1
|
Gautam A, Dabral H, Singh A, Tyagi S, Tyagi N, Srivastava D, Kushwaha HR, Singh A. Graphene-based metal/metal oxide nanocomposites as potential antibacterial agents: a mini-review. Biomater Sci 2024; 12:4630-4649. [PMID: 39140167 DOI: 10.1039/d4bm00796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Antimicrobial resistance (AMR) is a rising issue worldwide, which is increasing prolonged illness and mortality rates in the population. Similarly, bacteria have generated multidrug resistance (MDR) by developing various mechanisms to cope with existing antibiotics and therefore, there is a need to develop new antibacterial and antimicrobial agents. Biocompatible nanomaterials like graphene and its derivatives, graphene oxide (GO), and reduced graphene oxide (rGO) loaded with metal/metal oxide nanoparticles have been explored as potential antibacterial agents. It is observed that nanocomposites of GO/rGO and metal/metal oxide nanoparticles can result in the synthesis of less toxic, more stable, controlled size, uniformly distributed, and cost-effective nanomaterials compared to pure metal nanoparticles. Antibacterial studies of these nanocomposites show their considerable potential as antibacterial and antimicrobial agents, however, issues like the mechanism of antimicrobial action and their cytotoxicity need to be explored in detail. This review highlights a comparative analysis of graphene-based metal and metal oxide nanoparticles as potential antibacterial agents against AMR and MDR.
Collapse
Affiliation(s)
- Akanksha Gautam
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Himanki Dabral
- School of Agriculture Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand-248001, India
| | - Awantika Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sourabh Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Diksha Srivastava
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Hemant R Kushwaha
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
- School of Agriculture Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand-248001, India
| | - Anu Singh
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
2
|
Abreu-Jaureguí C, Andronic L, Sepúlveda-Escribano A, Silvestre-Albero J. Improved photocatalytic performance of TiO 2/carbon photocatalysts: Role of carbon additive. ENVIRONMENTAL RESEARCH 2024; 251:118672. [PMID: 38508360 DOI: 10.1016/j.envres.2024.118672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
A series of TiO2 - based photocatalysts have been prepared by the incorporation of 10 wt% of various carbon-based nanomaterials as modifying agents to titania. More specifically, commercial TiO2 P25 was modified through a wet impregnation approach with methanol with four different carbon nanostructures: single-walled carbon nanotubes (SWCNTs), partially reduced graphene oxide (prGO), graphite (GI), and graphitic carbon nitride (gCN). Characterization results (XPS and Raman) anticipate the occurrence of important interfacial phenomena, preferentially for samples TiO2/SWCNT and TiO2/prGO, with a binding energy displacement in the Ti 2p contribution of 1.35 eV and 1.54 eV, respectively. These findings could be associated with an improved electron-hole mobility at the carbon/oxide interface. Importantly, these two samples constitute the most promising photocatalysts for Rhodamine B (RhB) photodegradation, with nearly 100% conversion in less than 2 h. These promising results must be associated with intrinsic physicochemical changes at the formed heterojunction structure and the potential dual-role of the composites able to adsorb and degrade RhB simultaneously. Cyclability tests confirm the improved performance of the composites (e.g., TiO2/SWCNT, 100% degradation in 1 h) due to the combined adsorption/degradation ability, although the regeneration after several cycles is not complete due to partial blocking of the inner cavities in the carbon nanotubes by non-reacted RhB. Under these reaction conditions, Rhodamine-B xanthene dye degrades via the de-ethylation route.
Collapse
Affiliation(s)
- C Abreu-Jaureguí
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales, Universidad de Alicante, Spain
| | - L Andronic
- Product Design, Mechatronics and Environment Department, Transilvania University of Brasov, Romania
| | - A Sepúlveda-Escribano
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales, Universidad de Alicante, Spain
| | - J Silvestre-Albero
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales, Universidad de Alicante, Spain.
