1
|
Zhao P, Xia X, Luo Y, Yuan Z, Deng J, Luo H, Luo X, Huo D, Hou C. A porphyrin-modified CoMoO 4 nanosensor array for the detection of crude baijiu. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7494-7501. [PMID: 39364608 DOI: 10.1039/d4ay01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The rapid classification of crude baijiu is pivotal for its industrialization and automated development. In this study, a colorimetric sensor array employing peroxidase nanase (Por-CoMoO4) was developed to detect reducing substances and crude baijiu. The peroxidase-like activity of CoMoO4 was significantly enhanced by porphyrin (Por), exhibiting a Km value of 0.044 mM and Vmax of 19.37 × 10-8 for TMB substrate. Peroxidase activity varies at different pH levels. Organic and crude baijiu scavenge free radicals, thereby inhibiting oxTMB formation and yielding distinctive fingerprint profiles. Using linear discriminant analysis, 14 types of small molecules and 16 varieties of Luzhou-flavor crude baijiu were identified within specific concentration ranges. The method achieved 100% accuracy in distinguishing baijiu samples sourced from different distilleries, offering a straightforward, rapid, and effective approach to differentiate crude baijiu during alcoholic beverage production.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Xuhui Xia
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Yiyao Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Zirui Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Jiaxi Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Xiaogang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| |
Collapse
|
2
|
Khera N, Jeevanandam P. CuCo 2S 4 nanoparticles synthesized via a thermal decomposition approach: evaluation of their potential as peroxidase mimics. NANOSCALE 2024; 16:18108-18118. [PMID: 39258884 DOI: 10.1039/d4nr02215g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The current study demonstrates the synthesis of CuCo2S4 nanoparticles using a novel thermal decomposition approach. The CuCo2S4 nanoparticles were synthesized under various conditions by changing the source of sulfur and the solvent. The CuCo2S4 nanoparticles were characterized using an array of analytical techniques. Powder XRD results indicate the successful formation of CuCo2S4 nanoparticles. TEM results show agglomerated nanoparticles with close to spherical morphology and XPS measurements indicate the presence of Cu2+, Cu+, Co3+, Co2+, and S2- in the samples. The CuCo2S4 nanoparticles exhibit weak ferromagnetic and paramagnetic behaviour at 5 K and 300 K, respectively. The CuCo2S4 nanoparticles were explored for their enzyme mimetic activity using 3,3',5,5' tetramethylbenzidine (TMB) as a substrate. They exhibit better catalytic activity compared to that of a natural enzyme (horseradish peroxidase) and other metal sulfide nanoparticles reported in the literature.
Collapse
Affiliation(s)
- Nainy Khera
- Department of Chemistry, Indian Institute of Technology, Roorkee, Roorkee-247667, India.
| | - Pethaiyan Jeevanandam
- Department of Chemistry, Indian Institute of Technology, Roorkee, Roorkee-247667, India.
| |
Collapse
|
3
|
Liu Y, Hao P, Liu Z, Li G, Fan G, Xie M, Liu Q. Zinc pyrovanadate nanorods with excellent peroxidase-like activity at physiological pH for the colorimetric assay of H 2O 2 and epinephrine. Analyst 2023; 148:269-277. [PMID: 36510856 DOI: 10.1039/d2an01651f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exploring highly active peroxidase mimics at physiological pH is important for the construction of efficient and convenient colorimetric sensing platforms for detecting small biomolecules. In this work, prepared zinc pyrovanadate (Zn3V2O7(OH)2·2H2O) nanorods exhibit excellent peroxidase-like activity, which is verified by the fast oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) into a blue product (oxTMB) by H2O2 at physiological pH (pH = 7) in 2 min. In addition, the catalytic behaviors of Zn3V2O7(OH)2·2H2O as a peroxidase-like nanozyme conform to the Michaelis-Menten equation. Scavenger experiments prove that the catalytic activity of Zn3V2O7(OH)2·2H2O is ascribed to ˙O2- radicals generated in the process of catalysis. Based on the peroxidase-like activity of the Zn3V2O7(OH)2·2H2O nanozyme, a fast and convenient colorimetric sensor has been constructed to detect H2O2 and epinephrine (EP) under physiological pH. The detection limit of EP is as low as 0.26 μM. In addition, the feasibility of the proposed sensor has been validated to detect H2O2 in milk and EP in serum.
