1
|
Wang Q, Song Y, Wu S, Lv J, Xiao Y, Ning Y, Tian H, Liu B. Dual Stimulus Responsive GO-Modified Tb-MOF toward a Smart Coating for Corrosion Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29162-29176. [PMID: 38785388 DOI: 10.1021/acsami.4c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Smart-sensing coatings that exhibit multistimulus response, rapid indication, and reusability are in urgent need to effectively enhance the practicability of coatings while accurately detecting metal corrosion. In this work, a reusable corrosion self-reporting coating with multiple pH and Fe3+ stimulus responses was first constructed by the integration of a composite fluorescent probe into the resin matrix. This composite sensor was constructed by combining a lanthanide metal-organic framework (Ln-MOF) based on terbium and trimeric acid (H3BTC) with graphene oxide (GO) nanosheets (GO@Tb-BTC). The incorporation of GO formed a sea-urchin-like structure, thereby increasing the specific surface area and active sites of the probe. The coatings were characterized by using electrochemical impedance spectroscopy (EIS), visual observation, and fluorescence spectrophotometry. The surface morphology, wettability, and adhesion of the coating samples were analyzed using SEM, XPS, hydrostatic contact angle test, and an adhesion test. EIS measurements in 3.5 wt % NaCl solution for 72 h demonstrated the superior corrosion protection performance of the 0.3 wt %/GO@Tb-BTC/WEP coating compared to blank coating, with the charge-transfer resistance reaching 4.33 × 107 Ω·cm2, which was 9.5 times higher than that of the pure coating. The bright green fluorescence of GO@Tb-BTC/WEP coating exhibited a turn-off response when there was an excess of OH-/H+, but it demonstrated a reversible turn-on fluorescence when the ambient pH returned to neutral. Furthermore, such Fe3+-triggered fluorescence quenching responded to concentrations as low as 1 × 10-6 M. The fluorescence quenching rate of both intact and damaged coatings surpassed that of visual and EIS detection methods. Significantly, the fluorescence in scratches was effectively quenched within 25 min using 0.3 wt %/GO@Tb-BTC/WPU coating for visual observation. GO@Tb-BTC demonstrated exceptional corrosion self-reporting capabilities in both epoxy and polyurethane systems, making it a versatile option beyond single-coating applications.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yihan Song
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuo Wu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiangming Lv
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Xiao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yujie Ning
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huayang Tian
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Ma YF, Liu XL, Lu XY, Zhang ML, Ren YX, Yang XG. Zn-coordination polymers for fluorescence sensing various contaminants in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123803. [PMID: 38159382 DOI: 10.1016/j.saa.2023.123803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Luminescent coordination polymers (LCPs) have garnered significant attention from researchers as promising materials for detecting contaminants. In this paper, three new LCPs ([Zn(tib)(opda)]n⋅H2O (1), [Zn3(tib)2(mpda)3]n⋅5H2O (2), [Zn (tib)(ppda)]n⋅H2O (3)) with different structures (LCP 1-3: 1D, 2D, 1D) using phenylenediacetic acid isomers and 1,3,5-tris (1-imidazolyl) benzene (tib) are synthesized. The specific surface areas (BET) of LCP 1-3 are 4 m2/g, 19 m2/g, and 13 m2/g respectively. LCP 1-3 exhibit excellent fluorescence properties and can serve as fluorescent probe for the detection of inorganic contaminants and organic contaminants. Due to the large BET of LCP 2, the detection limits for trace analytes surpass those of LCP 1 and 3. The detection limits of LCP 2 for Fe3+, nitrobenzene (NB), chloramphenicol (CAP), and pyrimethanil (PTH) are 8.3 nM, 0.016 μM, 0.19 μM, and 0.032 μM, respectively, and the fluorescence quenching rates are 98.6 %, 98.8 %, 92.3 %, and 98.8 %, respectively. These values outperform most reported in the literature. The quantum yields of LCP 1-3 are 11.84 %, 25.22 %, 22.00 % respectively. Real sample testing of LCP 1-3 reveals favorable performance, where spiked recoveries of LCP 2 for the detection of pyrimethanil in grape skins ranged from 99.62 % to 119.3 % with a relative standard deviation (RSD) of 0.627 % to 4.56 % (n = 3). The fluorescence quenching mechanism was attributed to a combination of photoelectron transfer (PET), resonance energy transfer (RET), and competitive absorption (CA). This study advances the application of LCPs in luminescence sensing and contributes to the expansion of novel materials for detecting environmental pollutants.