| |
Collapse
|
3
|
Hemkumar K, Ananthi P, Pius A. Fabrication of UiO-66/GCN, a Hybrid Photocatalyst, for Effective Degradation of Ciprofloxacin, Toxicity Estimation, and Its Antibacterial Activity. Chem Res Toxicol 2024; 37:72-80. [PMID: 38176075 DOI: 10.1021/acs.chemrestox.3c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Fabrication of a metal-organic framework-based photocatalyst has been gaining much interest due to its higher surface area and reasonable band gap, enhancing its photocatalytic activity. This study attempted a facile synthesis of the hybrid photocatalyst UiO-66 doped with graphitic carbon nitride (GCN) by a simple solvothermal method. This composite minimized the drawback related to photogenerated charge transfer and recombination and helped the absorption of visible light. The material was investigated by using various instrumental techniques. In this work, ciprofloxacin (CIP), a fluoroquinolone drug, was chosen as a target micropollutant, and a photodegradation experiment was carried out by using UiO-66, GCN, and UiO-66/GCN under a visible light source, which exhibited 81.85, 69.48, and 93.60% of degradation, respectively. Finally, liquid chromatography mass spectrometry analysis and theoretical computation were carried out to identify the CIP degradation mechanism, and T.E.S.T. software was used to investigate the toxicity of the intermediate products. Apart from photocatalytic activity, the prepared material was also tested for its antibacterial properties against Staphylococcus aureus and Escherichia coli.
Collapse
Affiliation(s)
- K Hemkumar
- Department of Chemistry, The Gandhigram Rural Institute─Deemed to be University Gandhigram, Dindigul, Tamil Nadu 624 302, India
| | - P Ananthi
- Department of Chemistry, The Gandhigram Rural Institute─Deemed to be University Gandhigram, Dindigul, Tamil Nadu 624 302, India
| | - Anitha Pius
- Department of Chemistry, The Gandhigram Rural Institute─Deemed to be University Gandhigram, Dindigul, Tamil Nadu 624 302, India
| |
Collapse
|
4
|
Al-Mousawi RA, Abbas KN, Hadi Al-Kadhemy MF, Saeed AA. Photocatalytic Nanoparticles SnO2/CuO in Treating Water Contaminated with Organic Methylene Blue Dye. SPRINGER PROCEEDINGS IN EARTH AND ENVIRONMENTAL SCIENCES 2024:231-248. [DOI: 10.1007/978-3-031-57054-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Jana TK, Chatterjee K. Hybrid nanostructures exhibiting both photocatalytic and antibacterial activity-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95215-95249. [PMID: 37597146 DOI: 10.1007/s11356-023-29015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
The most vital issues of the modern world for a sustainable future are "health" and "the environment." Scientific endeavors to tackle these two major concerns for mankind need serious attention. The photocatalytic activity toward curbing environmental pollution and antibacterial performance toward a healthy society are two directions that have been emphasized for decades. Recently, materials engineering, in their nanodimension, has shown tremendous possibilities to integrate these functionalities within the same materials. In particular, hybrid nanostructures have shown magnificent prospects to combat both crucial challenges. Many researchers are separately engaged in this important field of research but the collective knowledge on this domain which can facilitate them to excel is badly missing. The present article integrates the development of different hybrid nanostructures which exhibit both photocatalytic degradations of environmental pollutants and antibacterial efficiency. Various synthesis techniques of those hybrid nanomaterials have been discussed. Hybrid nanosystems based on several successful materials have been categorically discussed for better insight into the research advancement in this direction. In particular, Ag-based, metal oxides-based, layered carbon material-based, and Mexene- and self-cleaning-based materials have been chosen for detailing their performance as anti-pollutant and antibacterial materials. Those hybrid systems along with some miscellaneous booming nanostructured materials have been discussed comprehensively with their success and limitations toward their bifunctionality as antipollutant and antibacterial agents.
Collapse
Affiliation(s)
- Tushar Kanti Jana
- Department of Physics, Vidyasagar University, Midnapore, 721102, India
| | - Kuntal Chatterjee
- Department of Physics, Vidyasagar University, Midnapore, 721102, India.
| |
Collapse
|
6
|
Bhatt S, Punetha VD, Pathak R, Punetha M. Graphene in nanomedicine: A review on nano-bio factors and antibacterial activity. Colloids Surf B Biointerfaces 2023; 226:113323. [PMID: 37116377 DOI: 10.1016/j.colsurfb.2023.113323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Graphene-based nanomaterials possess potent antibacterial activity and have engrossed immense interest among researchers as an active armour against pathogenic microbes. A comprehensive perception of the antibacterial activity of these nanomaterials is critical to the fabrication of highly effective antimicrobial nanomaterials, which results in highly efficient and enhanced activity. These materials owing to their antimicrobial activity are utilized as nanomedicine against various pathogenic microbes. The present article reviews the antimicrobial activity of graphene and its analogs such as graphene oxide, reduced graphene oxide as well as metal, metal oxide and polymeric composites. The review draws emphasis on the effect of various nano-bio factors on the antibacterial capability. It also provides an insight into the antibacterial properties of these materials along with a brief discussion on the discrepancies in their activities as evidenced by the scientific communities. In this way, the review is expected to shed light on future research and development in graphene-based nanomedicine.