Collapse
Affiliation(s)
- Yaru Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China.
| | - Pingping Hao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China.
| | - Zhenchao Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China.
| | - Guijiang Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China. .,Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P R China
| | - Gaochao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P R China
| | - Min Xie
- Community Health Service Center (University Hospital), University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China.
| |
Collapse
|
4
|
Liu L, Lai Y, Cao J, Peng Y, Tian T, Fu W. Exploring the Antibacterial and Biosensing Applications of Peroxidase-Mimetic Ni 0.1Cu 0.9S Nanoflower. BIOSENSORS 2022; 12:874. [PMID: 36291011 PMCID: PMC9599305 DOI: 10.3390/bios12100874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes, as artificial enzymes with the biological action of natural enzymes, have enormous potential in the fields of disease diagnosis, bacteriostasis, biosensing, etc. In this work, the Ni0.1Cu0.9S nanoflower was successfully synthesized through a one-step hydrothermal method. A combined strategy of Ni doping and morphology design was employed to adjust its electronic structure and active sites, endowing the Ni0.1Cu0.9S nanoflower with excellent peroxidase-like activity. Therefore, it can catalyze the decomposition of H2O2 to generate •OH with higher antibacterial activity, establishing a broad-spectrum antibacterial system based on the Ni0.1Cu0.9S nanoflower against E. coli and S. aureus, which avoids the harm of a high concentration of H2O2. Additionally, the colorless substrate TMB can be catalytically oxidized into blue ox-TMB via •OH. As a result, a colorimetric technique with rapid and accurate detection of ascorbic acid (AA) by the unaided eye was designed, in view of the specific inhibition effect towards the oxidation of TMB. This detection platform has a wide linear range (10~800 μM) with a low limit of detection (0.84 μM) and exhibits a satisfactory selectivity toward the detection of AA. This study sheds new light on the application of copper-containing nanozymes in the fields of biomedicine and bioassay.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yayu Lai
- The Department of General Practice, The 958th Hospital of Chinese People’s Liberation Army, Chongqing 400000, China
| | - Jinming Cao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yu Peng
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Tian Tian
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
5
|
Li J, Liu T, Dahlgren RA, Ye H, Wang Q, Ding Y, Gao M, Wang X, Wang H. N, S-co-doped carbon/Co 1-xS nanocomposite with dual-enzyme activities for a smartphone-based colorimetric assay of total cholesterol in human serum. Anal Chim Acta 2022; 1204:339703. [PMID: 35397915 DOI: 10.1016/j.aca.2022.339703] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
We fabricated a novel N,S-co-doped carbon/Co1-xS nanocomposite (NSC/Co1-xS) using a facile sol-gel approach, which featured a multiporous structure, abundant S vacancies and Co-S nanoparticles filling the carbon-layer pores. When the Co1-xS nanoparticles were anchored onto the surface of N,S-co-doped carbon, a synergistic catalysis action occurred. The NSC/Co1-xS nanocomposites possessed both peroxidase-like and oxidase-mimetic dual-enzyme activities, in which the oxidase-mimetic activity dominated. By scavenger capture tests, the nanozyme was demonstrated to catalyze H2O2 to produce h+, •OH and •O2-, among which the strongest and weakest signals were h+ and •OH, respectively. The multi-valence states of Co atoms in the NSC/Co1-xS structure facilitated electronic transfer that enhanced redox reactions, thereby improving the resultant color reaction. Based on the NSC/Co1-xS's enzyme-mimetic catalytic reaction, a visual colorimetric assay and Android "Thing Identify" application (app), installed on a smartphone, offered detection limits of 1.93 and 2.51 mg/dl, respectively, in human serum samples. The selectivity/interference experiments, using fortified macromolecules and metal ions, demonstrated that this sensor had high selectivity and low interference potential for cholesterol analysis. Compared to standard assay kits and previously reported visual detection, the Android smartphone-based assays provided higher accuracy (recoveries up to 93.6-104.1%), feasibility for trace-level detection, and more convenient on-site application for cholesterol assay due to the superior enzymatic activity of NSC/Co1-xS. These compelling performance metrics lead us to posit that the NSC/Co1-xS-based nanozymic sensor offers a promising methodology for several practical applications, such as point-of-care diagnosis and workplace health evaluations.