Collapse
Affiliation(s)
- Ya-Fei Ma
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xiao-Li Liu
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xue-Ying Lu
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Mei-Li Zhang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China.
| | - Yi-Xia Ren
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| |
Collapse
|
3
|
Wen Y, Qin T, Zhou Y. Metal-Organic Frameworks Based Sensor Platforms for Rapid Detection of Contaminants in Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5026-5039. [PMID: 38420691 DOI: 10.1021/acs.langmuir.3c03545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Metal-organic frameworks (MOFs) are a type of multifunctional material with organic-inorganic doped metal complexes that have a lot of unsaturated metal sites and a consistent network structure. MOFs work has great performance for enhancing the mass transfer, signal, and sensitivity as well as analyte enrichment. This study highlights the recent advancements of MOFs-based sensors for pollutant detection in a water environment and summarizes the effect of various synthetic materials on the performance of MOFs-based sensors. The related challenges and optimization techniques have been discussed. Then the research results of various MOFs sensors in the detection of wastewater pollutants are analyzed. Finally, the challenges facing MOFs-based water sensor development and the outlook for future research are discussed.
Collapse
Affiliation(s)
- Yitian Wen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Tian Qin
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, P. R. China
| |
Collapse
|
4
|
Li WZ, Li J, Ma WL, Zhang XS, Liu Y, Luan J. Fabrication of nanofibrous membranes decorated with metal-organic frameworks for detection of pollutants in water. Talanta 2024; 269:125496. [PMID: 38043341 DOI: 10.1016/j.talanta.2023.125496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
The environmental pollution caused by antibiotics, Fe3+ and MnO4- pollutants is becoming increasingly serious. Polyacrylonitrile (PAN) and polymethyl methacrylate (PMMA) were used and decorated with metal-organic frameworks (MOFs) to fabricated three kinds of nanofibrous membranes (NFMs) with different shapes and sizes were prepared by electrospinning technology using in situ growth method and mixed spinning method. The structures and properties of the above three kinds of NFMs were characterized. Among them, PAN@Co/Mn-MOF-74 NFM prepared by in-situ growth method based on PAN was a kind of nano-fluorescent NFM sensor with uniform structure and good fluorescence performance. It showed unique specificity and excellent sensitivity in the detection of ORN, Fe3+ and MnO4-. Compared with previously reported functionalized MOFs, PAN@Co/Mn-MOF-74 NFM has a lower limit of detection (LOD). This study provides a feasible technical route for the preparation of nano-fluorescent NFMs and the targeted detection of trace metal ions and antibiotics.
Collapse
Affiliation(s)
- Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Jing Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Wan-Lin Ma
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Xiao-Sa Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
5
|
Wang ZG, Ding T, Fei J. A gas-selective Zn-MOF exhibits selective sensing of Fe 3+ ions by doping with Tb 3. Dalton Trans 2023; 52:14409-14415. [PMID: 37767994 DOI: 10.1039/d3dt02721j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Here, a new Zn2+ metal organic framework, {[Me2NH2][Zn2(L)(DTZ)]·2DMF·3H2O}n (Zn-MOF), has been synthesized with low-symmetric carboxylic acid ligand 2,6 bis(2',5'-dicarboxyphenyl)pyridine (H4L) as the main ligand and 3,5-diamino-1,2,4-riazole (DTZ) containing an electron-rich N atom as an auxiliary ligand. Because of its high structural stability and adsorption properties, it can be used to efficiently separate CO2/CH4 and C2H2/CH4. In addition, Tb@Zn-MOF was obtained by doping with Tb3+ to partially replace Zn2+. A study of its luminescence sensing performance demonstrated that Tb@Zn-MOF showed intense luminescence properties and can be used for the directional detection of Fe3+ in aqueous solution. Furthermore, PXRD analysis, UV-vis spectroscopy and X-ray photoelectron spectroscopy (XPS) were also used to study possible luminescence sensing mechanisms. The recognition mechanism for Fe3+ ions is believed to be caused by electron transfer.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- School of Materials, Northwestern Polytechnical University, Xi'an 710048, P. R China.