Collapse
Affiliation(s)
- Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India.
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India
| | - Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India
| |
Collapse
|
7
|
Evgenidou Ε, Vasilopoulou K, Ioannidou E, Koronaiou L, Nannou C, Trikkaliotis D, Bikiaris D, Kyzas G, Lambropoulou D. Photocatalytic Degradation of the Antiviral Drug Abacavir Using Titania-Graphene Oxide Nanocomposites in Landfill Leachate. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
8
|
Selvakumar K, Oh TH, Wang Y, Prasanna AM, Arunpandian M, Sadhasivam T, Sami P, Swaminathan M. Rational design of single tungsten/cobalt atom oxide anchored on the TiO2-rGO: A highly efficient electrocatalyst for water splitting and photocatalyst for decomposition of pharmaceutical pollutant. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Ha CA, Nguyen DT, Nguyen T. Green Fabrication of Heterostructured CoTiO 3/TiO 2 Nanocatalysts for Efficient Photocatalytic Degradation of Cinnamic Acid. ACS OMEGA 2022; 7:40163-40175. [PMID: 36385849 PMCID: PMC9648161 DOI: 10.1021/acsomega.2c04999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
In this work, CoTiO3/TiO2 (CTO/Ti) heterostructures were prepared by a hydrothermal procedure in a neutral medium using perovskite CoTiO3 and tetraisopropyl titanate. Characteristics of the synthesized catalysts were analyzed by various techniques including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy, Brunauer-Emmett-Teller adsorption-desorption, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and point of zero charges. The activity in the photodegradation of cinnamic acid (CA) under UV-A irradiation of the CTO/Ti heterostructure was investigated and compared with individual materials TiO2 (Ti-w) and CoTiO3 (CTO). The investigation showed that the heterostructured CoTiO3/TiO2 catalyst with optimal composition (5% CTO) exhibited much higher photocatalytic activity for degradation of cinnamic acid than individual CoTiO3 and TiO2. Under the optimal conditions (C cat = 0.75 g/L, Q air = 0.3 L/min, and pH = 3.8) the 90 min conversion of cinnamic acid reached 80.9% on 5CTO/Ti, much higher than those of CTO (4.6%) and Ti-w (75.2%). It was found that the enhancement in activity for the CA removal of the CTO/Ti heterostructure was due to the construction of a heterojunction structure between TiO2(Ti-w) and CoTiO3 that resulted in an increase in the specific surface area and porosity, reduction of the band gap energy, and higher efficient separation of charge carriers on the surface to prevent recombination. Alternatively, a comparison of the recyclability of 5CTO/Ti and Ti-w was made for CA degradation. The results showed a decrease in the CA conversion by 38% on 5CTO/Ti and 48% on Ti-w after six reaction cycles.
Collapse
Affiliation(s)
- Cam Anh Ha
- Ho
Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City700000, Vietnam
| | - Dien Trung Nguyen
- Institute
of Chemical Technology − Vietnam Academy of Science and Technology, 01A TL29 Street, Thanh Loc Ward,
District 12, Ho Chi Minh City701000, Vietnam
- School
of Education, Can Tho University, Can Tho City900000, Vietnam
| | - Tri Nguyen
- Institute
of Chemical Technology − Vietnam Academy of Science and Technology, 01A TL29 Street, Thanh Loc Ward,
District 12, Ho Chi Minh City701000, Vietnam
- Ho
Chi Minh City Open University, 97 Vo Van Tan Str., District 3, Ho Chi Minh
City700000, Vietnam
| |
Collapse
|
10
|
Basavegowda N, Baek KH. Combination Strategies of Different Antimicrobials: An Efficient and Alternative Tool for Pathogen Inactivation. Biomedicines 2022; 10:2219. [PMID: 36140320 PMCID: PMC9496525 DOI: 10.3390/biomedicines10092219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the discovery and development of an array of antimicrobial agents, multidrug resistance poses a major threat to public health and progressively increases mortality. Recently, several studies have focused on developing promising solutions to overcome these problems. This has led to the development of effective alternative methods of controlling antibiotic-resistant pathogens. The use of antimicrobial agents in combination can produce synergistic effects if each drug invades a different target or signaling pathway with a different mechanism of action. Therefore, drug combinations can achieve a higher probability and selectivity of therapeutic responses than single drugs. In this systematic review, we discuss the combined effects of different antimicrobial agents, such as plant extracts, essential oils, and nanomaterials. Furthermore, we review their synergistic interactions and antimicrobial activities with the mechanism of action, toxicity, and future directions of different antimicrobial agents in combination. Upon combination at an optimum synergistic ratio, two or more drugs can have a significantly enhanced therapeutic effect at lower concentrations. Hence, using drug combinations could be a new, simple, and effective alternative to solve the problem of antibiotic resistance and reduce susceptibility.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Korea