Collapse
Affiliation(s)
- Jiani Li
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tingting Liu
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Hanzhang Ye
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qi Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yongli Ding
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ming Gao
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Amara U, Mahmood K, Awais M, Khalid M, Nasir M, Riaz S, Hayat A, Nawaz MH. Nickel -doped iron oxide nanoparticle-conjugated porphyrin interface (porphyrin/Fe 2O 3@Ni) for the non-enzymatic detection of dopamine from lacrimal fluid. Dalton Trans 2022; 51:5098-5107. [PMID: 35266502 DOI: 10.1039/d2dt00074a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we synthesized nickel (Ni)-doped iron oxide nanoparticles (Fe2O3). The presence of the dopant afforded anchoring sites for the porphyrinic hetero cavity of 5,10,15,20-(tetra-4-carboxyphenyl)porphyrin to produce the porphyrin/Fe2O3@Ni composite. The crystalline structure and morphology of porphyrin/Fe2O3@Ni were assessed using various tools including Fourier transform spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and Raman spectroscopy. Porphyrin/Fe2O3@Ni has proven to be an excellent dopamine (DA) probe material with good selectivity, reproducibility, stability and reliability owing to its clever morphology, which induces numerous active sites along with good active surface area. It consequently provides good accessibility to DA and allows for the smooth tunneling of electrons between the analyte and sensing interface. Meanwhile, the porphyrin molecules provide good carbon-based resilient support, inhibit the leaching of the electrode matrix and enhance electron shuttling, resulting in the robust oxidation of DA with amplified transduction signals. The designed porphyrin/Fe2O3@Ni interface showed a low detection limit (1.2 nm) with good sensitivity (1.2 nM) in the linear bounds of 10 μM to 3500 μM. Additionally, the interface was employed successfully to analyze DA from lacrimal fluid with good percentage recoveries (99.8% to 100.1%). We anticipate that such a design will simplify the in vitro screening of DA in rarely studied tear samples with sensitivity and selectivity.
Collapse
Affiliation(s)
- Umay Amara
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan. .,Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Muhammad Awais
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Muhammad Khalid
- Department of Basic Sciences & Humanities, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Nasir
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| | - Sara Riaz
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus 54000, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| |
Collapse
|
7
|
Construction of Electrochemical and Photoelectrochemical Sensing Platform Based on Porphyrinic Metal-Organic Frameworks for Determination of Ascorbic Acid. NANOMATERIALS 2022; 12:nano12030482. [PMID: 35159826 PMCID: PMC8839235 DOI: 10.3390/nano12030482] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023]
Abstract
Highly sensitive and specific detection of biomolecular markers is of great importance to the diagnosis and treatment of related diseases. Herein, Cu-TCPP@MOFs thin films were synthesized with tetrakis(4-carboxyphenyl) porphyrin (H2TCPP) as organic ligands and copper ions as metal nodes. The as-synthesized Cu-TCPP@MOFs thin films as electrode modifiers were used to modify the pre-treated glassy carbon electrode (GCE) and the electrochemical performances of Cu-TCPP@MOFs/GCE were evaluated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Furthermore, as the working electrode, the constructed Cu-TCPP@MOFs/GCE was used for the investigation of ascorbic acid (AA) due to its outstanding electrocatalytic activities towards AA by several electrochemical methods, including cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CA). The well-linear relationship was established based on different AA concentration ranges and the ideal detection limits (LOD) were obtained in the above-mentioned electrochemical methods, respectively. Furthermore, a Cu-TCPP MOFs@GCE sensing platform was used as a photoelectrochemical (PEC) sensor to quantitatively detect AA based on the strong absorption properties of Cu-TCPP ingredients in Cu-TCPP MOFs in a visible light band of 400~700 nm. PEC sensing platform based on Cu-TCPP@MOFs exhibited a more extensive linear concentration range, more ideal detection limit, and better sensitivity relative than the other electrochemical methods for AA. The well linear regression equations were established between the peak current intensity and AA concentrations in different electrochemical technologies, including CV, DPV, and CA, and PEC technology. AA concentration ranges applicable to various electrochemical equations were as follows: 0.45~2.10 mM of CV, 0.75~2.025 mM of DPV, 0.3~2.4 mM of CA, 7.5~480 μM of PEC, and the corresponding detection limits for AA were 1.08 μM (S/N = 3), 0.14 μM (S/N = 3), 0.049 μM (S/N = 3), and 0.084 nA/μM. Moreover, the proposed Cu-TCPP MOFs@GCE electrochemical and photoelectrochemical sensing platform was applied to determine the AA concentration of a real human serum sample; the results reveal that Cu-TCPP MOFs@GCE sensing platform could accurately determine the concentration of AA of the human serum under other potential interferences contained in the human serum samples.
Collapse
|
8
|
Zhu B, Dong S, Liu Z, Gao Y, Zhu X, Xie M, Liu Q. Enhanced peroxidase-like activity of bimetal (Fe/Co) MIL-101 for determination of tetracycline and hydrogen peroxide. NEW J CHEM 2022. [DOI: 10.1039/d2nj04403j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The peroxidase-like activity of MIL-101(Fe/Co) is improved by adding tetracycline. On the basis of MIL-101(Fe/Co), fast colorimetric sensors of tetracycline and H2O2 have been successfully constructed.
