1
|
Song Y, Ye SH, Ash SR, Li L. Thermal Vapor Deposition of a Hydrophobic and Gas-Permeable Membrane on Zirconium Phosphate Cation Exchanger: An Oral Sorbent for the Urea Removal of Kidney Failure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16502-16510. [PMID: 39039728 PMCID: PMC11308767 DOI: 10.1021/acs.langmuir.4c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
An oral sorbent with high capacity for NH4+ is desirable in lowering the blood urea level and mitigating the dialysis burden for end-stage kidney disease (ESKD) patients. Zirconium phosphate (ZrP) is an amorphous cation ion exchanger with high NH4+ binding capacity as a sorbent material, but its selectivity to remove NH4+ is limited in the presence of other competing ions in water solution. We previously have developed a gas-permeable and hydrophobic perfluorocarbon coating on ZrP, which improves ZrP's NH4+ selectivity. However, the coating preparation procedure, a wet chemistry approach, is complicated and time-consuming, and more importantly, the large amount of usage of acetone poses a concern for the application of ZrP as an oral sorbent. In this study, we developed a solventless coating protocol that effectively coats ZrP with tetraethyl orthosilicate (TEOS) and 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FOTS) via thermal vapor deposition (TVD) in a simplified manner. X-ray photoelectron spectroscopy (XPS) and contact angle measurements verify the two coatings are successfully deposited on the ZrP surface, and the coating condition was optimized based on an in vitro static binding study. The dynamic binding study of competing ions on Na-loaded ZrP with TVD coatings yields a maximum NH4+ removal (∼3.2 mequiv/g), which can be improved to ∼4.7 mequiv/g if H-loaded ZrP under the same coating condition is used in basic stock solutions. More importantly, both materials barely remove Ca2+ and show excellent acid resistance. The significant improvement in the NH4+ binding capacity and selectivity reported here establishes a highly promising surface modification approach to optimize oral sorbents for ESKD patients.
Collapse
Affiliation(s)
- Yihan Song
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sang-Ho Ye
- McGowan
Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15210, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen R. Ash
- Nephrology
Department, Indiana University Health Arnett
Hospital, Lafayette, Indiana 47905, United States
- CEO,
HemoCleanse Technologies, LLC, Lafayette, Indiana 47904, United States
| | - Lei Li
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Zhurenkov KE, Akbarinejad A, Porritt H, Horrocks MS, Malmström J. Colloidal Probe Technique Optimization for Determination of Young's Modulus of Soft Adhesive Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39023221 DOI: 10.1021/acs.langmuir.4c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Atomic force microscopy (AFM) is a valuable tool for determining the Young's modulus of a wide range of materials. However, it faces challenges, particularly when assessing adhesive materials like soft poly(N-isopropylacrylamide) (pNIPAM) hydrogels. This study focuses on enhancing the consistency and reliability of AFM measurements by functionally modifying AFM spherical tip cantilevers to address substrate adhesion issues with these hydrogels. Specifically, hydrophobic functionalization with 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOCTS) emerged as the most effective approach, yielding consistent and reliable Young's modulus data across various pNIPAM hydrogel samples. This work highlights the importance of optimizing data acquisition in AFM, rather than relying on postprocessing, to reduce inconsistencies in Young's modulus assessment.