| |
Collapse
|
11
|
Hu ZT, Chen Y, Fei YF, Loo SL, Chen G, Hu M, Song Y, Zhao J, Zhang Y, Wang J. An overview of nanomaterial-based novel disinfection technologies for harmful microorganisms: Mechanism, synthesis, devices and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155720. [PMID: 35525366 DOI: 10.1016/j.scitotenv.2022.155720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Harmful microorganism (e.g., new coronavirus) based infection is the most important security concern in life sciences and healthcare. This article aims to provide a state-of-the-art review on the development of advanced technology based on nanomaterial disinfection/sterilization techniques (NDST) for the first time including the nanomaterial types, disinfection techniques, bactericidal devices, sterilization products, and application scenarios (i.e., water, air, medical healthcare), with particular brief account of bactericidal behaviors referring to varied systems. In this emerging research area spanning the years from 1998 to 2021, total of ~200 publications selected for the type of review paper and research articles were reviewed. Four typical functional materials (namely type of metal/metal oxides, S-based, C-based, and N-based) with their development progresses in disinfection/sterilization are summarized with a list of synthesis and design. Among them, the widely used silver nanoparticles (AgNPs) are considered as the most effective bacterial agents in the type of nanomaterials at present and has been reported for inactivation of viruses, fungi, protozoa. Some methodologies against (1) disinfection by-products (DBPs) in traditional sterilization, (2) noble metal nanoparticles (NPs) agglomeration and release, (3) toxic metal leaching, (4) solar spectral response broadening, and (5) photogenerated e-/h+ pairs recombination are reviewed and discussed in this field, namely (1) alternative techniques and nanomaterials, (2) supporter anchoring effect, (3) nonmetal functional nanomaterials, (4) element doping, and (5) heterojunction constructing. The feasible strategies in the perspective of NDST are proposed to involve (1) non-noble metal disinfectors, (2) multi-functional nanomaterials, (3) multi-component nanocomposite innovation, and (4) hybrid techniques for disinfection/sterilization system. It is promising to achieve 100% bactericidal efficiency for 108 CFU/mL within a short time of less than 30 min.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yue Chen
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yan-Fei Fei
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Siew-Leng Loo
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yujie Song
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China.
| |
Collapse
|
12
|
He H, Liu J, Liu H, Pan Q, Zhang G. The development of high-performance room temperature NOX one-dimensional Na0.23TiO2/TiO2 compound gas sensor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Shang C, Bu J, Song C. Preparation, Antimicrobial Properties under Different Light Sources, Mechanisms and Applications of TiO 2: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175820. [PMID: 36079203 PMCID: PMC9457460 DOI: 10.3390/ma15175820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/27/2023]
Abstract
Traditional antimicrobial methods, such as antibiotics and disinfectants, may cause adverse effects, such as bacterial resistance and allergic reactions. Photocatalysts based on titanium dioxide (TiO2) have shown great potential in the field of antimicrobials because of their high efficiency, lack of pollution, and lack of side effects. This paper focuses on the antimicrobial activity of TiO2 under different light sources. To improve the photocatalytic efficiency of TiO2, we can reduce electron-hole recombination and extend the photocatalytic activity to the visible light region by doping with different ions or compounds and compounding with polymers. We can also improve the surface properties of materials, increase the contact area with microorganisms, and further enhance the resistance to microorganisms. In addition, we also reviewed their main synthesis methods, related mechanisms, and main application fields to provide new ideas for the enhancement of photocatalytic microorganism performance and application popularization in the future.