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R China
| | - Tao Ding
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R China
| | - Jie Fei
- School of Materials, Northwestern Polytechnical University, Xi'an 710048, P. R China.
| |
Collapse
|
6
|
Chen M, Shao R, Wang Q, Gao Y, Ma Y, Guan R, Yang T. Eu doped Zn-MOF nanofiber fluorescent membrane and its multifunctional detection of nitroaromatic compounds and Fe3+. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
7
|
Mei D, Yan B. Numerical Recognition System and Ultrasensitive Fluorescence Sensing Platform for Al 3+ and UO 22+ Based on Ln (III)-Functionalized MOF-808 via Thiodiglycolic Acid Intermediates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16882-16894. [PMID: 36943811 DOI: 10.1021/acsami.3c00685] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Continuous accumulation of Al3+ in the human body and unintended leakage of UO22+ have posed a great threat to human health and the global environment; thus searching an efficient probe for the detection of Al3+ and UO22+ is of great importance. Herein, we designed and synthesized two hydrolytically stable Eu3+- and Tb3+-functionalized MOF materials Eu@MOF-808-TDA and Tb@MOF-808-TDA via thiodiglycolic acid (TDA) intermediates by the postsynthetic modification method. Among them, Tb@MOF-808-TDA was applied to construct numerical recognition systems of multiples of three and four by the combination of fluorescent signals, hierarchical cluster analysis, and logical gates. In addition, Tb@MOF-808-TDA exhibits good selectivity and sensitivity for the detection of Al3+ and UO22+. The detection limit is calculated to be 0.085 ppm for Al3+ and 0.082 ppm for UO22+ in aqueous solutions, which is lower than or close to that of latest reported Ln-MOFs. Moreover, the probe shows excellent hydrolytic stability and luminescence stability in the pH range of 4-11, further providing solid evidence for the practical application of Tb@MOF-808-TDA. More importantly, a mixed matrix hydrogel PVA-Tb@MOF-808-TDA was prepared to achieve the visual detection of Al3+, which broadens the potential in real-world sensing applications.
Collapse
Affiliation(s)
- Douchao Mei
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
8
|
Fluorescent Cd-MOFs for ion recognition constructed by 2, 5-dimethoxyterephthalic acid and nitrogen heterocyclic derivatives. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
9
|
Hua Y, Ahmadi Y, Kim KH. Novel strategies for the formulation and processing of aluminum metal-organic framework-based sensing systems toward environmental monitoring of metal ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130422. [PMID: 36434918 DOI: 10.1016/j.jhazmat.2022.130422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Aluminum is a relatively inexpensive and abundant metal for the mass production of metal-organic frameworks (MOFs). Aluminum-based MOFs (Al-MOFs) have drawn a good deal of research interest due to their unique properties for diverse applications (e.g., excellent chemical and structural stability). This review has been organized to highlight the current progress achieved in the synthesis/functionalization of Al-MOF materials with the special emphasis on their sensing application, especially toward metal ion pollutants in the liquid phase. To learn more about the utility of Al-MOF-based sensing systems, their performances have been evaluated for diverse metallic components in reference to many other types of sensing systems (in terms of the key quality assurance (QA) criteria such as limit of detection (LOD)). Finally, the challenges and outlook for Al-MOF-based sensing systems are discussed to help expand their real-world applications.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
10
|
Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Sahoo S, Mondal S, Sarma D. Luminescent Lanthanide Metal Organic Frameworks (LnMOFs): A Versatile Platform towards Organomolecule Sensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Li J, Yang H, Cai R, Tan W. Ultrahighly Sensitive Sandwich-Type Electrochemical Immunosensor for Selective Detection of Tumor Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44222-44227. [PMID: 36150034 DOI: 10.1021/acsami.2c13891] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, a novel sandwich-type immunosensor was designed using Pt nanoparticle-decorated SnS2 nanoplates (Pt@SnS2) as a matrix and N,B-doped Eu MOF (N,B-Eu MOF) nanospheres as a signal amplifier. In Pt@SnS2, Pt nanoparticles (NPs) enhance the surface electron transport capability and electrochemiluminescence (ECL) performance of SnS2 nanoplates. The dual "antenna" effect of 5-boronoisophthalic acid (5-bop) and 5-nitroisophthalic acid (5-nop) enables the N,B-Eu MOFs to show very good ECL performance at the cathode. In the presence of the target carcinoembryonic antigen (CEA), the sandwich-type immunosensor provides specific immune responses, and the ECL signal of the immunosensor is greatly amplified by the signal probe N,B-Eu MOFs. In view of the above, the immunosensor was successfully applied for highly sensitive and selective detection of CEA with a detection limit of 0.06 pg·mL-1. This sensor exhibits high sensitivity and specificity, excellent stability, good reproducibility, and good practicability in real human serum.
