1
|
Qahtan TF, Owolabi TO, Saleh TA. Tuning the oxidation state of titanium dioxide mesoporous film by 1000 eV argon ion beam irradiation. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Alyami M. Ultra-Violet-Assisted Scalable Method to Fabricate Oxygen-Vacancy-Rich Titanium-Dioxide Semiconductor Film for Water Decontamination under Natural Sunlight Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:703. [PMID: 36839071 PMCID: PMC9960817 DOI: 10.3390/nano13040703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
This work reports the fabrication of titanium dioxide (TiO2) nanoparticle (NPs) films using a scalable drop-casting method followed by ultra-violet (UV) irradiation for creating defective oxygen vacancies on the surface of a fabricated TiO2 semiconductor film using an UV lamp with a wavelength oof 255 nm for 3 h. The success of the use of the proposed scalable strategy to fabricate oxygen-vacancy-rich TiO2 films was assessed through UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The Ti 2p XPS spectra acquired from the UV-treated sample showed the presence of additional Ti3+ ions compared with the untreated sample, which contained only Ti4+ ions. The band gap of the untreated TiO2 film was reduced from 3.2 to 2.95 eV after UV exposure due to the created oxygen vacancies, as evident from the presence of Ti3+ ions. Radiation exposure has no significant influence on sample morphology and peak pattern, as revealed by the SEM and XRD analyses, respectively. Furthermore, the photocatalytic activity of the fabricated TiO2 films for methylene-blue-dye removal was found to be 99% for the UV-treated TiO2 films and compared with untreated TiO2 film, which demonstrated only 77% at the same operating conditions under natural-sunlight irradiation. The proposed UV-radiation method of oxygen vacancy has the potential to promote the wider application of photo-catalytic TiO2 semiconductor films under visible-light irradiation for solving many environmental and energy-crisis challenges for many industrial and technological applications.
Collapse
Affiliation(s)
- Mohammed Alyami
- Physics Department, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
4
|
do Carmo JVC, Lima CL, Mota G, Santos AMS, Costa LN, Ghosh A, Viana BC, Silva M, Soares JM, Tehuacanero-Cuapa S, Lang R, Oliveira AC, Rodríguez-Castellón E, Rodríguez-Aguado E. Effects of the Incorporation of Distinct Cations in Titanate Nanotubes on the Catalytic Activity in NO x Conversion. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2181. [PMID: 33923161 PMCID: PMC8123014 DOI: 10.3390/ma14092181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022]
Abstract
Effects of the incorporation of Cr, Ni, Co, Ag, Al, Ni and Pt cations in titanate nanotubes (NTs) were examined on the NOx conversion. The structural and morphological characterizations evidenced that the ion-exchange reaction of Cr, Co, Ni and Al ions with the NTs produced catalysts with metals included in the interlayer regions of the trititanate NTs whereas an assembly of Ag and Pt nanoparticles were either on the nanotubes surface or inner diameters through an impregnation process. Understanding the role of the different metal cations intercalated or supported on the nanotubes, the optimal selective catalytic reduction of NOx by CO reaction (SCR) conditions was investigated by carrying out variations in the reaction temperature, SO2 and H2O poisoning and long-term stability runs. Pt nanoparticles on the NTs exhibited superior activity compared to the Cr, Co and Al intercalated in the nanotubes and even to the Ag and Ni counterparts. Resistance against SO2 poisoning was low on NiNT due to the trititanate phase transformation into TiO2 and also to sulfur deposits on Ni sites. However, the interaction between Pt2+ from PtOx and Ti4+ in the NTs favored the adsorption of both NOx and CO enhancing the catalytic performance.
Collapse
Affiliation(s)
- José Vitor C. do Carmo
- Department of Analytical and Chemical-Physic Chemistry, Pici Campus-Block 940, Federal University of Ceará, Fortaleza 60040-531, Brazil; (J.V.C.d.C.); (G.M.)
| | - Cleanio L. Lima
- Material Science and Engineering & Physics Department, Federal University of Piauí, Teresina 64049-550, Brazil; (C.L.L.); (A.M.S.S.); (L.N.C.); (A.G.); (B.C.V.)
| | - Gabriela Mota
- Department of Analytical and Chemical-Physic Chemistry, Pici Campus-Block 940, Federal University of Ceará, Fortaleza 60040-531, Brazil; (J.V.C.d.C.); (G.M.)
| | - Ariane M. S. Santos
- Material Science and Engineering & Physics Department, Federal University of Piauí, Teresina 64049-550, Brazil; (C.L.L.); (A.M.S.S.); (L.N.C.); (A.G.); (B.C.V.)
| | - Ludyane N. Costa
- Material Science and Engineering & Physics Department, Federal University of Piauí, Teresina 64049-550, Brazil; (C.L.L.); (A.M.S.S.); (L.N.C.); (A.G.); (B.C.V.)
| | - Anupama Ghosh
- Material Science and Engineering & Physics Department, Federal University of Piauí, Teresina 64049-550, Brazil; (C.L.L.); (A.M.S.S.); (L.N.C.); (A.G.); (B.C.V.)
| | - Bartolomeu C. Viana
- Material Science and Engineering & Physics Department, Federal University of Piauí, Teresina 64049-550, Brazil; (C.L.L.); (A.M.S.S.); (L.N.C.); (A.G.); (B.C.V.)