Collapse
|
14
|
Kodithuwakku P, Jayasundara D, Munaweera I, Jayasinghe R, Thoradeniya T, Weerasekera M, Ajayan PM, Kottegoda N. A Review on Recent Developments in Structural Modification of TiO2 For Food Packaging Applications. PROG SOLID STATE CH 2022. [DOI: 10.1016/j.progsolidstchem.2022.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Raja A, Son N, Pandey S, Kang M. Fabrication of solar-driven hierarchical ZnIn2S4/rGO/SnS2 heterojunction photocatalyst for hydrogen generation and environmental pollutant elimination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
El Nemr A, Shoaib AGM, El Sikaily A, Ragab S, Mohamed AEDA, Hassan AF. Utilization of green alga Ulva lactuca for sustainable production of meso-micro porous nano activated carbon for adsorption of Direct Red 23 dye from aquatic environment. CARBON LETTERS 2022; 32:153-168. [DOI: 10.1007/s42823-021-00262-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 01/12/2025]
|
17
|
Preparation of SiNWs/rGO/CuO Nanocomposites as Effective Photocatalyst for Degradation of Ciprofloxacin Assisted with Peroxymonosulfate. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02184-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Zheng ALT, Sabidi S, Ohno T, Maeda T, Andou Y. Cu 2O/TiO 2 decorated on cellulose nanofiber/reduced graphene hydrogel for enhanced photocatalytic activity and its antibacterial applications. CHEMOSPHERE 2022; 286:131731. [PMID: 34388866 DOI: 10.1016/j.chemosphere.2021.131731] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Photocatalysis has gained attention as a viable wastewater remediation technique. However, the difficulty of recovering powder-based photocatalyst has often become a major limitation for their on-site practical application. Herein, we report on the successful in-situ preparation of a novel three-dimensional (3D) photocatalyst consisting of Cu2O/TiO2 loaded on a cellulose nanofiber (CNF)/reduced graphene hydrogel (rGH) via facile hydrothermal treatment and freeze-drying. The 3D macrostructure not only provides a template for the anchoring of Cu2O and TiO2 but also provides an efficient electron transport pathway for enhanced photocatalytic activity. The results showed that the Cu2O and TiO2 were uniformly loaded onto the aerogel framework resulting in the composites with large surface area with exposed actives sites. As compared to bare rGH, CNF/rGH, Cu2O/CNF/rGH and TiO2/CNF/rGH, the Cu2O/TiO2/CNF/rGH showed improved photocatalytic activity for methyl orange (MO) degradation. MO degradation pathway is proposed based on GC-MS analysis. The enhanced photoactivity can be attributed to the charge transfer and electron-hole separation from the synergistic effect of Cu2O/TiO2 anchored on CNF/rGH. In terms of their anti-bacterial activity towards Staphylococcus aureus and Escherichia coli, the synergistic effect of the Cu2O/TiO2 anchored on the CNF/rGH framework showed excellent activity towards the bacteria.
Collapse
Affiliation(s)
- Alvin Lim Teik Zheng
- Department of Life Science and Systems Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan
| | - Sarah Sabidi
- Department of Life Science and Systems Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan
| | - Teruhisa Ohno
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| | - Toshinari Maeda
- Department of Life Science and Systems Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan; Collaborative Research Centre for Green Materials on Environmental Technology, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan
| | - Yoshito Andou
- Department of Life Science and Systems Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan; Collaborative Research Centre for Green Materials on Environmental Technology, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan.
| |
Collapse
|
19
|
Li J, Zeng H, Zeng Z, Zeng Y, Xie T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater Sci Eng 2021; 7:5363-5396. [PMID: 34747591 DOI: 10.1021/acsbiomaterials.1c00875] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials (GBNs) have been the subject of research focus in the scientific community because of their excellent physical, chemical, electrical, mechanical, thermal, and optical properties. Several studies have been conducted on GBNs, and they have provided a detailed review and summary of various applications. However, comprehensive comments on biomedical applications and potential risks and strategies to reduce toxicity are limited. In this review, we systematically summarized the following aspects of GBNs in order to fill the gaps: (1) the history, synthesis methods, structural characteristics, and surface modification; (2) the latest advances in biomedical applications (including drug/gene delivery, biosensors, bioimaging, tissue engineering, phototherapy, and antibacterial activity); and (3) biocompatibility, potential risks (toxicity in vivo/vitro and effects on human health and the environment), and strategies to reduce toxicity. Moreover, we have analyzed the challenges to be overcome in order to enhance application of GBNs in the biomedical field.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Huamin Zeng