Collapse
Affiliation(s)
- Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Hongfen Yang
- University of Texas at Austin, Austin, Texas 78712, United States
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Chen Z, Li P, Guo C, Chen X, Liu B, Zou H, Liang W, Xu H. 2D Metal‐Organic Framework Based on the Functionalized Anthracene Derivative as A Dual‐Functional Luminescent Probe for Fe
3+
and Ascorbic Acid. ChemistrySelect 2022. [DOI: 10.1002/slct.202202059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zi‐Yi Chen
- College of Chemistry and Chemical Engineering Key Laboratory of Hunan Province for Chemical Power Source Central South University Changsha Hunan 410083 P. R. China
| | - Peng‐Cheng Li
- College of Chemistry and Chemical Engineering Key Laboratory of Hunan Province for Chemical Power Source Central South University Changsha Hunan 410083 P. R. China
| | - Cui Guo
- College of Chemistry and Chemical Engineering Key Laboratory of Hunan Province for Chemical Power Source Central South University Changsha Hunan 410083 P. R. China
| | - Xiao‐Huan Chen
- College of Chemistry and Chemical Engineering Key Laboratory of Hunan Province for Chemical Power Source Central South University Changsha Hunan 410083 P. R. China
| | - Bing‐Jie Liu
- College of Chemistry and Chemical Engineering Key Laboratory of Hunan Province for Chemical Power Source Central South University Changsha Hunan 410083 P. R. China
| | - Hui‐Jing Zou
- Department of Biology College of Arts and Science New York University New York, NY 10012 USA
| | - Wen‐Jie Liang
- College of Chemistry and Chemical Engineering Key Laboratory of Hunan Province for Chemical Power Source Central South University Changsha Hunan 410083 P. R. China
| | - Hai Xu
- College of Chemistry and Chemical Engineering Key Laboratory of Hunan Province for Chemical Power Source Central South University Changsha Hunan 410083 P. R. China
| |
Collapse
|
14
|
Eu3+ functionalized Gd-BTC: Turn-off fluorescent switch for selectively detecting acetone and Fe3+. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Hou J, Chen Y, Zou S, Dong W, Ju Z, Lin J, Ruan Z, Liu S, Tian Z. Heterometallic Dual-Liganded AE-Ln-CPs Luminescent Probes for Efficient Sensing of Fe(III) Ions. Front Chem 2022; 10:865447. [PMID: 35464208 PMCID: PMC9021488 DOI: 10.3389/fchem.2022.865447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Iron ion is widely present in the environment and in biological systems, and are indispensable trace elements in living organisms, so development of an efficient and simple sensor for sensing Fe(III) ions has attracted much attention. Here, six heterometallic AE-Ln coordination polymers (CPs) [Ln2 (pda)4(Hnda)2Ca2(H2O)2]·MeOH (Ln = Eu (1), Tb (2); H2pda = 2,6-pyridinedicarboxylic acid, H2nda = 2,3-naphthalenedicarboxylic acid), [Ln (pda)2 (nda)AE2(HCOO)(H2O)] (AE = Sr, Ln = Eu (3), Tb (4); AE = Ba, Ln = Eu (5), Tb (6)) with two-dimensional (2D) layer structures were synthesized by hydrothermal method. All of them were characterized by elemental analysis, XRD, IR, TG, as well as single crystal X-ray diffraction. They all show infinite 2D network structure, where complexes 1 and 2 are triclinic with space group of P1¯, while 3-6 belong to the monoclinic system, space group P21/n. The solid-state fluorescence lifetimes of complexes 1, 3 and 5 are τobs1 = 1930.94, 2049.48 and 2,413.04 µs, respectively, and the quantum yields Фtotal are 63.01, 60.61, 87.39%, respectively, which are higher than those of complexes 2, 4 and 6. Complexes 1-6 all exhibited efficient fluorescence quenching response to Fe3+ ions in water, and were not interfered by the following metal ions: Cu2+, Cd2+, Mg2+, Ni2+, Co2+, Ca2+, Ba2+, Sr2+, Li+, Na+, K+, Al3+, Fe2+, Pb2+, Cr3+, Mn2+ and Zn2+. The quenching coefficient KSV for complexes 1-6 is 1.41 × 105 M−1, 7.10 × 104 M−1, 1.70 × 105 M−1, 1.57 × 105 M−1, 9.37 × 104 M−1, 1.27 × 105 M−1, respectively. The fluorescence quenching mechanism of these complexes towards Fe3+ ions was also investigated. It is possible that the weak interaction formed between the complexes and the Fe3+ ions reduce the energy transfer from the ligand to the Ln3+ ion, producing the emission burst effect. This suggests that complexes 1-6 can be candidate for efficient luminescent sensor of Fe3+.