Collapse
Affiliation(s)
- Kirill E Zhurenkov
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| | - Alireza Akbarinejad
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| | - Harrison Porritt
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| | - Matthew S Horrocks
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| |
Collapse
|
3
|
Parveen S, Basu M, Chowdhury P, Dhara T, DasGupta S, Das S, Dasgupta S. Surface modification of polydimethylsiloxane by the cataractous eye protein isolate. Int J Biol Macromol 2024; 260:129470. [PMID: 38237817 DOI: 10.1016/j.ijbiomac.2024.129470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Polydimethylsiloxane (PDMS), even though widely used in microfluidic applications, its hydrophobic nature restricts its utility in some cases. To address this, PDMS may be used in conjunction with a hydrophilic material. Herein, the PDMS surface is modified by plasma treatment followed by cross-linking with the cataractous eye protein isolate (CEPI). CEPI-PDMS composites are prepared at three pH and the effects of CEPI on the chemical, physical, and electrical properties of PDMS are extensively investigated. The cross-linking between PDMS and the protein are confirmed by FTIR, and the contact angle measurements indicate the improved hydrophilic nature of the composite films as compared to PDMS. Atomic Force Microscopy results demonstrate that the surface roughness is enhanced by the incorporation of the protein and is a function of the pH. The effective elastic modulus of the composites is improved by the incorporation of protein into the PDMS matrix. Measurements of the dielectric properties of these composites indicate that they behave as capacitors at lower frequency range while demonstrating resistive characteristics at higher frequency. These composites provide preliminary ideas in developing flexible devices for potential applications in diverse areas such as energy storage materials, and thermo-elective wireless switching devices.
Collapse
Affiliation(s)
- Sultana Parveen
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Mainak Basu
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Prasun Chowdhury
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Trina Dhara
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sunando DasGupta
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Soumen Das
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
4
|
Gil JF, Moura CS, Silverio V, Gonçalves G, Santos HA. Cancer Models on Chip: Paving the Way to Large-Scale Trial Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300692. [PMID: 37103886 DOI: 10.1002/adma.202300692] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Cancer kills millions of individuals every year all over the world (Global Cancer Observatory). The physiological and biomechanical processes underlying the tumor are still poorly understood, hindering researchers from creating new, effective therapies. Inconsistent results of preclinical research, in vivo testing, and clinical trials decrease drug approval rates. 3D tumor-on-a-chip (ToC) models integrate biomaterials, tissue engineering, fabrication of microarchitectures, and sensory and actuation systems in a single device, enabling reliable studies in fundamental oncology and pharmacology. This review includes a critical discussion about their ability to reproduce the tumor microenvironment (TME), the advantages and drawbacks of existing tumor models and architectures, major components and fabrication techniques. The focus is on current materials and micro/nanofabrication techniques used to manufacture reliable and reproducible microfluidic ToC models for large-scale trial applications.
Collapse
Affiliation(s)
- João Ferreira Gil
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
- INESC Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Carla Sofia Moura
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
- Polytechnic Institute of Coimbra, Applied Research Institute, Coimbra, 3045-093, Portugal
| | - Vania Silverio
- INESC Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- Department of Physics, Instituto Superior Técnico, Lisbon, 1049-001, Portugal
- Associate Laboratory Institute for Health and Bioeconomy - i4HB, Lisbon, Portugal
| | - Gil Gonçalves
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Aveiro, 3810-193, Portugal
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
- W.J. Korf Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
5
|
Abbas A, Wells GG, McHale G, Sefiane K, Orejon D. Silicone Oil-Grafted Low-Hysteresis Water-Repellent Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11281-11295. [PMID: 36790315 PMCID: PMC9982814 DOI: 10.1021/acsami.2c20718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Wetting plays a major role in the close interactions between liquids and solid surfaces, which can be tailored by modifying the chemistry as well as the structures of the surfaces' outermost layer. Several methodologies, such as chemical vapor deposition, physical vapor deposition, electroplating, and chemical reactions, among others, have been adopted for the alteration/modification of such interactions suitable for various applications. However, the fabrication of low-contact line-pinning hydrophobic surfaces via simple and easy methods remains an open challenge. In this work, we exploit one-step and multiple-step silicone oil (5-100 cSt) grafting on smooth silicon substrates (although the technique is suitable for other substrates), looking closely at the effect of viscosity as well as the volume and layers (one to five) of oil grafted as a function of the deposition method. Remarkably, the optimization of grafting of silicone oil fabrication results in non-wetting surfaces with extremely low contact angle hysteresis (CAH) below 1° and high contact angles (CAs) of ∼108° after a single grafting step, which is an order of magnitude smaller than the reported values of previous works on silicone oil-grafted surfaces. Moreover, the different droplet-surface interactions and pinning behavior can additionally be tailored to the specific application with CAH ranging from 1 to 20° and sliding angles between 1.5 and 60° (for droplet volumes of 3 μL), depending on the fabrication parameters adopted. In terms of roughness, all the samples (independent of the grafting parameters) showed small changes in the root-mean-square roughness below 20 nm. Lastly, stability analysis of the grafting method reported here under various conditions shows that the coating is quite stable under mechanical vibrations (bath ultrasonication) and in a chemical environment (ultrasonication in a bath of ethanol) but loses its low-pinning characteristics when exposed to saturated steam at T ∼ 99 °C. The findings presented here provide a basis for selecting the most appropriate and suitable method and parameters for silicone oil grafting aimed at low pinning and low hysteresis surfaces for specific applications.