- Chengdu Ping An Healthcare Medical Examination Laboratory, Chengdu, Sichuan 611130, China
| | - Zhaowu Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Yiying Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
20
|
Sathiyaraj S, Suriyakala G, Dhanesh Gandhi A, Babujanarthanam R, Almaary KS, Chen TW, Kaviyarasu K. Biosynthesis, characterization, and antibacterial activity of gold nanoparticles. J Infect Public Health 2021; 14:1842-1847. [PMID: 34690096 DOI: 10.1016/j.jiph.2021.10.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND In recent decades focus of research has been toward an alternative antibacterial agent because of growing bacterial resistance and side effects of antibacterial agents. In the current study, the antibacterial activity of gold nanoparticles has been evaluated on selected human pathogens. METHODS In this study, we used panchagavya (PG) to synthesize gold nanoparticles, and the resulting nanoparticles (PG-AuNPs) were characterized by several spectroscopic techniques. In addition, antibacterial activity of PG-AuNPs against Escherichia coli, Bacillus subtilis, and Klebsiella pneumoniae were studied by well diffusion method. RESULTS The synthesis of AuNPs was affirmed by a colour change, which was further validated by UV-vis spectra with a maximum absorption peak at 527 nm. Bandgap energy was calculated as 2.13 eV by Tauc method from the UV result. The presence of amino acids and proteins in PG was responsible for the conversion of gold ions to AuNPs, according to FTIR analysis. (111), (200), (220), and (311) crystallographic planes were observed by XRD; further crystalline nature was validated by SAED analysis. The size and zeta value were found to be 53.29 nm and -9.8 mV respectively. Spherical shaped nanoparticles and elemental structure of PG-AuNPs were confirmed by HRTEM and EDS analysis. The antibacterial activity of PG-AuNPs showed the maximum and minimum zone of inhibition against K. pneumoniae (17.12 ± 0.14 mm) and B. subtilis (11.42 ± 0.58 mm). CONCLUSION Antibacterial activity of PG-AuNPs was found to be strong against gram negative bacteria and moderate against gram positive bacteria. Based on the result, it was concluded that PG-AuNPs could be used to combat antibiotic drug resistance. Besides, in vitro and in vivo toxicity studies of PG-AuNPs should be conducted.
Collapse
Affiliation(s)
- Sivaji Sathiyaraj
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Gunasekaran Suriyakala
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Arumugam Dhanesh Gandhi
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Ranganathan Babujanarthanam
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India.
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, P.O. Box 722, Somerset West, Western Cape Province, South Africa.
| |
Collapse
|
21
|
Lado-Touriño I, Páez-Pavón A. Interaction between Graphene-Based Materials and Small Ag, Cu, and CuO Clusters: A Molecular Dynamics Study. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1378. [PMID: 34071127 PMCID: PMC8224558 DOI: 10.3390/nano11061378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022]
Abstract
The excessive use of antibiotics has contributed to the rise in antibiotic-resistant bacteria, and thus, new antibacterial compounds must be developed. Composite materials based on graphene and its derivatives doped with metallic and metallic oxide nanoparticles, particularly Ag, Cu, and Cu oxides, hold great promise. These materials are often modified with polyethylene glycol (PEG) to improve their pharmacokinetic behavior and their solubility in biological media. In this work, we performed molecular dynamics (MD) simulations to study the interaction between small Ag, Cu, and CuO clusters and several graphene-based materials. These materials include pristine graphene (PG) and pristine graphene nanoplatelets (PGN) as well as PEGylated graphene oxide (GO_PEG) and PEGylated graphene oxide nanoplatelets (GO-PEG_N). We calculated the adsorption energies, mean equilibrium distances between the nanoparticles and graphene surfaces, and mean square displacement (MSD) of the nanoclusters. The results show that PEGylation favors the adsorption of the clusters on the graphene surfaces, causing an increase in adsorption energies and a decrease in both distances and MSD values. The strengthening of the interaction could be crucial to obtain effective antibacterial compounds.