Collapse
Affiliation(s)
- Jieqiong Hou
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, China
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang, China
| | - Yanmei Chen
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, China
- *Correspondence: Yanmei Chen, ; Zhengfang Tian,
| | - Shuixiang Zou
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, China
| | - Wenwen Dong
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang, China
| | - Zhenghua Ju
- Analysis and Testing Center, Lanzhou University, Lanzhou, China
| | - Junqi Lin
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, China
| | - Zhijun Ruan
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, China
| | - Shanshan Liu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, China
| | - Zhengfang Tian
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, China
- *Correspondence: Yanmei Chen, ; Zhengfang Tian,
| |
Collapse
|
16
|
The application of metal-organic framework sensors based on 3,5-bis(triazol-1-yl)-benzoic acid as ligand in dye adsorption and heavy metal sensing. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Fu Y, Zhang R, Lv P, Chen F, Xu W. Eu-based metal-organic framework as a multi-responsive fluorescent sensor for efficient detecting Cr2O72− and tetracycline hydrochloride. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Zhou Z, Zhang J, Zhang Z, Yao Z, Wang Z. Enhanced fluorescence and ion adsorption/sensing properties of europium(III) complex with porous structure. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Liu Y, Sun Q, Zhou H, Gao H, Li D, Li Y. One-dimensional Europium-coordination polymer as luminescent sensor for highly selective and sensitive detection of 2,4,6-trinitrophenol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120303. [PMID: 34454134 DOI: 10.1016/j.saa.2021.120303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Three isostructural lanthanide coordination polymers (LnCPs), [Ln(L)6(DMF)]n {HL = 2-(2-formylphenoxy) acetic acid, Ln = Sm (1); Eu (2); Tb (3)} have been synthesized by solvothermal reaction and characterized. Single crystal analyses revealed that the architectures of these LnCPs own one dimensional chain which can be further packed into two-dimensional architectures by hydrogen bonds. Moreover, these LnCPs can offer strategically placed uncoordinated formyl groups, which may act as hydrogen-bond acceptor in the sensing of nitro explosives. Luminescence measurements reveal that LnCPs 2 and 3 exhibit strong luminescence in solid states. LnCP 2 shows quick, highly selective and sensitive detection of 2,4,6-trinitrophenol (TNP) with the high quenching constant (2.6 × 104 M-1) and low detection limit (3.39 μM), which indicates that LnCP 2 is more efficient than most of Eu-based coordination polymers for the sensing of TNP. Furthermore, LnCP 2 represents the first example of one-dimensional Eu-based sensors with formyl group as hydrogen-bonding site in the detection of TNP.
Collapse
Affiliation(s)
- Yanzhu Liu
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Qingyan Sun
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Hongbo Zhou
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Hongyan Gao
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Dongping Li
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Yongxiu Li
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| |
Collapse
|
20
|
Dwivedi A, Srivastava M, Upadhyay R, Srivastava A, Yadav R, Srivastava S. A flexible Eu:Y2O3-polyvinyl alcohol photoluminescent film for sensitive and rapid detection of arsenic ions. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
A multifunctional luminescent chemosensor of YbⅢ-MOF for the detection of Nitrobenzene, Fe3+ and Cr2O72–. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Yang Y, Pang J, Li Y, Sun L, Zhang H, Zhang L, Xu S, Jiang T. Fabrication of a Stable Europium-Based Luminescent Sensor for Fast Detection of Urinary 1-Hydroxypyrene Constructed from a Tetracarboxylate Ligand. Inorg Chem 2021; 60:19189-19196. [PMID: 34865486 DOI: 10.1021/acs.inorgchem.1c02988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel europium-centered metal-organic framework fabricated from a symmetric and rigid ligand with tetracarboxylate groups, 2,6-di(2',5'-dicarboxylphenyl)pyridine (H4ddpp), has been synthesized solvothermally. Characterized by single-crystal X-ray diffraction, compound 1 features a 3D microporous structure with a butterfly-shaped trinuclear Eu3(COO)6 secondary building unit. Interestingly, three kinds of 1D open channels viewed in different directions in compound 1 are discovered, and the void ratio is calculated to be 47.5% by PLATON software. Solid-state luminescent experiments at 298 K reveal that compound 1 displays naked-eye characteristic red emission of Eu3+ ions monitoring the typical 5D0 → 7F2 transition. The exploration of luminescent sensing tests discloses that compound 1 has an outstanding capacity for recognizing urinary 1-hydroxypyrene (1-HP) with a quite fast response and high sensitivity, giving the quenching efficiency of 98.2% after the immersion time for just 1 min and 73.2% with the amount of 1-HP only 0.05 mg/mL. To our knowledge, it is the first reported Eu-MOF as an extremely fast-responsive and highly sensitive luminescent sensor for 1-HP which is interference-free from other urinary components. Furthermore, the successful preparation of the luminescent test papers makes compound 1 convenient, easy, and real-time in the application for sensing 1-HP in biomedical and biological fields.