Collapse
Affiliation(s)
- Anam Abbas
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
- Department
of Mechanical Engineering, University of
Engineering and Technology, Lahore 39161, Pakistan
| | - Gary G. Wells
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
| | - Glen McHale
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
| | - Khellil Sefiane
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
| | - Daniel Orejon
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
- International
Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Masouminia M, Dalnoki-Veress K, de Lannoy CF, Zhao B. Wettability Alteration of a Thiolene-Based Polymer (NOA81): Surface Characterization and Fabrication Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2529-2536. [PMID: 36763353 DOI: 10.1021/acs.langmuir.2c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wettability plays a significant role in controlling multiphase flow in porous media for many industrial applications, including geologic carbon dioxide sequestration, enhanced oil recovery, and fuel cells. Microfluidics is a powerful tool to study the complexities of interfacial phenomena involved in multiphase flow in well-controlled geometries. Recently, the thiolene-based polymer called NOA81 emerged as an ideal material in the fabrication of microfluidic devices, since it combines the versatility of conventional soft photolithography with a wide range of achievable wettability conditions. Specifically, the wettability of NOA81 can be continuously tuned through exposure to UV-ozone. Despite its growing popularity, the exact physical and chemical mechanisms behind the wettability alteration have not been fully characterized. Here, we apply different characterization techniques, including contact angle measurements, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) to investigate the impact of UV-ozone on the chemical and physical properties of NOA81 surfaces. We find that UV-ozone exposure increases the oxygen-containing polar functional groups, which enhances the surface energy and hydrophilicity of NOA81. Additionally, our AFM measurements show that spin-coated NOA81 surfaces have a roughness less than a nanometer, which is further reduced after UV-ozone exposure. Lastly, we extend NOA81 use cases by creating (i) 2D surface with controlled wettability gradient and (ii) a 3D column packed with monodisperse NOA81 beads of controlled size and wettability.
Collapse
Affiliation(s)
- Mahtab Masouminia
- Department of Civil Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Kari Dalnoki-Veress
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | | | - Benzhong Zhao
- Department of Civil Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
7
|
Guo M, Zhang G, Xin G, Huang H, Huang Y, Rong Y, Wu C. Laser direct writing of rose petal biomimetic micro-bulge structure to realize superhydrophobicity and large slip length. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Foroushani FT, Dzobo K, Khumalo NP, Mora VZ, de Mezerville R, Bayat A. Advances in surface modifications of the silicone breast implant and impact on its biocompatibility and biointegration. Biomater Res 2022; 26:80. [PMID: 36517896 PMCID: PMC9749192 DOI: 10.1186/s40824-022-00314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Silicone breast implants are commonly used for cosmetic and oncologic surgical indications owing to their inertness and being nontoxic. However, complications including capsular contracture and anaplastic large cell lymphoma have been associated with certain breast implant surfaces over time. Novel implant surfaces and modifications of existing ones can directly impact cell-surface interactions and enhance biocompatibility and integration. The extent of foreign body response induced by breast implants influence implant success and integration into the body. This review highlights recent advances in breast implant surface technologies including modifications of implant surface topography and chemistry and effects on protein adsorption, and cell adhesion. A comprehensive online literature search was performed for relevant articles using the following keywords silicone breast implants, foreign body response, cell adhesion, protein adsorption, and cell-surface interaction. Properties of silicone breast implants impacting cell-material interactions including surface roughness, wettability, and stiffness, are discussed. Recent studies highlighting both silicone implant surface activation strategies and modifications to enhance biocompatibility in order to prevent capsular contracture formation and development of anaplastic large cell lymphoma are presented. Overall, breast implant surface modifications are being extensively investigated in order to improve implant biocompatibility to cater for increased demand for both cosmetic and oncologic surgeries.