Collapse
Affiliation(s)
- Isabel Lado-Touriño
- School of Architecture, Engineering and Design, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | |
Collapse
|
22
|
Synthesis and characterization of nano-hydroxyapatite/graphene oxide composite materials for medical implant coating applications. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.matpr.2020.02.932] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Hosseini-Sarvari M, Akrami Z. Visible-light assisted of nano Ni/g-C3N4 with efficient photocatalytic activity and stability for selective aerobic C−H activation and epoxidation. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Trikkaliotis DG, Mitropoulos AC, Kyzas GZ. Low-cost route for top-down synthesis of over- and low-oxidized graphene oxide. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124928] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Nguyen TH, Vu AT, Dang VH, Wu JCS, Le MT. Photocatalytic Degradation of Phenol and Methyl Orange with Titania-Based Photocatalysts Synthesized by Various Methods in Comparison with ZnO–Graphene Oxide Composite. Top Catal 2020. [DOI: 10.1007/s11244-020-01361-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Gautam M, Gupta B, Soe ZC, Poudel K, Maharjan S, Jeong JH, Choi HG, Ku SK, Yong CS, Kim JO. Stealth Polymer-Coated Graphene Oxide Decorated Mesoporous Titania Nanoplatforms for In Vivo Chemo-Photodynamic Cancer Therapy. Pharm Res 2020; 37:162. [PMID: 32749542 DOI: 10.1007/s11095-020-02900-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE The goal of this study was to develop chemotherapeutic drug-loaded photoactivable stealth polymer-coated silica based- mesoporous titania nanoplatforms for enhanced antitumor activity. METHODS Both in vitro and in vivo models of solvothermal treated photoactivable nanoplatforms were evaluated for efficient chemo-photothermal activity. A versatile nanocomposite that combined silica based- mesoporous titania nanocarriers (S-MTN) with the promising photoactivable agent, graphene oxide (G) modified with a stealth polymer (P) was fabricated to deliver chemotherapeutic agent, imatinib (I), (referred as S-MTN@IG-P) for near-infrared (NIR)-triggered drug delivery and enhanced chemo-photothermal therapy. RESULTS The fabricated S-MTN@IG-P nanoplatform showed higher drug loading (~20%) and increased drug release (~60%) in response to light in acidic condition (pH 5.0). As prepared nanoplatform significantly converted NIR light into thermal energy (43.2°C) to produce reactive oxygen species (ROS). The pronounced cytotoxic effect was seen in both colon cancer cells (HCT-116 and HT-29) that was mediated through the chemotherapeutic effect of imatinib and the photothermal and ROS generation effects of graphene oxide. In vivo study also showed that S-MTN@IG-P could significantly accumulate into the tumor area and suppress the tumor growth under NIR irradiation without any biocompatibility issues. CONCLUSION Cumulatively, the above results showed promising effects of S-MTN@IG-P for effective chemo-phototherapy of colon cancer.
Collapse
Affiliation(s)
- Milan Gautam
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Biki Gupta
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Zar Chi Soe
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Srijan Maharjan
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan, 426-791, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
27
|
Zheng X, Sun J, Li W, Dong B, Song Y, Xu W, Zhou Y, Wang L. Engineering nanotubular titania with gold nanoparticles for antibiofilm enhancement and soft tissue healing promotion. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Antibacterial Character of Cationic Polymers Attached to Carbon-Based Nanomaterials. NANOMATERIALS 2020; 10:nano10061218. [PMID: 32580474 PMCID: PMC7353121 DOI: 10.3390/nano10061218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 01/17/2023]
Abstract
The preparation of hybrid polymeric systems based on carbon derivatives with a cationic polymer is described. The polymer used is a copolymer of a quaternizable methacrylic monomer with another dopamine-based monomer capable of anchoring to carbon compounds. Graphene oxide and graphene as well as hybrid polymeric systems were widely characterized by infrared, Raman and photoemission X-ray spectroscopies, electron scanning microscopy, zeta potential and thermal degradation. These allowed confirming the attachment of copolymer onto carbonaceous materials. Besides, the antimicrobial activity of hybrid polymeric systems was tested against Gram positive Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas aeruginosa bacteria. The results showed the antibacterial character of these hybrid systems.
Collapse
|
29
|
Li P, Cao W, Zhu Y, Teng Q, Peng L, Jiang C, Feng C, Wang Y. NaOH-induced formation of 3D flower-sphere BiOBr/Bi 4O 5Br 2 with proper-oxygen vacancies via in-situ self-template phase transformation method for antibiotic photodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136809. [PMID: 32007877 DOI: 10.1016/j.scitotenv.2020.136809] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
In this study, a novel 3D flower-sphere BiOBr/Bi4O5Br2 with proper-oxygen vacancies (OV) was successfully synthesized by using 3D BiOBr as a self-sacrificed template, NaOH as a structure-driving reagent and midwifery agent of OV. The synthesis mechanism was systematically studied. It revealed that Bi4O5Br2 lamina generated via in-situ phase transfer tightly interspersed in the interior and surface of 3D BiOBr hierarchical structures; calcination temperature, stirring time and -OH concentration can optimize the composition and structure of materials. Also, the calcination conditions (temperatures and air or N2 atmosphere) can regulate the OV's concentration. Ultimately, 3D hierarchical architectures, the optimal heterojunction composition and OV with proper concentrations three positive factors synergistically promoted the photoelectric activity of BiOBr/Bi4O5Br2-OV, making it exhibit ultrahigh photocatalytic activity for antibiotic photodegradation (tetracycline, TC; ciprofloxacin, CIP). We believe the synthesis methods and design idea mentioned in this paper have high instructive significance to prepare high-performance materials.