Collapse
Affiliation(s)
- Yan Yang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Jiandong Pang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Yunwu Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.,Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Lei Sun
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.,Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Hao Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.,Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Luyao Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Shuting Xu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Taiwen Jiang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
23
|
Pavlov DI, Ryadun AA, Potapov AS. A Zn(II)-Based Sql Type 2D Coordination Polymer as a Highly Sensitive and Selective Turn-On Fluorescent Probe for Al 3. Molecules 2021; 26:7392. [PMID: 34885974 PMCID: PMC8658932 DOI: 10.3390/molecules26237392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
A luminescent coordination polymer with the overall formula {[Zn(tr2btd)(bpdc)]∙DMF}n (where tr2btd = 4,7-di(1H-1,2,4-triazol-1-yl)-2,1,3-benzothiadiazole; bpdc = 4,4'-biphenyldicarboxylate) was synthesized and characterized by single-crystal and powder X-ray diffraction, thermogravimetric, infrared spectroscopy, and elemental analyses. Luminescent properties of the obtained compound were studied in detail both in the solid state and as a suspension in N,N-dimethylacetamide (DMA). It was found that {[Zn(tr2btd)(bpdc)]∙DMF}n exhibits bright turquoise luminescence with excellent quantum efficiency and demonstrates turn-on fluorescence enhancement effect upon soaking in DMA Al3+ solution. Fluorescence titration experiments were carried out and the detection limit for Al3+ ions was calculated to be 120 nM, which is among the lowest reported values for similar materials. Moreover, compound demonstrated excellent selectivity and reusability, and the mechanism of the response is discussed. These results indicate that {[Zn(tr2btd)(bpdc)]∙DMF}n is a promising probe for sensitive fluorescent Al3+ detection.
Collapse
Affiliation(s)
| | | | - Andrei S. Potapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia; (D.I.P.); (A.A.R.)
| |
Collapse
|
24
|
Wang SJ, Li Q, Xiu GL, You LX, Ding F, Van Deun R, Dragutan I, Dragutan V, Sun YG. New Ln-MOFs based on mixed organic ligands: synthesis, structure and efficient luminescence sensing of the Hg 2+ ions in aqueous solutions. Dalton Trans 2021; 50:15612-15619. [PMID: 34668902 DOI: 10.1039/d1dt02687a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In view of Hg2+ ion sensing by luminescence, a series of new, phenanthroline-decorated 3D lanthanide metal organic frameworks (Ln-MOFs) valorising an original combination of four different lanthanides and two organic ligands, i.e. thiobis(4-methylene-benzoic acid) (H2tmba) and 1,10-phenanthroline (phen), have been successfully synthesized, namely {[Ln4(tmba)6(phen)4]·m(H2O)(phen)}n [Ln = Ce, m = 3 (1); Pr, m = 1 (2); Eu, m = 3 (3); and Tb, m = 3 (4)]. Compounds 1-4 were characterised by single-crystal X-ray diffraction, elemental and thermogravimetric analyses, and powder X-ray diffraction. The luminescence properties of complexes 3 and 4 were thoroughly investigated. It is herein proved that compound 3 sensitively and selectively acts as an excellent luminescent probe for the detection of Hg2+ ions in waters, with a detection limit of 1.00 μM. As additional assets, 3 displays superb stability over a wide pH range (3-12) of the aqueous media, as well as convenient recycling after completion of the detection experiments. The rationale for the observed luminescence quenching effect of mercury might be a strong interaction arising between Hg2+ ions and the carboxylate oxygen atoms of the tmba2- ligand. The results open new perspectives for applications in environmental remediation.
Collapse
Affiliation(s)
- Shu-Ju Wang
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Qian Li
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Guan-Lin Xiu
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Li-Xin You
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Fu Ding
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China. .,Key Laboratory on Resources Chemicals and Material of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Rik Van Deun
- L3 - Luminescent Lanthanide Lab, Department of Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Ghent, Belgium.
| | - Ileana Dragutan
- Institute of Organic Chemistry, Romanian Academy, P. O. Box 35-108, Bucharest, 060023, Romania.
| | - Valerian Dragutan
- Institute of Organic Chemistry, Romanian Academy, P. O. Box 35-108, Bucharest, 060023, Romania.
