jinju, 52851, Republic of Korea
| | - Sanghun Yeon
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyeyeon Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
5
|
Gandhi AC, Lai CY, Wu KT, Ramacharyulu PVRK, Koli VB, Cheng CL, Ke SC, Wu SY. Phase transformation and room temperature stabilization of various Bi 2O 3 nano-polymorphs: effect of oxygen-vacancy defects and reduced surface energy due to adsorbed carbon species. NANOSCALE 2020; 12:24119-24137. [PMID: 33242052 DOI: 10.1039/d0nr06552h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the grain growth from the nanoscale to microscale and a transformation sequence from Bi →β-Bi2O3→γ-Bi2O3→α-Bi2O3 with the increase of annealing temperature. The room temperature (RT) stabilization of β-Bi2O3 nanoparticles (NPs) was attributed to the effect of reduced surface energy due to adsorbed carbon species, and oxygen vacancy defects may have played a significant role in the RT stabilization of γ-Bi2O3 NPs. An enhanced red emission band was evident from all the samples attributed to oxygen-vacancy defects formed during the growth process in contrast with the observed white emission band from the air annealed Bi ingots. Based on our experimental findings, the air annealing induced oxidation of Bi NPs and transformation mechanism within various Bi2O3 nano-polymorphs are presented. The outcome of this study suggests that oxygen vacancy defects at the nanoscale play a significant role in both structural stabilization and phase transformation within various Bi2O3 nano-polymorphs, which is significant from theoretical consideration.
Collapse
|
6
|
Fabrication of novel superhydrophobic ZIF-8 modified directly Z-scheme bismuth oxyiodide/cadmium sulfide melamine sponge for efficient oil/water separation and visible-light photodegradation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Effect of substrate temperature on bismuth oxide thin films grown by pulsed laser deposition. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2217-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Li H, Zhang Y, Ou H, Ma T, Huang H. Two layered Bi-based borate photocatalysts MBi2B2O7 (M = Ca, Sr) for photocatalytic degradation and oxygen activation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.123994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
The photocatalytic degradation of diesel by solar light-driven floating BiOI/EP composites. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123996] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Wang Y, Yu D, Wang W, Gao P, Zhang L, Zhong S, Liu B. The controllable synthesis of novel heterojunction CoO/BiVO4 composite catalysts for enhancing visible-light photocatalytic property. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123608] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Chang F, Lei B, Zhang X, Xu Q, Chen H, Deng B, Hu X. The reinforced photocatalytic performance of binary-phased composites Bi-Bi12O17Cl2 fabricated by a facile chemical reduction protocol. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Han X, Zhang Y, Wang S, Huang H. Controllable synthesis, characterization and photocatalytic performance of four kinds of bismuth-based materials. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Wu L, Li Z, Li Y, Hu H, Liu Y, Zhang Q. Mechanochemical syntheses of bismuth oxybromides BixOyBrz as visible-light responsive photocatalyts for the degradation of bisphenol A. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Sharma S, Mehta S, Ibhadon A, Kansal S. Fabrication of novel carbon quantum dots modified bismuth oxide (α-Bi2O3/C-dots): Material properties and catalytic applications. J Colloid Interface Sci 2019; 533:227-237. [DOI: 10.1016/j.jcis.2018.08.056] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 01/09/2023]
|
15
|
Weber M, Thiele G, Dornsiepen E, Weimann DP, Schalley CA, Dehnen S, Mehring M. Impact of the Exchange of the Coordinating Solvent Shell in [Bi38
O45
(OMc)24
(dmso)9
] by Alcohols: Crystal Structure, Gas Phase Stability, and Thermoanalysis. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marcus Weber
- Professur Koordinationschemie; Technische Universität Chemnitz; Strasse der Nationen 62 09107 Chemnitz Germany
| | - Günther Thiele
- Institut für Chemie und Biochemie; Freie Universität Berlin; Fabeckestrasse 34-36 14195 Berlin Germany
| | - Eike Dornsiepen
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW); Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Dominik P. Weimann
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Stefanie Dehnen
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW); Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Michael Mehring
- Professur Koordinationschemie; Technische Universität Chemnitz; Strasse der Nationen 62 09107 Chemnitz Germany
| |
Collapse
|