Collapse
Affiliation(s)
- Panjie Li
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Wang Cao
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Yu Zhu
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Qiuyi Teng
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Lu Peng
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Caiyun Jiang
- Department of Engineering and Technology, Jiangsu Institute of Commerce, Nanjing 211168, China
| | - Changsheng Feng
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Yuping Wang
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
30
|
Christy PN, Basha SK, Kumari VS, Bashir A, Maaza M, Kaviyarasu K, Arasu MV, Al-Dhabi NA, Ignacimuthu S. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications – A review. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101452] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Liao C, Li Y, Tjong SC. Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E124. [PMID: 31936581 PMCID: PMC7022691 DOI: 10.3390/nano10010124] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/16/2022]
Abstract
This article provides an overview of current research into the development, synthesis, photocatalytic bacterial activity, biocompatibility and cytotoxic properties of various visible-light active titanium dioxide (TiO2) nanoparticles (NPs) and their nanocomposites. To achieve antibacterial inactivation under visible light, TiO2 NPs are doped with metal and non-metal elements, modified with carbonaceous nanomaterials, and coupled with other metal oxide semiconductors. Transition metals introduce a localized d-electron state just below the conduction band of TiO2 NPs, thereby narrowing the bandgap and causing a red shift of the optical absorption edge into the visible region. Silver nanoparticles of doped TiO2 NPs experience surface plasmon resonance under visible light excitation, leading to the injection of hot electrons into the conduction band of TiO2 NPs to generate reactive oxygen species (ROS) for bacterial killing. The modification of TiO2 NPs with carbon nanotubes and graphene sheets also achieve the efficient creation of ROS under visible light irradiation. Furthermore, titanium-based alloy implants in orthopedics with enhanced antibacterial activity and biocompatibility can be achieved by forming a surface layer of Ag-doped titania nanotubes. By incorporating TiO2 NPs and Cu-doped TiO2 NPs into chitosan or the textile matrix, the resulting polymer nanocomposites exhibit excellent antimicrobial properties that can have applications as fruit/food wrapping films, self-cleaning fabrics, medical scaffolds and wound dressings. Considering the possible use of visible-light active TiO2 nanomaterials for various applications, their toxicity impact on the environment and public health is also addressed.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China;
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
32
|
p-BNMR/TiO2 hybrid materials with exposing the {001} facet for enhanced photocatalytic application in treatment of antibiotic contaminants. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Ma Y, Zhang C, Li C, Qin F, Wei L, Hu C, Hu Q, Duo S. Nanoscaled Bi2O4 confined in firework-shaped TiO2 microspheres with enhanced visible light photocatalytic performance. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Kumar P, Huo P, Zhang R, Liu B. Antibacterial Properties of Graphene-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E737. [PMID: 31086043 PMCID: PMC6567318 DOI: 10.3390/nano9050737] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
Bacteria mediated infections may cause various acute or chronic illnesses and antibiotic resistance in pathogenic bacteria has become a serious health problem around the world due to their excessive use or misuse. Replacement of existing antibacterial agents with a novel and efficient alternative is the immediate demand to alleviate this problem. Graphene-based materials have been exquisitely studied because of their remarkable bactericidal activity on a wide range of bacteria. Graphene-based materials provide advantages of easy preparation, renewable, unique catalytic properties, and exceptional physical properties such as a large specific surface area and mechanical strength. However, several queries related to the mechanism of action, significance of size and composition toward bacterial activity, toxicity criteria, and other issues are needed to be addressed. This review summarizes the recent efforts that have been made so far toward the development of graphene-based antibacterial materials to face current challenges to combat against the bacterial targets. This review describes the inherent antibacterial activity of graphene-family and recent advances that have been made on graphene-based antibacterial materials covering the functionalization with silver nanoparticles, other metal ions/oxides nanoparticles, polymers, antibiotics, and enzymes along with their multicomponent functionalization. Furthermore, the review describes the biosafety of the graphene-based antibacterial materials. It is hoped that this review will provide valuable current insight and excite new ideas for the further development of safe and efficient graphene-based antibacterial materials.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Rongzhao Zhang
- Analysis and Testing Center, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| |
Collapse
|