| | - Ya-Guang Sun
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China. .,Key Laboratory on Resources Chemicals and Material of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
25
|
Dwivedi A, Srivastava M, Srivastava A, Srivastava SK. Synthesis of high luminescent Eu 3+ doped nanoparticle and its application as highly sensitive and selective detection of Fe 3+ in real water and human blood serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119942. [PMID: 34015746 DOI: 10.1016/j.saa.2021.119942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The present work reports a highly efficient Ca doped Eu: Y2O3 i.e Ca0.05Eu0.01Y1.94O3 (CEY.) nanophosphor material synthesized through a facile combustion method, as a simple and selective turn-off fluorescence probe for the quantitative analysis of iron ions (Fe3+). The proposed sensor allows the quantification of iron in the range of 10 µM-90 µM with a limit of detection (LOD) ∼ 63.2 nM under the natural pH range. Moreover, CEY nanophosphor shows an excellent fluorescence phenomenon with a gradual increase in the Fe3+ ion concentration. It has been observed that the corresponding PL intensity gets completely quenched with 500 µM Fe3+ ion concentration. Furthermore, the applicability of the sensor as an efficient probe has been investigated with real water samples, iron tablets, and human blood serum (HBS). The selectivity of the probe has also been analyzed with various metal ions and biomolecules. Thus, in turn, the as-obtained sensing probe illustrates an excellent accuracy, sensitivity, and selectivity, and offers potential application in clinical diagnosis, biological and real water sample studies, with the detection of Fe3+ ion. Furthermore, it does not require any acidic medium for a level-free, and non-enzymic detection of a real sample with almost not affecting the sample quality and henceforth provides more reliable results.
Collapse
Affiliation(s)
- Arpita Dwivedi
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, IIT (BHU), Varanasi 221005, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur 222001, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
26
|
Liu Z, Jin H, Liu R, Wang Z, Huang H. Design, Synthesis and Photoluminescence Sensing Property of a Ni‐Organic Material Achieved from 2,6‐Di(1
H
‐imidazol‐1‐yl) Naphthalene and Carboxylic Acid Ligands. ChemistrySelect 2021. [DOI: 10.1002/slct.202102721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhi‐Qiang Liu
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
- State Key Laboratory of Coordination Chemistry College of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Heng‐Hui Jin
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
| | - Ran‐Ran Liu
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
| | - Zhi‐Ping Wang
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
| | - Hui‐Hui Huang
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
| |
Collapse
|
27
|
Moumen E, Assen AH, Adil K, Belmabkhout Y. Versatility vs stability. Are the assets of metal–organic frameworks deployable in aqueous acidic and basic media? Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Firuzabadi FD, Alavi MA, Zarekarizi F, Tehrani AA, Morsali A. A pillared metal-organic framework with rich π-electron linkers as a novel fluorescence probe for the highly selective and sensitive detection of nitroaromatics. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Yang GL, Jiang XL, Xu H, Zhao B. Applications of MOFs as Luminescent Sensors for Environmental Pollutants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005327. [PMID: 33634574 DOI: 10.1002/smll.202005327] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/16/2020] [Indexed: 06/12/2023]
Abstract
The environmental pollution has become a serious issue because the pollutants can cause permanent damage to the DNA, nervous system, and circulating system, resulting in various incurable diseases, such as organ failure, malformation, angiocardiopathy, and cancer. The effective detection of environmental pollutants is urgently needed to keep them far away from daily life. Among the reported pollutant sensors, luminescent metal-organic frameworks (LMOFs) with tunable structures have attracted remarkable attention to detect the pollutants because of their excellent selectivity, sensitivity, and recyclability. Although lots of metal-organic framework (MOF)-based luminescent sensors have been summarized and discussed in previous reviews, the detection of environmental pollutants, especially radioactive ions and heavy metal ions, still have not been systematically presented. Here, the sensing mechanisms and construction principles of luminescent MOFs are discussed, and the state-of-the-art MOF-based luminescent sensors of environmental pollutants, including pesticides, antibiotics, explosives, VOCs, toxic gas, toxic small molecules, radioactive ions, and heavy metal ions are highlighted. This comprehensive review may further guide the development of luminescent MOFs and promote their practical applications for sensing environmental pollutants.