Collapse
Affiliation(s)
- Fatemeh Tavakoli Foroushani
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | - Kevin Dzobo
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | | | | | - Ardeshir Bayat
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
9
|
Passive limitation of surface contamination by perFluoroDecylTrichloroSilane coatings in the ISS during the MATISS experiments. NPJ Microgravity 2022; 8:31. [PMID: 35927552 PMCID: PMC9352769 DOI: 10.1038/s41526-022-00218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/15/2022] [Indexed: 11/08/2022] Open
Abstract
Future long-duration human spaceflight will require developments to limit biocontamination of surface habitats. The MATISS (Microbial Aerosol Tethering on Innovative Surfaces in the international Space Station) experiments allowed for exposing surface treatments in the ISS (International Space Station) using a sample-holder developed to this end. Three campaigns of FDTS (perFluoroDecylTrichloroSilane) surface exposures were performed over monthly durations during distinct periods. Tile scanning optical microscopy (×3 and ×30 magnifications) showed a relatively clean environment with a few particles on the surface (0.8 to 7 particles per mm2). The varied densities and shapes in the coarse area fraction (50-1500 µm2) indicated different sources of contamination in the long term, while the bacteriomorph shapes of the fine area fraction (0.5-15 µm2) were consistent with microbial contamination. The surface contamination rates correlate to astronauts' occupancy rates on board. Asymmetric particles density profiles formed throughout time along the air-flow. The higher density values were located near the flow entry for the coarse particles, while the opposite was the case for the fine particles, probably indicating the hydrophobic interaction of particles with the FDTS surface.
Collapse
|
10
|
Tuning the Surface Wettability of Cyclic Olefin Copolymer by Plasma Treatment and Graphene Oxide Deposition and Reduction. Polymers (Basel) 2021; 13:polym13142305. [PMID: 34301061 PMCID: PMC8309460 DOI: 10.3390/polym13142305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
Selective altering of surface wettability in microfluidic channels provides a suitable platform for a large range of processes, such as the phase separation of multiphase systems, synthesis of reaction controlled, nanoliter sized droplet reactors, and catalyst impregnation. Herein we study the feasibility to tune the wettability of a flexible cyclic olefin copolymer (COC). Two methods were considered for enhancing the surface hydrophilicity. The first is argon/oxygen plasma treatment, where the effect of treatment duration on water contact angle and COC surface morphology and chemistry were investigated, and the second is coating COC with GO dispersions of different concentrations. For enhancing the hydrophobicity of GO-coated COC surfaces, three reduction methods were considered: chemical reduction by Hydroiodic acid (HI), thermal reduction, and photo reduction by exposure of GO-coated COC to UV light. The results show that as the GO concentration and plasma treatment duration increased, a significant decrease in contact angle was observed, which confirmed the ability to enhance the wettability of the COC surface. The increase in hydrophilicity during plasma treatment was associated with the increase in surface roughness on the treated surfaces, while the increase during GO coating was associated with introducing oxygen-containing groups on the GO-coated COC surfaces. The results also show that the different reduction methods considered can increase the contact angle and improve the hydrophobicity of a GO-coated COC surface. It was found that the significant improvement in hydrophobicity was related to the reduction of oxygen-containing groups on the GO-coated COC modified surface.