Collapse
Affiliation(s)
- Baocan Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Shanmin Dong
- Shandong Hualu-Hengsheng Chemical Co. Ltd, Dezhou, 253024, P. R. China
| | - Zhenchao Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Yan Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xixi Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Min Xie
- Community Health Service Center (University Hospital), University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| |
Collapse
|
9
|
Xu D, Qi S, Chen Y, Yin M, Zhang L, Ge K, Wei X, Tian X, Wang P, Li M, Wei J, Wang Z, Qiu J. Hierarchical mesoporous hollow Ce-MOF nanosphere as oxidase mimic for highly sensitive colorimetric detection of ascorbic acid. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Hou P, Ju P, Hao L, Chen C, Jiang F, Ding H, Sun C. Colorimetric determination of hydrogen peroxide based on the robust peroxidase-like activities of flower-like YVO4 microstructures. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
A Rapid Visual Detection of Ascorbic Acid Through Morphology Transformation of Silver Triangular Nanoplates. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Kong X, Yang R, Li Y, Wei Y, Sun Y, Lyu H, Yin D, Zhu X, Lu G, Liu Q. Co3O4-binuclear phthalocyanine nanocomposites with enhanced peroxidase-like activity for sensitive detection of glutathione. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
|
14
|
Gu H, Huang Q, Zhang J, Li W, Fu Y. Heparin as a bifunctional biotemplate for Pt nanocluster with exclusively peroxidase mimicking activity at near-neutral pH. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Yuan C, Qin X, Xu Y, Jing Q, Shi R, Wang Y. High sensitivity detection of H2O2 and glucose based on carbon quantum dots-catalyzed 3, 3′, 5, 5′-tetramethylbenzidine oxidation. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105365] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Iqbal S, Bahadur A, Anwer S, Ali S, Irfan RM, Li H, Shoaib M, Raheel M, Anjum TA, Zulqarnain M. Effect of temperature and reaction time on the morphology of l-cysteine surface capped chalcocite (Cu2S) snowflakes dendrites nanoleaves and photodegradation study of methyl orange dye under visible light. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124984] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Yin D, Cao X, Liu X, Yang Z, Liu Z, Wang D, Liu Q, Zhang X, Zhang X. Rapid colorimetric sensing of ascorbic acid based on the excellent peroxidase-like activity of Pt deposited on ZnCo2O4 spheres. NEW J CHEM 2020. [DOI: 10.1039/d0nj02795b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pt/ZnCo2O4 composites were firstly found to act as artificial peroxidases and used to construct colorimetric sensing platforms for detecting H2O2 and ascorbic acid.
Collapse
Affiliation(s)
- Dexin Yin
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Xiaoyan Cao
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Xiangwei Liu
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Zhou Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zhenxue Liu
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Dongmei Wang
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Qingyun Liu
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Xianxi Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology
- School of Chemistry and Chemical Engineering, Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Xiao Zhang
- Shandong Key Laboratory of Biochemical Analysis
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|
18
|
Liu Y, Jin H, Zou W, Guo R. Protein-mediated sponge-like copper sulfide as an ingenious and efficient peroxidase mimic for colorimetric glucose sensing. RSC Adv 2020; 10:28819-28826. [PMID: 35520084 PMCID: PMC9055861 DOI: 10.1039/d0ra05496h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Strenuous efforts have been made to develop nanozymes for achieving the performance of natural enzymes to broaden their application in practice, but the fabrication of high-performance and biocompatible nanozymes via facile and versatile approaches has always been a great challenge. Here, sponge-like casein-CuS hybrid has been facilely synthesized in the presence of amphiphilic protein-casein through a simple one-step approach. Casein-CuS hybrid exhibits substrates-dependent peroxidase-like activity. Casein-CuS hybrid exhibits well peroxidase-like activity with 3,3′,5,5′-tetramethylbenzidine (TMB) and 1,2-diaminobenzene (OPD) as substrates, and the affinity of OPD towards the hybrid nanozyme is much higher than that of TMB. More importantly, due to the high affinity of OPD and the well biocompatibility of the hybrid nanozyme, a superior enzyme cascade for glucose based on the well cooperative effect of casein-CuS hybrid and glucose oxidase is developed. The proposed glucose sensor exhibits a wide linear range of 0.083 to 75 μM and a detection limit of 5 nM. This suggests the promising utilization of protein–metal hybrid nanozymes as robust and potent peroxidase mimics in the medical, food and environmental detection fields. Strenuous efforts have been made to develop nanozymes for achieving the performance of natural enzymes, but the fabrication of high-performance and biocompatible nanozymes via facile and versatile approaches has always been a great challenge.![]()
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Haijia Jin
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Wenting Zou
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| |
Collapse
|