Collapse
Affiliation(s)
- Guo-Li Yang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| | - Xiao-Lei Jiang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| | - Hang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| |
Collapse
|
30
|
Ma X, Zhang X, Han L, Hao Z, Yong S. A Multi-response Aluminum Metal-organic Frameworks for Fluorescence Sensing of Fe 3+, Sr 2+, SiO 32-and Toluene. Methods Appl Fluoresc 2021; 9. [PMID: 33735838 DOI: 10.1088/2050-6120/abf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/18/2021] [Indexed: 11/12/2022]
Abstract
A new Aluminum metal-organic frameworks(Al-MOF) based on tricarboxylate ligands(L){L = 2,2',2'-([1,3,5]-triazine-2,4,6-triimino)tribenzoic acid)} has been designed and synthesized. It can be served as a platform of multi-responsive fluorescence sensor for Fe3+, Sr2+and SiO32-in water, which is mainly due to the significant enhancement effect of these ions on the fluorescence intensity of Al-MOF. Especially, Fe3+ions are rarely able to induce MOFs fluorescence enhancement. The limit of detection for three kinds of ions is 6.62* 10-6M, 5.37* 10-6M, 6.85* 10-10M respectively. Meanwhile, It can also be used as a multi-response fluorescence probe to detect toluene in DMF solution, limit of detection is 9.16* 10-3M respectively. The structure of Al-MOF was characterized by FTIR,1H NMR, SEM, TAG, PXRD and element analysis. The PXRD showed that the structure of Al-MOF remained the high water stability and pH stability. The application of water samples and vegetables showed that Al-MOF had high sensitive detection for Fe3+ions.
Collapse
Affiliation(s)
- Xuelin Ma
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, People's Republic of China.,Department of Chemistry, Baotou Teachers' College, Baotou, People's Republic of China
| | - Xiaoyong Zhang
- Department of Chemistry, Baotou Teachers' College, Baotou, People's Republic of China
| | - Limin Han
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, People's Republic of China
| | - Zhanzhong Hao
- Department of Chemistry, Baotou Teachers' College, Baotou, People's Republic of China
| | - Shengli Yong
- Department of Chemistry, Baotou Teachers' College, Baotou, People's Republic of China
| |
Collapse
|
31
|
Shi R, Fu G, Zhang Z, Zou X, Li L, Qi B, Luo F. Eu(III) complex coated carbon sphere core-shell material for fluorescence detection, catalytic reduction and real-time monitoring of nitrophenol compounds. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Novel luminescent calixarene-based lanthanide materials: From synthesis and characterization to the selective detection of Fe3+. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Jin J, Xue J, Liu Y, Yang G, Wang YY. Recent progresses in luminescent metal-organic frameworks (LMOFs) as sensors for the detection of anions and cations in aqueous solution. Dalton Trans 2021; 50:1950-1972. [PMID: 33527951 DOI: 10.1039/d0dt03930f] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discharge of excessive metal ions and anions into water bodies leads to the serious pollution of water and environment, which in turn has a certain impact on industry, agriculture, and human life. Because of the unique advantages of luminescent metal-organic frameworks (LMOFs), they have been successfully explored as various fluorescent probes to quickly and effectively detect these pollutants. This perspective not only introduces the design strategy and classification of LMOFs, especially the construction methods of water-stable LMOFs, but also reports the latest progresses in some LMOFs between 2016 and 2020 as well as expounds the mechanisms of LMOFs for detecting anions and cations. Moreover, the luminescence properties of LMOFs are related to the selection of metal ions, the structure of organic ligands, the pore size, and the interaction of guest molecules. Finally, the further development of LMOFs is summarized and prospected in this field.
Collapse
Affiliation(s)
- Jing Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Juanjuan Xue
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Yanchen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| |
Collapse
|
34
|
Qiao Y, Li Z, Yu MH, Chang Z, Bu XH. A metal–organic framework featuring highly sensitive fluorescence sensing for Al 3+ ions. CrystEngComm 2021. [DOI: 10.1039/d1ce01115d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new fluorescent MOF can detect Al3+ ions with high selectivity and sensitivity via turn-off effect and emission color change.
Collapse
Affiliation(s)
- Yang Qiao
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zeqi Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ze Chang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- College of Chemistry, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
A luminescent sensor based on a new Cd-MOF for nitro explosives and organophosphorus pesticides detection. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108272] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Wenjuan X, Caixia Y, Leilei L, Yali Z, Ruixue X, Hongwei H. An O- modified coordination polymer for rapid and selective adsorption of rare earth elements from aqueous solution. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Kanan SM, Malkawi A. Recent Advances in Nanocomposite Luminescent Metal-Organic Framework Sensors for Detecting Metal Ions. COMMENT INORG CHEM 2020. [DOI: 10.1080/02603594.2020.1805319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sofian M. Kanan
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Ahmed Malkawi
- Department of Chemistry, Northwest Missouri State University, Maryville, Missouri, USA
| |
Collapse
|
38
|
Chen DM, Zheng YP, Fang SM. A polyhedron-based porous Tb(III)–organic framework with dual emissions for highly selective detection of Al3+ ion. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|