| | - Monique Silva
- Fortaleza Campus, Federal Institute of Education—IFCE, Av. 13 de Maio, 2081, Benfica, Fortaleza 60040-531, Brazil;
| | - João M. Soares
- Physics Department, State University of Rio Grande do Norte-UERN, BR 110-km 48, R. Prof. Antônio Campos, Costa e Silva, Mossoró 59610-210, Brazil;
| | - Samuel Tehuacanero-Cuapa
- Central Microscopy Laboratory, Physics Institute—UNAM, Research Circuit s/n, University City, Coyoacán, Mexico City 04510, Mexico;
| | - Rossano Lang
- Institute of Science and Technology—ICT, Federal University of São Paulo—UNIFESP, São José dos Campos 12231-280, Brazil;
| | - Alcineia C. Oliveira
- Department of Analytical and Chemical-Physic Chemistry, Pici Campus-Block 940, Federal University of Ceará, Fortaleza 60040-531, Brazil; (J.V.C.d.C.); (G.M.)
| | | | - Elena Rodríguez-Aguado
- Department of Inorganic Chemistry, Faculty of Science, University of Málaga, 29071 Málaga, Spain;
| |
Collapse
|
5
|
Majrik K, Pászti Z, Korecz L, Mihály J, May Z, Németh P, Cannilla C, Bonura G, Frusteri F, Tompos A, Tálas E. Effect of the Microstructure of the Semiconductor Support on the Photocatalytic Performance of the Pt-PtO x/TiO 2 Catalyst System. MATERIALS (BASEL, SWITZERLAND) 2021; 14:943. [PMID: 33671227 PMCID: PMC7921961 DOI: 10.3390/ma14040943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 11/16/2022]
Abstract
The influence of the semiconductor microstructure on the photocatalytic behavior of Pt-PtOx/TiO2 catalysts was studied by comparing the methanol-reforming performance of systems based on commercial P25 or TiO2 from sol-gel synthesis calcined at different temperatures. The Pt co-catalyst was deposited by incipient wetness and formed either by calcination or high-temperature H2 treatment. Structural features of the photocatalysts were established by X-ray powder diffraction (XRD), electron spin resonance (ESR), X-ray photoelectron spectroscopy (XPS), optical absorption, Raman spectroscopy and TEM measurements. In situ reduction of Pt during the photocatalytic reaction was generally observed. The P25-based samples showed the best H2 production, while the activity of all sol-gel-based samples was similar in spite of the varying microstructures resulting from the different preparation conditions. Accordingly, the sol-gel-based TiO2 has a fundamental structural feature interfering with its photocatalytic performance, which could not be improved by annealing in the 400-500 °C range even by scarifying specific surface area at higher temperatures.
Collapse
Affiliation(s)
- Katalin Majrik
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network (ELKH), H-1117 Budapest, Magyar Tudósok Körútja 2, Hungary; (K.M.); (L.K.); (J.M.); (Z.M.); (P.N.); (A.T.); (E.T.)
| | - Zoltán Pászti
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network (ELKH), H-1117 Budapest, Magyar Tudósok Körútja 2, Hungary; (K.M.); (L.K.); (J.M.); (Z.M.); (P.N.); (A.T.); (E.T.)
| | - László Korecz
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network (ELKH), H-1117 Budapest, Magyar Tudósok Körútja 2, Hungary; (K.M.); (L.K.); (J.M.); (Z.M.); (P.N.); (A.T.); (E.T.)
| | - Judith Mihály
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network (ELKH), H-1117 Budapest, Magyar Tudósok Körútja 2, Hungary; (K.M.); (L.K.); (J.M.); (Z.M.); (P.N.); (A.T.); (E.T.)
| | - Zoltán May
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network (ELKH), H-1117 Budapest, Magyar Tudósok Körútja 2, Hungary; (K.M.); (L.K.); (J.M.); (Z.M.); (P.N.); (A.T.); (E.T.)
| | - Péter Németh
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network (ELKH), H-1117 Budapest, Magyar Tudósok Körútja 2, Hungary; (K.M.); (L.K.); (J.M.); (Z.M.); (P.N.); (A.T.); (E.T.)
- Department of Earth and Environmental Sciences, University of Pannonia, H-8200 Veszprém, Egyetem út 10, Hungary
| | - Catia Cannilla
- National Council of Research–CNR-ITAE, ‘‘Nicola Giordano’’, Via S. Lucia 5, 98126 Messina, Italy; (C.C.); (G.B.); (F.F.)
| | - Giuseppe Bonura
- National Council of Research–CNR-ITAE, ‘‘Nicola Giordano’’, Via S. Lucia 5, 98126 Messina, Italy; (C.C.); (G.B.); (F.F.)
| | - Francesco Frusteri
- National Council of Research–CNR-ITAE, ‘‘Nicola Giordano’’, Via S. Lucia 5, 98126 Messina, Italy; (C.C.); (G.B.); (F.F.)
| | - András Tompos
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network (ELKH), H-1117 Budapest, Magyar Tudósok Körútja 2, Hungary; (K.M.); (L.K.); (J.M.); (Z.M.); (P.N.); (A.T.); (E.T.)
| | - Emília Tálas
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network (ELKH), H-1117 Budapest, Magyar Tudósok Körútja 2, Hungary; (K.M.); (L.K.); (J.M.); (Z.M.); (P.N.); (A.T.); (E.T.)
| |
Collapse
|