Collapse
|
11
|
Lam M, Migonney V, Falentin-Daudre C. Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces. Acta Biomater 2021; 121:68-88. [PMID: 33212233 DOI: 10.1016/j.actbio.2020.11.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Silicone implants are widely used in the medical field for plastic or reconstructive surgeries for the purpose of soft tissue issues. However, as with any implanted object, healthcare-associated infections are not completely avoidable. The material suffers from a lack of biocompatibility and is often subject to bacterial/microbial infections characterized by biofilm growth. Numerous strategies have been developed to either prevent, reduce, or fight bacterial adhesion by providing an antibacterial property. The present review summarizes the diverse approaches to deal with bacterial infections on silicone surfaces along with the different methods to activate/oxidize the surface before any surface modifications. It includes antibacterial coatings with antibiotics or nanoparticles, covalent attachment of active bacterial molecules like peptides or polymers. Regarding silicone surfaces, the activation step is essential to render the surface reactive for any further modifications using energy sources (plasma, UV, ozone) or chemicals (acid solutions, sol-gel strategies, chemical vapor deposition). Meanwhile, corresponding work on breast silicone prosthesis is discussed. The latter is currently in the line of sight for causing severe capsular contractures. Specifically, to that end, besides chemical modifications, the antibacterial effect can also be achieved by physical surface modifications by adjusting the surface roughness and topography for instance.
Collapse
|
12
|
Chen X, Chen S, Zhang Y, Yang H. Study on Functionality and Surface Modification of a Stair-Step Liquid-Triggered Valve for On-Chip Flow Control. MICROMACHINES 2020; 11:mi11070690. [PMID: 32708757 PMCID: PMC7407824 DOI: 10.3390/mi11070690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022]
Abstract
Distinctive from other forms of microfluidic system, capillary microfluidics is of great interest in autonomous micro-systems due to its well-engineered fluidic control based on capillary force. As an essential component of fluidic control in capillaric circuits, micro-valves enable sequential fluidic operations by performing actions such as stopping and triggering. In this paper, we present a stair-step liquid-triggered valve; the functionality of the valve and its dependencies on geometry and surface modification are studied. The surface contact angle of the microfabricated valves that are coated by polyethylene glycol (PEG) or (3-Aminopropyl) triethoxysilane (APTES) is evaluated experimentally, and the corresponding reliability of the valve structure is discussed. Moreover, the variation in the surface contact angle over time is investigated, indicating the shelf time of the device. We further discuss the overall fluidic behavior in such capillary valves, which benefits the capillaric circuit designs at the initial stage.
Collapse
Affiliation(s)
- Xi Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China; (X.C.); (S.C.)
| | - Sihui Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China; (X.C.); (S.C.)
| | - Yi Zhang
- Center for Medical AI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (H.Y.); (Y.Z.); Tel.: +86-755-8639-2675 (H.Y.)
| | - Hui Yang
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China; (X.C.); (S.C.)
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (H.Y.); (Y.Z.); Tel.: +86-755-8639-2675 (H.Y.)
| |
Collapse
|
13
|
The Potential of a Nanostructured Titanium Oxide Layer with Self-Assembled Monolayers for Biomedical Applications: Surface Properties and Biomechanical Behaviors. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated the surface properties and biomechanical behaviors of a nanostructured titanium oxide (TiO) layer with different self-assembled monolayers (SAMs) of phosphonate on the surface of microscope slides. The surface properties of SAMs were analyzed using scanning electron microscopy, X-ray photoemission spectroscopy, and contact angle goniometry. Biomechanical behaviors were evaluated using nanoindentation with a diamond Berkovich indenter. Analytical results indicated that the homogenous nanostructured TiO surface was formed on the substrate surface after the plasma oxidation treatment. As the TiO surface was immersed with 11-phosphonoundecanoic acid solution (PUA-SAM/TiO), the formation of a uniform SAM can be observed on the sample surface. Moreover, the binding energy of O 1s demonstrated the presence of the bisphosphonate monolayer on the SAMs-coated samples. It was also found that the PUA-SAM/TiO sample not only possessed a higher wettability performance, but also exhibited low surface contact stiffness. A SAM surface with a high wettability and low contact stiffness could potentially promote biocompatibility and prevent the formation of a stress shielding effect. Therefore, the self-assembled technology is a promising approach that can be applied to the surface modification of biomedical implants for facilitating bone healing and osseointegration.
Collapse
|